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Abstract
Generative models, particularly large language
models (LLMs), have achieved remarkable suc-
cess in producing natural and high-quality con-
tent. However, their widespread adoption raises
concerns regarding copyright infringement, pri-
vacy violations, and security risks associated
with AI-generated content. To address these
concerns, we propose a novel digital forensics
framework for LLMs, enabling the tracing of
AI-generated content back to its source. This
framework embeds a secret watermark directly
into the generated output, eliminating the need
for model retraining. To enhance traceability,
especially for short outputs, we introduce a
"depth watermark" that strengthens the link be-
tween content and generator. Our approach
ensures accurate tracing while maintaining the
quality of the generated content. Extensive ex-
periments across various settings and datasets
validate the effectiveness and robustness of our
proposed framework.

1 Introduction
Generative models, including GPT (OpenAI,
2023a), Gemini (Google, 2023), and LLama (Meta,
2023), have shown exceptional ability to produce
natural and high-quality outputs. However, they
also pose potential risks for malicious applications,
such as the generation of fake news and unfounded
rumors. Consequently, the imperative arises to con-
struct a robust security auditing system capable of
tracing the origin of outputs. This tracing ability
should not only ensure that model utilization aligns
with regulatory requirements, compliance, and eth-
ical standards but also elevates the overall integrity
of the system. Furthermore, considering genera-
tive models’ proficiency in content creation and
manipulation, safeguarding users’ copyrights and
intellectual property becomes paramount. By dis-
cerning the source of each user’s generated output,
we can protect legitimate contributions, preventing
unauthorized replication or use of their content.

In this paper, our objective is to pioneer digital
forensics methods tailored for deep learning sys-
tems to audit AI-generated content. Our innovative
approach involves embedding a secret watermark
into the generated output, ensuring source traceabil-
ity. Importantly, we strive to make watermarking
implicit, balancing the challenge of being hard to
remove and undetectable without compromising
the quality of the generated output. During infer-
ence and without necessitating model fine-tuning
or retraining, our method dynamically adjusts the
probabilities of specific tokens based on a unique
code associated with the user, effectively imprint-
ing a watermark into the text. Recognizing the
need for enhanced performance in scenarios with
short outputs, we introduce a depth watermark as
an additional mechanism to embed the entire binary
user code. This involves dividing the vocabulary
into sub-lists and utilizing the added watermark to
adjust the probability of the output token falling
into these groups. This approach ensures accurate
identification of the content generator from the user
pool, relying on unique probability shifts.

Comprehensive experiments were conducted
across various settings and datasets to validate our
method’s efficacy. We assessed accuracy on five
datasets for tracing the generator from a single out-
put sentence, and even with only 25 tokens, our
proposed framework achieved over 90% top-10
accuracy across all datasets. The quality of water-
marked outputs was evaluated through perplexity
measures, and the robustness of our method was
confirmed against text alteration attacks, maintain-
ing a 90% accuracy for identifying the top genera-
tor in outputs of 200 tokens, even when up to 30%
of the text was changed.

2 Related Work

Watermarking. Watermarking serves as a cru-
cial technique for embedding unique identifiers or
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Figure 1: Illustration of the proposed watermark generation and identification flow.

signatures into digital signals or content to protect
intellectual property or verify authenticity. In the
context of language models (LMs), this technique
is crucial for safeguarding creators’ rights and en-
suring the legitimacy of generated text. Early rule-
based approaches work in text watermarking in-
volved embedding watermarks within a sentence’s
syntactic structure, as proposed in the post-hoc
strategy by Atallah et al. (2001). Subsequently, syn-
onym substitution techniques (Topkara et al., 2006)
and semantic combination patterns for watermark
construction (Xiang et al., 2021) were introduced
for natural language text. Venugopal et al. (2011),
were the first to propose using bit information for
watermarking, while He et al. (2022) introduced the
innovative concept of context-conditional textual
watermarking.

However, applying post-hoc watermarks to LMs
faces challenges due to the diverse and versatile
nature of output generation. To address this, Fang
et al. (2017) proposed restricting generative mod-
els to produce tokens only from an "allowed" set.
Unfortunately, this constraint often leads to low-
quality output, especially in low-entropy cases.

Detection of AI-generated Content. With the
proliferation of large language models capable of
generating high-quality and natural text, detect-
ing the usage of machine-generated text has be-
come increasingly important. Early methods em-
ployed natural heuristics and statistical analyses,
while entropy scoring (Lavergne et al., 2008) uti-

lized local syntactic and semantic consistency of
short phrases to identify AI-generated sentences.
GLTR (Gehrmann et al., 2019) assessed the ex-
pected probability of individual tokens, setting a
threshold for detection. DetectGPT (Mitchell et al.,
2023) observed that paragraphs created by AI often
reside in the negative curvature of the log probabil-
ity of texts. Some detectors, like a tool released by
OpenAI (OpenAI, 2023b), incur additional train-
ing costs by using a fine-tuned GPT model to dis-
cern whether a sentence is human-written or AI-
generated. Kirchenbauer et al. (2023) introduced a
novel approach by creating a "green list" randomly
sampled from the entire vocabulary for every out-
put token generation. They added a preference bias
with "green" tokens during sampling, enabling the
change in output distribution to be used for water-
mark detection.

Recent studies (Yoo et al., 2024; Fernandez et al.,
2023) have furthered Kirchenbauer’s framework to
refine the watermarking process. This evolution
involves planting traceable multi-bit data during
the language model generation phase to enrich the
detectable information from a binary (human or
AI) classification. Building upon this, Wang et al.
(2024) further introduced a method to address the
poor text quality often associated with multi-bit
methods and Yoo et al. (2023) improved the pay-
load capacity and robustness of multi-bit methods.

In our work, we address a more challenging prob-
lem beyond merely detecting watermark informa-
tion. Our objective extends to accurately pointing



out the specific content generators from a huge
userpool for auditing purposes.

3 Problem Setting

Language Model. Let V denote the vocabu-
lary set of the Language Model (LM), which con-
tains all possible tokens that the LM can gener-
ate. The size of V is typically 50, 000 tokens or
more (Radford et al., 2019). A language model
(LM) can then be defined as a function, which ac-
cepts a sequence with arbitrary length of tokens
s(−N), s(−N+1), .., s(−1), referred to as the prompt,
and generates an output s(0), s(1), ..., s(M). For
simplicity, output s(n), ..., s(m) will be denoted as
s(n:m). Since the output s(n:m) is generated re-
cursively, let f : s(−N :t−1) → Zt be the gen-
eration function at step t, where Zt represents a
score vector with logit values for each token in
V . At the initial step, t = 0, the LM accepts the
prompt s(−N :−1) and computes a corresponding
logit which is later processed by a softmax oper-
ator to obtain a probability distribution over the
vocabulary, denoted as p0. The token at position
t is sampled from this probability distribution, de-
noted as s(0). In the subsequent step, at t = 1,
the function f takes s(−N :0) as input. During t-
th step, f generates Zt, and pt, s(t) are computed
sequentially.

Threat Model. The problem of tracing the output
generated by a Large Language Model (LLM) is
formalized as follows. The language model server
supports text generation tasks for n users. When
a user employs the language model to generate an
output sentence s, it becomes imperative for the
server to identify the specific generator responsible
for producing that output without external infor-
mation. This traceability is essential for secure
audits and intellectual property protection. To pro-
tect intellectual property and ensure maintenance,
the model architecture and weight details are en-
crypted and concealed from customers. As a result,
customers only have access to input and output
sentences. Conversely, the server possesses access
to some user information such as a unique ID that
serves as a "fingerprint" for each client.

4 A Simple Watermark

Inspired by Kirchenbauer et al. (2023), our method-
ology begins with a straightforward yet highly ef-
fective watermarking method, ensuring that the

generated output retains user-specific information
without compromising its quality.

The process begins by assigning a unique ID to
each client, which is embedded within the gener-
ated output to establish a clear link between the
client and their output. This ID is then trans-
formed into a unique binary user code denoted
by E ∈ {0, 1}k, where k represents the length of
this binary code. During Language Model (LM)
generation, at each t-th step, our method initiates
the process by generating a pseudo-random pre-
ferred list Lt. To construct Lt, we define I(s(t))
as the fixed index for token s(t) within the vocab-
ulary list. The context ct for step t is defined as
ct = I(s(t−1)) ∗ I(s(t−2)). Utilizing this ct to
seed a random number generator that splits the
entire vocabulary list into two equally sized, non-
overlapping lists. These lists, V 0t and V 1t, then
serves as two candidates for the preferred list Lt.
Notably, the selection of the previous two tokens
as the seed, instead of just the preceding one, en-
hances the differentiation in the splitting process.

Following this, an indicator ∈ {0, 1} is intro-
duced to select the preferred list Lt from the two
candidate lists, V 0t and V 1t. To infuse user ID in-
tuitively into the generation process, the indicator
is determined by a specific bit of the generator’s
binary user code Ei, calculated as follows:

indicator = The n-th bit of Ei

where n = ct mod k and k is the length of Ei.
Finally, the preferred list Lt is decided by the
indicator: if indicator is 0, then Lt is set to V 0t,
otherwise Lt is set to V 1t.

Subsequently, the logit vector Zt at step t, pro-
duced by the final layer of the language model,
undergoes modification by adding a bias parameter
δ to the logit corresponding to the token in Lt. This
adjusted logit vector is then fed into a softmax op-
erator, resulting in a biased probability distribution
denoted as p̃t. The calculation is shown in Equa-
tion 1, where p̃xt signifies the biased probability of
sampling the x-th token during the t-th step.

p̃xt =


exp(Zx

t +δ)∑
u∈Lt

exp(Zu
t +δ)+

∑
v/∈Lt

exp(Zv
t )
, x ∈ Lt

exp(Zx
t )∑

u∈Lt
exp(Zu

t +δ)+
∑

v/∈Lt
exp(Zv

t )
, x /∈ Lt

(1)
This process ensures a seamless integration of user-
specific information into the watermarking tech-
nique, preserving both the quality of the generated
output and the traceability of user-specific content.



Identification of the Simple Watermark. Given
an output sentence s(0:m) produced by a language
model and the set of all binary user E, our goal is
to determine the most likely generator among all
users. For each user i, we compute a confidence
score indicating the likelihood of user i being the
generator. The confidence score for each user i is
calculated by examining the frequency of every out-
put token appeared in the user’s exclusive preferred
list. Ultimately, we select the top k users with the
highest confidence scores as the top k suspects.

Limitations of the Simple Watermark. How-
ever, we find that the identification performance
can be poor in cases of inadequate output length,
especially when this length is shorter than that of
the binary user code. This issue arises due to the
resemblance in binary user codes, leading to close
proximity in confidence scores. In a scenario where
the k-bit binary user codes of two users differ by
only one bit, the probability of choosing the same
preferred lists per step is k−1

k . With insufficient
output length, these two users may produce identi-
cal results with high probability, resulting in sim-
ilar confidence scores. Consequently, short out-
put length can lead to numerous users’ confidence
scores remarkably resembling that of the genera-
tor, thereby deteriorating the identification perfor-
mance. Addressing these challenges becomes cru-
cial, particularly in scenarios where output length
constraints may impact the watermark’s efficacy.

5 Depth Watermarking

To improve tracing performance and address the
previously mentioned limitation, especially for
short outputs, we introduce depth watermarking
as an additional mechanism to embed the entire
binary user code within a single generation step.
Therefore, we design a more sophisticated token
probability distribution, aiming to maximize the
distribution difference by introducing varying bi-
ases to different sub-lists within the preferred list.

As shown in Algorithm 1, in each generation
step, we construct the preferred list Lt using the
same algorithm as in the simple watermark. We
utilize the hash value of the generator’s binary user
code Ei as a seed in the random number gener-
ator to partition the preferred list Lt into several
equally sized sub-lists without overlap, denoted
as L0

t , L
1
t , ..., L

n
t , where L0

t ∪ ... ∪ Ln
t = Lt. For

each sub-list Lj
t within L0

t , . . . , L
n
t , we incorpo-

rate a scaled bias (12)
j
δ to the logit associated with

Lj
t . The adjusted logits are then subjected to the

softmax operator, producing a biased probability
distribution p̃t:

p̃xt =


exp(Zx

t + δ
2j

)∑n
j=0

∑
u∈L

j
t

exp(Zu
t + δ

2j
)+

∑
v/∈Lt

exp(Zv
t )
, x ∈ Lj

t

exp(Zx
t )∑n

j=0

∑
u∈L

j
t

exp(Zu
t + δ

2j
)+

∑
v/∈Lt

exp(Zv
t )
, x /∈ Lt

(2)

Algorithm 1 Depth Watermark Generation

Input: Prompt s(−N :−1), binary code of generator
Ei, length of binary code k, language model f ,
bias intensity δ

Output: Watermarked output
1: for t = 0, 1, ... do
2: Apply language model on prior tokens

s(−N :t−1) to get a logit vector Zt.
3: Compute the product of vocabulary index of

s(t−1) and s(t−2) as ct.
4: Utilize ct to seed a random number genera-

tor Rt, and use Rt to partition vocabulary V
into V 0t and V 1t, where V 0t ∪ V 1t = V .

5: Calculate the result of ct with modulus k and
use the result n to determine an indicator ∈
{0, 1}, as n-th bit of Ei. If the identifier
equals to 0, set the preferred list Lt as V 0t,
otherwise V 1t.

6: Utilize the hash of Ei to seed a random gen-
erator to partition Lt into sub lists L0

t , ..L
n
t ,

where L0
t ∪ ... ∪ Ln

t = Lt.
7: for j = 0, ..., n do
8: For each token ∈ Lj

t , add a scaled bias
0.5jδ to its corresponding logit.

9: end for
10: Apply softmax operator to the new logit and

get biased probability distribution p̃t over
the vocabulary.

11: end for

Identification of the Depth Watermark. By in-
troducing exponentially decreasing biases to the
logits corresponding to each sub-list, we enhance
the probability of sampling tokens from these sub-
lists to varying extents. Subsequently, the ‘depth
score’ is employed to measure the similarity be-
tween the actual and ideal probability distributions
of tokens within each sub-list. Although precisely
calculating the ideal probability distribution for
each individual token is not feasible, we can es-
timate the overall trend Pknown for these n cate-
gories in the probability distribution. This entails



experimentally obtaining a probability distribution
of n classes, where each probability indicates the
chance of a token from that class being selected.

To estimate Pknown, we randomly generate a
fixed preferred list and its sub-lists, calculating the
corresponding bias values for each sub-list. We
then construct a metric dataset by sampling data
from different domains. For each prompt in the
metric dataset, we query the model to obtain clean
logits. The bias is then added to the set of clean
logits according to the sub-lists, and then processed
with the softmax operator to generate the probabil-
ity distribution. We calculate the probabilities of
output tokens falling into each of the n sub-lists or
outside the preferred list Pknown by sampling the
output from the resulting probability distribution.

Having obtained Pknown, given a sentence s(0:m)

generated by the LM and the set of all binary
user codes E, we proceed to calculate the ac-
tual probability distribution Ppractical. We exam-
ine the frequency of each token in the sentence
falling into each sub-list and simultaneously track
the count of tokens that do not belong to the pre-
ferred list. Specifically, we maintain the occur-
rence o0, .., on−1 for each sub-lists and onp for
the non-preferred list to record the frequency of
tokens falling into each list. The resulting list
[n0, .., on−1, onp] is then normalized by dividing
by the total number of checked tokens, yielding
Ppractical.

Finally, for each user i, their depth score is de-
fined as the negative cross-entropy of Ppractical and
Pknown. The higher the score, the more likely it
is that user i is the generator. We show the de-
tailed depth watermark identification process in
Algorithm 2.

Theoretical Analysis. Our task involves identify-
ing the most probable user from a model’s output,
framed as a multi-class classification problem. By
employing strategies such as one-vs-one or one-vs-
all, we transform this into a series of binary clas-
sification tasks, similar to the approach proposed
by Kirchenbauer et al. (2023) where they formu-
lated a binary task to detect if a text sequence is lan-
guage model-generated by checking the probability
of output tokens falling within a predetermined
"green list".

For each binary task, we adopt their theoretical
derivation, providing an error bound. By combin-
ing these bounds, we deduce the highest error rate
for our multi-class system. Specifically, in our

Algorithm 2 Depth Watermark Identification

Input: Generated output s(0:M), Binary user
codes set {E}, estimated ideal distribution
Pknown

Output: Content generator
1: For each useri, initialize non-preferred list

occurrence onpi and sub-list occurrences
o0i , .., o

n−1
i = 0

2: for every user i do
3: for t = 0, 1.. do
4: Compute preferred list Lt and sub lists

L0
t , ..L

n
t in Algorithm 1.

5: if generated token s(t) ∈ Lt then
6: oji = oji + 1, where s(t) ∈ Lj

t

7: else
onpi = onpi + 1

8: end if
9: end for

10: Ppractical = [o0i , .., o
n−1
i , onpi ]/M

11: Calculate user i’s Depth_scorei =
−CE(Pknown, Ppractical)

12: end for
13: Return user IDs with the highest Depth_score

as the content generator.

simple watermark scheme, each generation step’s
preferred list Lt is determined by the user code’s
bit. For each bit prediction, the expected value and
variance of preferred list token counts are reduced
to the bounds established by Kirchenbauer et al.
(2023). Given a threshold, the probability of binary
misclassification ϵ can be derived. With an k-bit
code, the worst-case probability of wrong predic-
tion is 1− (1− ϵ)k, where 2k equals the number of
users in a full capacity assignment. As ϵ is actually
quite small(on the order of 10−5), our proposed
scheme would achieve good detection performance.
Our average-case bound is even better, as some bit
misclassifications do not lead to incorrect tracing.
Sparse assignment (where not all n-bit codes are
assigned) further improves this bound.

Our depth watermark approach partitions the
preferred list into n sub-lists with an exponentially
decreasing bias. Compared to the simple water-
mark’s fixed bias on half the vocabulary, the depth
scheme affects fewer words, increasing the post-
softmax probability of sampled tokens landing in
the selected sub-list. This reduces the binary mis-
classification probability ϵ, leading to a lower rate
of wrong predictions in our multi-class system.



6 Experiments
6.1 Experimental Setup
Implementation Details. We assess the perfor-
mance of the proposed depth method under various
configurations using OPT-1.3B (Zhang et al., 2022)
as the language model with 1.3 billion parameters.
Five diverse datasets spanning various everyday
domains are employed: News-like text from the
C4 dataset (Raffel et al., 2020) (odc-by license),
news articles from the XSum dataset (Narayan
et al., 2018) (cc-by-sa-4.0 license), prompted sto-
ries from the Reddit WritingPrompts dataset (Fan
et al., 2018) (MIT license), Wikipedia paragraphs
from SQuAD contexts (Rajpurkar et al., 2016) (cc-
by-4.0 license), and long-form answers written by
human experts in the PubMedQA dataset (Jin et al.,
2019) (MIT license). We use the Pytorch interface
of Huggingface library (Wolf et al., 2020) to imple-
ment the proposed watermarking method. Every
experiment is conducted with 200 distinct fixed-
length prompt sentences. For each prompt, five
users were randomly selected from the user pool
with 1024 users to act as generator. The mean of
multiple experiment results is reported. Identifi-
cation accuracy is examined across five datasets
using the fixed Pknown derived from the C4 dataset.
All experiments are configured with the number of
sub-lists n set to 3, bias intensity δ ranging from
3 to 5, the number of tokens per output fixed at
25, and the binary user code length set to 10, cor-
responding to a user pool size of 210 = 1024. All
experiments are conducted on NVIDIA RTX 3090,
and identification for a sentence takes around 0.45
minutes.

Evaluation Metrics. To evaluate the efficacy of
our proposed method, we use the top-1, top-3, and
top-10 identification accuracy to reflect the prob-
ability of the generator belongs to the top 1, 3,
or 10 suspects, respectively. The quality of the
watermarked output was assessed using perplex-
ity (Beresneva, 2016) with an oracle model of OPT-
1.3B, which quantifies the divergence between the
original distribution of output and that of our wa-
termarked model.

6.2 Main Results
Table 1 illustrates a notable enhancement in the
accuracy of text generator identification across a
user pool of 1024 clients with varying δ values.
Particularly, when δ = 5, the top-10 accuracy met-
ric of our methodology consistently surpasses 90%

for each dataset. For top-1 accuracy, the major-
ity of outcomes exhibit satisfactory performance,
with values approximating or exceeding 90%. No-
tably, in the absence of our proposed method, the
probability of correct prediction through random
guessing would be a mere 0.1%, 0.3%, and 1%
for top-1, top-3, and top-10 identification accuracy,
respectively, in the given context.

This assessment of identification accuracy across
datasets emphasizes the adaptability and robust-
ness of our watermarking approach, with the depth
watermarking method yielding consistently high
accuracy. However, it is noteworthy that the perfor-
mance on the WritingPrompts dataset is compara-
tively less favorable than on other datasets. This
outcome might be influenced by the unique char-
acteristics of the WritingPrompts dataset, which
encompasses a diverse range of creative and nar-
rative texts. Addressing this challenge could be
the focus of future works, aiming to formulate an
improved watermarking scheme.

6.3 Ablation Studies

We examine the effect of hyperparameters on the
quality of output and the identification performance.
For each experiment, a corpus of 200 distinct, fixed-
length text was sourced from the C4 dataset as
prompts for the experiments. Correspondingly,
a generator is randomly selected from the user
pool for each prompt. The default settings include
bias intensityδ = 5, number of sub-lists=3, output
length=200, and user pool size=1024.

Bias Intensity δ. By selecting a large bias inten-
sity δ, the output generated by different users can
be more distinct, thereby enhancing the watermark
efficiency. However, creating a strong watermark
may perturb the output distribution of the language
model, potentially leading to a deterioration in out-
put quality. Table 2 shows the correlation between
the efficiency of watermarking (as measured by
top-1 identification accuracy) and the quality of
output (as quantified by perplexity, smaller is bet-
ter) across various bias intensities. More results can
be found in Appendix A. Additionally, we have
included illustrative instances of human written
prompts, unwatermarked and watermarked outputs,
as well as watermarked perplexity within Table 3,
thereby offering a qualitative perspective on the per-
formance of the quantitative measurement. More
examples can be found in Appendix D.



Dataset δ = 4 δ = 5 δ = 6
Top1 Acc Top3 Acc Top10 Acc Top1 Acc Top3 Acc Top10 Acc Top1 Acc Top3 Acc Top10 Acc

C4 77.3 87 92.6 89.1 92.5 95.3 95.7 97.9 98.4
XSum 78.5 86.9 93.1 90.3 94.3 95.9 95.0 97.2 98.0
WritingPrompts 57.3 67 76.4 77 85.4 90.6 87.5 91.3 94.2
SQuAD 76.2 86.5 92.6 93.7 96.6 98.1 97.9 99.6 99.9
PubMedQA 83.7 90.4 95.1 94.1 97.5 98.5 96.9 98.7 99.2

Table 1: Identification accuracy (%) on different datasets with varying δ.

δ Top1 Acc % Perplexity
4 78 11.17
5 89 17.56
6 96 23.75
7 97 30.44

Table 2: Trade-off between watermark strength and
output quality.

The Length of Output Sequence. The length
of the output sequence is considered to be propor-
tional to the efficacy of identification. Figure 2
presents the correlation between identification per-
formance and output lengths, across a spectrum
of bias intensities δ. We also include the simple
watermark in Section 4 with δ = 5 as a reference.
From Figure 2, we can see depth watermarking con-
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Figure 2: The top-1 identification accuracy against the
length of the generated text.

sistently outperforms simple watermarking across
nearly all tested δ, with a particularly significant
advantage for shorter output lengths. For the depth
method, it is evident that a delta value of 5 yields
extremely strong watermarking performances. As
output sequence length exceeds 50, the top-1 iden-
tification accuracy is nearly 100%, indicating the
exceptional performance of our proposed water-
mark.

Number of Sub-lists. Recall that the preferred
list is partitioned into several sub-lists in our depth
watermarking. The division inherently impacts

the variation in the bias vector to be added to the
logit, consequently weaken the output quality, as
measured by perplexity. Table 4 demonstrates that
perplexity worsens as the number of sub-lists in-
creases, conforming with the hypothesis we made
above. While a configuration employing three sub-
lists offers the most effective identification perfor-
mance. This accuracy can be influenced by the
distribution variance within the sub-lists. An in-
crease in the number of sub-lists can enhance this
variance, yet may also result in negligible differ-
ences. (Increment of the number of sub-lists results
in a more uniform distribution.) Evidently, the
configuration with 3 sub-lists strikes an optimal
balance.

Size of User Pool. An intriguing question is
about the boundaries of the effectiveness of the
depth watermark scheme. Specifically, the question
arises as to whether the proposed method retains its
accuracy when applied to significantly large user
pools. This experiment was conducted to evaluate
the performance of our method across user pools of
varying sizes. It involved testing binary user code
lengths of 7, 10, 14, 15, and 17, corresponding to
user pool sizes of 128, 1,024, 16,384, 32,768, and
131,072, respectively. As illustrated in Figure 3, the
top-3 identification accuracy remarkably maintains
a level above 90%, even with a user pool expand-
ing to 131,072 members. We defer more results in
Appendix B. In such a context, a reduced top-1 ac-
curacy is deemed acceptable, considering that iden-
tifying a set of top-3 suspects remains sufficiently
precise for a user pool of this magnitude. We also
include the run-time analysis in Appendix C.

6.4 Estimation of Ideal Distribution

In Section 5, the calculation of the depth score re-
lies on the ideal distribution Pknown, derived from
the C4 dataset. It is imperative to ensure the prox-
imity of Pknown to estimations obtained from other
datasets. To achieve this, we have undertaken the
generation of outputs using 5000 different prompts
from every datasets where each output consists of



Prompt (Written by Human) Watermarked Output Unwatermarked Output Perplexity
...The experts concluded that
each 50 gram portion of pro-
cessed meat eaten daily increases
the risk of

stomach cancer significantly, simi-
lar to the findings from analyses on
blue, red, salted and unsalted meat,
poultry and pork[...continues]

stomach cancer by 16 per cent.”
In February, the Brazilian Centre
for Public Health Research (CBP)
said[...continues]

15.95

...One thing we have to do is mea-
sure the contribution of arts to the
big picture. Take for instance the
yearly jazz fes

itval, for one, and then look at the
economic, social development and
political effects. It will show you
how much[...continues]

itval held in Johannesburg. I have
been on the committee that has been
looking at this for five years. We
have[...continues]

17.11

...I am really sad they decided to
cancel it and I have no idea why.
I hope the cast move on to other
things that I will enjoy

watching and I hope to see the last 7
seasons on tv, and maybe an online
movie, there are some great actors
that[...continues]

.
I wouldnt say the show was bad, but
it wasnt as good as it once was, but I
still[...continues]

19.62

Table 3: Prompt and output w/o the proposed watermark generated by prompts in the C4 dataset.

# of sub-lists Top1 Acc Perplexity
2 68.5 14.35
3 89 17.56
4 91.5 20.93
5 94.5 21.40

Table 4: Top-1 identification accuracy(%) and output
quality against number of sub-lists.
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Figure 3: Identification performance against different
size of userpool.

25 tokens. The ideal probability Pknown is com-
puted for each of the five datasets, employing a
bias intensity of δ = 5 and a number of sub-lists
n = 3, as detailed in Table 5. It can be observed
that the Pknown generated with different datasets
are largely consistent so that the ideal distribution
could be used across different datasets.

7 Robustness Analysis

The robustness of the proposed watermarking
scheme, particularly in maintaining the stability of
identification results, presents an essential inquiry.
In this section, we further discuss the performance
of our scheme under adversarial attacks.

We investigate a black-box text substitution at-
tack designed to mimic the perturbations one might

Dataset Ideal Distribution Pknown

C4 [0.5304, 0.1397, 0.1060, 0.2239]
XSum [0.4828, 0.2038, 0.1365, 0.1769]
WritingPrompts [0.6494, 0.1040, 0.1100, 0.1366]
SQuAD [0.5508, 0.1474, 0.0709, 0.2309]
PubMedQA [0.5892, 0.1031, 0.1177, 0.1900]

Table 5: Probability Distribution Pknown of tokens ap-
pearing in sub-lists and outside the preferred list for
various datasets (First 3 coordinates: probability in sub-
list; Last element: probability outside preferred list)

encounter in the real-world application. An ad-
versary alters the original output text by one token
each step using a substitution model, and iteratively
conduct the attack until a alteration budget ϵT is
reached, where T denotes the output length. This is
accomplished without the adversary’s knowledge
of the output’s distribution or the prior knowledge
Pkown. It is imperative to highlight that the budget
ϵ serves as a regulatory constraint, ensuring that
the resultant text maintains a degree of similarity to
the original. Specifically, we employ the OPT-1.3b
- the watermarking model with bias δ = 0 as the
adversary’s substitution model. The process begin
with tokenizing the watermarked text S of length
T , and randomly select a token s(t) ∈ S that never
been modified for attack. We extract the preceding
30 tokens of s(t) in the original watermarked text
to form a prompt for the substitution model. We
attack the original watermark text with the output
length T = 200. As depicted in Figure 4, we as-
sess the effectiveness of our scheme through the
top k identification accuracy in the face of outputs
generated with δ = 5 subjected to attacks with
varying attack budgets ϵ = 0.05, 0.1, 0.3, 0.5, 0.7.
It is encouraging to note that, when the attack bud-
get is limited to 0.3 or less, ensuring that at least
70% of the original content remains unaltered, our
scheme’s top-1 accuracy showcases exceptional



resilience, maintaining an identification accuracy
exceeding 90%. This underscores the robustness of
our methodology in achieving high accuracy levels,
even when confronted with adversarial modifica-
tions.
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Figure 4: Identification accuracy under attack with vari-
ous attack budget ϵ.

8 Conclusion

In this study, we introduced a comprehensive trace-
ability framework designed to identify the origin of
specific sentences generated by language models.
Our novel watermarking technique, which uniquely
embeds a user code within each user’s output, en-
ables precise source identification through a robust
scoring mechanism. Empirical evaluation of our
framework yielded promising results. Notably, for
outputs exceeding 50 tokens, we achieved a preci-
sion of nearly 100% across a cohort of 1024 users,
underscoring the effectiveness of our methodology.
Furthermore, rigorous experimentation confirmed
the robustness of our framework, demonstrating its
resilience in diverse scenarios and challenges.

Limitations

A significant limitation is the scalability in terms
of user capacity. Our proposed scheme might face
challenges when deployed in super-heavyweight
application like ChatGPT with around 180.5 mil-
lion users. We have demonstrated in Section 6.3
that the largest user pool size of our method can
be about 105 (unless using excessively long out-
put). We expect that a more carefully designed
watermarking scheme could support even larger
user pool size, which we leave as future works.
Moreover, the robustness of the scheme against
sophisticated adversarial attack, including but not
limited to the generative attack that could alter the
watermarked content remains a great concern. In

Section 7, we only discussed the robustness under
‘text alteration’ attack. The robustness against other
attacks remains to be tested.
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A More Results of Bias intensity.

We report the additional results for top-1, top-3, top-
10 accuracy, along with the perplexity measurement
for δ ranging from 0 to 7 in Table 6. The exper-
imental setting aligns with which in Section 6.3,
wherein each result represents the average across
200 runs. For each experiment, a corpus compris-
ing 200 unique text excerpts, each fixed at a length
of 25 tokens, was extracted from the C4 dataset as
prompts, and the number of sub-lists is fixed to 3.

δ Top1 Acc % Top3 Acc % Top10 Acc % Perplexity↓
0 0.1 0.3 1 5.3692
1 1.5 5.5 11 5.3705
2 20.5 35.5 52 6.8072
3 43 58.5 71.5 8.549
4 78 87 92.5 11.1726
5 89 97.5 98.5 17.5585
6 96 98 98.5 23.7451
7 97 98 98.5 30.4353

Table 6: Top1,3,10 identification accuracy(%) and out-
put quality against bias intensity δ.

B Additional Results of User Pool Size

Accuracy Result. We report the additional exper-
imental result for size of user pool in this section.
The experimental setting is also aligned with sec-
tion 6.3, with a configuration of 3 sub-lists with
a bias intensity δ = 5. The experiment involved
testing binary user code lengths of 7, 10, 14, 15,
and 17, corresponding to user pool sizes of 128,
1,024, 16,384, 32,768, and 131,072, respectively.
As demonstrated in Figure 5, there is a notable
decline in the performance of the watermarking
scheme for output length equal to 25 when applied
to a large user pool. This phenomenon is reason-
able considering the constraint of having too short
outputs, wherein the variance in output sentences
among different users is inherently limited.

C Running Time Analysis

As the size of the user pool increases, the complex-
ity of the identification task expands correspond-
ingly, resulting in extended processing times. We
documented the time consumption to trace a single
sentence generated by an individual user within a
single execution, across various magnitudes of user
pool sizes. Each experiment was conducted on a
single RTX 3090 GPU, with the number of output
sentence fixed to 25, sub-lists number fixed to 3
and bias intensity δ = 5.
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Figure 5: Identification performance against different
size of userpool. (output length = 25)

User Code Length User Pool Size Time Used per Single Run
7 128 0.25
10 1024 0.45
14 16384 11.5
15 32768 17.2
17 131072 41
18 262114 228
19 524288 663

Table 7: Running time (minutes per single run) at differ-
ent user pool size.

D More Result of Watermarked and
Unwatermarked Samples.

Here we demonstrates how our depth watermark
maintains the output quality while achieving high
trace accuracy. Table 8 presents a range of ex-
amples comparing human written prompt, unwa-
termarked output, and watermarked output. The
watermark’s bias intensity δ is set to 5.



Prompt (Written by Human) Unwatermarked Output Watermarked Output
Plump up a cushion, have a listen, and
post your feedback on the blog below.

And remember, you can subscribe and
have your say on our app for iOS and
Android, by searching FFT.
WEEKEND FOOTBALL
April 25, 2017
AC Jimbo is back with Football Weekly

And, remember - if you’re liking our
content on our website, please leave a
review in the comments, so we’ll get
to know you better! And, don’t forget
that you can also follow your favourites
- and get updates on their stories

irits and our emotions. We cannot con-
tinue that way, because we are missing
that sense of belonging.

What are your views on the topic of
white on black crime?
The issue is not about white on black
crime. There is a difference between
white on black and black on white. It
is about the dignity of every South
African.

That sense is what gives away the real
deal that South Africans have. It’s im-
portant for us to remember the spirit,
which has to be brought alive through
things, music or paintings or bigger ex-
pressions that involve people of culture
– not about collecting

over and over are over. She urged stu-
dent to take advantage of the Open Uni-
versity because struct

uring of the classes gives them the free-
dom to learn on their own time.
LAWEH University offers a wide vari-
ety of programmes and degrees includ-
ing the BSc in Chemistry, BSc in Bio-
chemistry, BSc in Environmental Sci-
ence, BSc in

uring of programmes, online and face-
to-face courses, combined with assess-
ment methods, have been streamlined
to make things easier and make things
happen better for the learner.
”Ours is one open access model so you
will get the

mber of new flights lead this week’s air
travel news agents should keep on their
radar. Take a look.

Virtuoso’s Luxe Report surveyed 1,071
of its advisors and found travelers are
increasingly looking to personalize their
trips with staged photo shoots, private
helicopter transfers and more.
The hotel offers 276 rooms, five distinct

Airport infrastructure upgrades have
boosted Denver as the fourth-hottest
travel destination.
The company has invested around $500
million and plans for more expansion in
2017.
Coast to coast to airport: Delta Airlines
has revealed plans for its first

Each one is made artisanally in Queens
and Brooklyn, at what we call chop
shops,” Dubrovsky says. “E

ighty-five percent of the materials and
labor are on site, and the rest are
shipped in.”
The MRV100 has a big, bright green
paint job, and large, black wheels that
are easy to steer. The cart is

ighty per cent are made by the vendors
from scraps.”
To give some context: It can take two
people to fill and operate a food cart. “It
costs a pretty big sum, and these ven-
dors are running on their last cents

usually provide the theme several days
in advance, and encouraged anyone in-
terested to get involved.

"It’s a lot of fun. It’s a lot of fun for us.
It’s a lot of fun for the community. It’s a
lot of fun for the tourists, too," she said.
"There are a lot of

The final competition is set for 4:30 p.m.
Saturday at the Colorado River Mall.
The winner(s) will win money toward
travel to participate in a two-day contest
of ice carving in Idaho at Vashon Island

archants Plants, also uses it in his grass-
led garden and he describes it as "re-
markable and lofty".

Diascias are a riot of colour on a sunny
window sill, and they are a good substi-
tute for potted dahlias, which are often
seen as dahlias.
As mentioned above, diascias will
flower for

Next time I’m away I’m taking some
’Appleby apricot’ D. barberae with the
pale blue and pink roses from Ap-
pleby’s. I’m hoping to add to this col-
lection and, if the weather holds out,

video of our conversation.
Let me know what you thought of the
show. See you next Sunday at 11 a.m.!

Copyright 2021 NPR. To see more, visit
https://www.npr.org.
DAVID GREENE, HOST:
We want to turn now to the latest big
story about Hillary Clinton and her
memoir, "Hard Choices

Copyright 2021 NPR. To see more, visit
https://www.npr.org.
TERRY GROSS, HOST:
This is FRESH AIR. And welcome
back. And welcome back to FRESH
AIR as well. Today

or Indiancitizenship is under the consid-
eration of Joint parliamentary commit-
tee of both the Houses.

Congress has been opposing the bill and
has also threatened to form an alliance
with another political party if the bill is
passed.
The bill has triggered series of protest
in Assam, All Assam Students Union
and several other organisations have an-
nounced fresh agitation

Recently the Congress had also
slammed and asked why the Bill is
going to become another issue after 15
January 1946 in the state. Congress
said that in February this year a protest
will start with burning effigies and in
March, students will start anti

I am really sad they decided to cancel it
and I have no idea why. I hope the cast
move on to other

things and I would love to see them re-
turn to college campus, I miss them all.
I hope they come back to the Greek cul-
ture, the show was about Greek life and
I think it would be great if they come
back with a new Greek

projects somewhere. I will miss it so
much. So good. I will watch all of
it!!!!!!!!! I really thought they could of
at least ended with this season if they
were going to go through with this sea-
son so long

Table 8: A intuitive comparison of the watermarked outputs and unwatermarked outputs.
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