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Abstract
Large language model (LLM) companies pro-
vide Embedding as a Service (EaaS) to as-
sist the individual in efficiently dealing with
downstream tasks such as text classification
and recommendation. However, recent works
reveal the risk of the model stealing attack,
posing a financial threat to EaaS providers.
To protect the copyright of EaaS, we propose
GuardEmb, a dynamic embedding watermark-
ing method, striking a balance between en-
hancing watermark detectability and preserv-
ing embedding functionality. Our approach
involves selecting special tokens and perturb-
ing embeddings containing these tokens to in-
ject watermarks. Simultaneously, we train a
verifier to detect these watermarks. In the
event of an attacker attempting to replicate
our EaaS for profit, their model inherits our
watermarks. For watermark verification, we
construct verification texts to query the sus-
picious EaaS, and the verifier identifies our
watermarks within the responses, effectively
tracing copyright infringement. Extensive ex-
periments across diverse datasets showcase the
high detectability of our watermark method,
even in out-of-distribution scenarios, without
compromising embedding functionality. Our
code is publicly available at https://github.
com/Melodramass/Dynamic-Watermark.

1 Introduction

Text embeddings, generated by large language mod-
els (LLMs), are concise representations of text de-
rived from high-dimensional spaces (Kashyap et al.,
2023). These embeddings have proven essential for
a variety of downstream natural language process-
ing tasks, such as text classification, summarization,
and translation (Neelakantan et al., 2022). Develop-
ing effective LLM embeddings requires substantial
computational resources, model advancements, and
streamlined training pipelines. Recognizing these
challenges, industry leaders like OpenAI offer Em-
bedding as a Service (EaaS) to provide high-quality
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Figure 1: Our watermarking method, GuardEmb
presents outstanding ability in infringement detection.

LLM embeddings to a wider audience. This ser-
vice enables individuals and organizations to lever-
age the power of LLMs for various applications
without the need for extensive infrastructure or ex-
pertise (OpenAI, 2021). However, recent research
has highlighted a growing threat: embedding steal-
ing (Dziedzic et al., 2023). This illicit practice
involves adversaries fine-tuning a pre-trained lan-
guage model with a minimal amount of data, en-
abling them to offer a comparable EaaS to the pub-
lic for profit, potentially infringing on the original
provider’s copyright. This raises serious concerns
about protecting the intellectual property rights of
those who invest in developing and deploying high-
quality embedding models.

Watermarking has long been a popular technique
for protecting the copyright of various content
types (Cox et al., 2008). Researchers have also
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explored its potential as a defense against model
stealing attacks (Jia et al., 2021; Hitaj and Mancini,
2018). However, existing methods primarily focus
on proving ownership of the model itself, rather
than the specific content generated or encoded by
it. While some approaches utilize fine-tuned gener-
ative decoders (Fernandez et al., 2023) or content
encoders (Zhu et al., 2018; Luo et al., 2020) to
embed watermarks directly into the content, these
techniques typically require white-box access to
the model. This poses a significant challenge for
LLMs, which can have billions of parameters, mak-
ing white-box watermarking impractical (Liu et al.,
2023).

Backdoor watermarking can effectively protect
model intellectual property by establishing a strong
association between specific triggers and target out-
puts. However, directly using the target embedding
as a watermark in the context of EaaS protection
presents the challenge of balancing detectability
with stealth. Peng et al. (2023) proposed a method
to address this by inserting a target embedding into
the embeddings of texts containing special tokens,
effectively creating a watermark. However, their
approach relies on p-value, cosine, and L2 distance
differences for watermark detection, introducing
instability in real-world scenarios. Furthermore,
maintaining the intended functionality of the em-
beddings becomes difficult as the number of special
tokens increases.

In this paper, we address these challenges by
introducing GuardEmb, a dynamic watermarking
method designed to protect LLM embeddings from
theft. We focus on a realistic yet challenging sce-
nario where attackers utilize a stealing dataset that
differs in distribution from the watermark training
data. GuardEmb achieves two primary objectives:
high accuracy in detecting EaaS stealers and main-
taining the functionality of watermarked embed-
dings.

To balance watermark inheritability, detectabil-
ity, and confidentiality, GuardEmb carefully selects
moderately frequent special tokens from a general
dataset. A deep network then learns dynamic water-
marks that subtly modify embeddings containing
these special tokens. Simultaneously, a verifier is
trained to detect these watermarks. To ensure effec-
tive watermark injection, the process is formulated
as an optimization problem, minimizing both the
difference between clean and watermarked embed-
dings and the verifier’s error rate. Augmentation
techniques further enhance the robustness and gen-

eralizability of the watermarks.
If an attacker uses our EaaS to train a stolen

model, their service will inadvertently inherit our
watermarks. To verify this, we query the suspect
EaaS with data from the watermark training distri-
bution and analyze the responses. Using the trained
verifier, we compute a watermark likelihood score;
a high score indicates a high probability of model
stealing.

Extensive experiments demonstrate GuardEmb’s
effectiveness. We evaluate the utility of water-
marked embeddings on downstream tasks and mea-
sure detection performance on stolen models. The
results show that our watermarks are highly de-
tectable while preserving embedding functionality,
even when facing embeddings outside the training
distribution. GuardEmb effectively traces copy-
right infringement with an accuracy exceeding 96%
and resists watermark removal attacks, ensuring its
safety and effectiveness.

2 Related Work

2.1 Model Stealing Attack

The model stealing attack, also known as a model
extraction attack, operates by querying the target
model using a surrogate dataset and utilizing the
responses as labels to train a similar model (Tramèr
et al., 2016; Correia-Silva et al., 2018). This black-
box attack poses several potential threats to cloud
service providers (Gong et al., 2020). The process
of training counterfeit models through extraction
is not only cost-efficient compared to starting from
scratch but also opens the door to subsequent ac-
tivities such as membership inference, model in-
version, or adversarial attacks (Sanyal et al., 2022;
Oliynyk et al., 2023). Researchers have also fo-
cused on stealing pretrained encoders (Liu et al.,
2022). Furthermore, the stealing of encoders has
evolved from supervised learning to self-supervised
learning (Dziedzic et al., 2022), increasing the dif-
ficulty of defending against model stealing attacks.

2.2 Backdoor Watermarking

Instead of considering the backdoor attack (Gu
et al., 2019; Severi et al., 2021) as a threat, back-
doors are introduced as an effective watermarking
method. The protector incorporates predetermined
trigger-target pairs during the training process, and
the protected model produces specific outcomes if
triggers are activated. This commitment scheme
can be employed for ownership verification to safe-



(b) Model Stealing Attack (c) Watermark Verification

Stolen Model Verifier

Verification
Dataset

Train

Verification
Embeddings

DetectionStealing
Dataset

Stealing
Embeddings

(a) Watermark Injection

Service Provider's
Model

Watermark Model

Verifier

Clean
Embeddings

Watermarked
Embeddings

User

Dataset

Splitting with
Special Token Set 

Attacker Attacker

Tokens

Figure 2: The detailed framework of GuardEmb.

guard model intellectual property (Adi et al., 2018;
Zhang et al., 2018). Gu et al. (2023) protect the
ownership of Pretrained Language Models (PLM)
by backdooring the word embeddings, which can-
not be mitigated by fine-tuning. Li et al. (2023) pro-
pose a robust watermarking framework for PLM by
establishing a strong link between a digital signa-
ture and trigger words in the pretrained vocabulary
table. Li et al. (2022) explore the untargeted back-
door watermarking scheme for dataset ownership
verification. However, these works primarily con-
centrate on model or dataset protection, disregard-
ing the importance of safeguarding embeddings
from the content encoder against model stealing
attacks (Liu et al., 2022). Peng et al. (2023) first
proposes a method to watermark embeddings by
incorporating a target embedding into clean embed-
dings based on the number of triggers in the text.
Our proposed method GuardEmb, however, inject
dynamic watermarks into embeddings to preserve
the embeddings’ utility and jointly train a verifier
to accurately trace the watermarks and detect the
stealer.

3 Threat model

Consider an Embedding as a Service (EaaS)
provider that generates high-quality embeddings,
denoted as E, in response to customer queries con-

taining text data D. An adversary aims to replicate
the underlying model powering this service by ex-
ploiting the relationship between query texts and
their corresponding embeddings. Their goal is to
launch a model stealing attack, ultimately creating
a competing service for profit.

The adversary operates in a challenging envi-
ronment where they have no direct access to the
target model’s architecture, training data, or spe-
cific watermarking techniques. Forced to operate in
a black-box setting, they rely on publicly available
information and inferences drawn from querying
the EaaS. While possessing the financial means to
query the EaaS, the attacker likely has limited com-
putational resources compared to the EaaS provider,
restricting their ability to train large-scale models
or conduct exhaustive attacks. Crucially, the at-
tacker’s training data differs significantly from the
data used to train the target model and any asso-
ciated watermarking scheme. This data mismatch
creates a critical vulnerability that the defender can
exploit. Furthermore, this motivated attacker is
capable of employing various techniques to iden-
tify and circumvent watermarking or other protec-
tive measures in their pursuit of stealing the EaaS
model.



4 GuardEmb

4.1 Overview

In response to the imminent threat of model steal-
ing attacks, we present our robust copyright protec-
tion method, named GuardEmb. The watermarks
we added only slightly shift the original embed-
ding distribution with a verifier trained to learn
this distribution shift pattern. We present more
quantitative explanations in Appendix C. As illus-
trated in Figure 2, GuardEmb comprises two piv-
otal procedures: Watermark Injection and Water-
mark Verification, designed to fortify EaaS against
potential model theft. In the Watermark Injection
process, we initially extract embeddings contain-
ing specific tokens earmarked for watermarking.
A model fW is then trained to learn a custom wa-
termark tailored for clean embeddings E. The re-
sulting watermarked embeddings E′, when dissem-
inated to customers, act as an effective deterrent
against intellectual property infringement. Simulta-
neously, a verifier fV is co-trained to identify these
watermarked embeddings, crucial for detecting wa-
termarks in response embeddings Ev obtained by
querying the verification dataset Dv. The loss from
both the watermark model and verifier is optimized
concurrently to ensure the creation of stealthy yet
detectable watermarks.

In the Watermark Verification phase, if an at-
tacker attempts a model stealing attack to replicate
our embedding service, the pirated model inherits
the watermarks. The detection of the model stealer,
as depicted in Figure 2(c), involves querying the
suspicious model with the verification dataset and
utilizing the verifier to scrutinize the watermarks
from the responses, thereby tracing the model
stealer.

Within this protective framework, we operate un-
der two key assumptions concerning the watermark
and verification method: 1) the watermark model
has access to general datasets, ensuring its effec-
tiveness and robustness across various scenarios;
2) the verifier operates blindly, lacking access to
the structure and stealing dataset of the model em-
ployed by the attacker. Despite this limitation, the
verifier can interact with the suspicious EaaS until
a sufficient number of responses are accumulated,
allowing for effective watermark detection.

4.2 Watermark Injection

Similarly with Peng et al. (2023), we create the
special token set by sampling from tokens of mod-

erate token frequency from a general corpus. This
ensures special tokens widely appear in different
datasets. Et is defined as the subset of clean em-
beddings that correspond to texts containing any
special tokens.

The formulation of an effective watermark is a
delicate balance between maintaining stealth, pre-
serving functionality, and ensuring detectability
by the verifier (Liu et al., 2023). We translate
this multi-faceted objective into an optimization
problem, comprising two distinct processes within
our injection scheme. The first process involves
training a watermark model fW to subtly introduce
signals into a subset of clean embeddings. We
mandate this model to generate watermarks that
adapt to the embedding distribution, thereby pre-
serving embedding functionality. Specifically, we
extract Et based on the special token set for water-
marking, leaving the remainder of the embeddings
unchanged. This process can be formally expressed
as:

e′ =

{
fW (e; θw) if e ∈ Et,

e if e ̸∈ Et.

The embedding e′ will be released to customers
via API. We ensure perturbations are minimal to
maintain the original functionality of watermarked
embeddings, by using similarity loss penalization
as a guide. we measure the similarity loss Lsim
between Et and fW (Et; θw) as:

Lsim =
1

|Et|
∑
e∈Et

d1(e, fW (e; θw)), (1)

where d1 is a distance matrix (like ℓ2 distance), θw
represents watermark model weights.

For a robust and effective watermark detection,
we jointly train a verifier fV to identify watermarks
within the embeddings. This enhances watermark
detectability and offers a straightforward mecha-
nism for detecting potential model stealers. Dur-
ing training, the verifier is exposed to both water-
marked embeddings and complete clean embed-
dings, enabling it to accurately discern previously
injected watermarks. Formally, we cast the detec-
tion task as a binary classification problem, labeling
watermarked embeddings as ’true’ and clean em-
beddings as ’false’. We formulate the loss function
for the verifier, denoted as Lver, as follows:

Lver =
1

|Ever|
∑

e∈Ever,y∈L
ℓ(fV (e; θv), y), (2)



where Ever = E∪fW (Et; θw), represents the com-
bined set of both watermarked and clean embed-
dings, and L is the set of corresponding labels. The
term ℓ serves as loss to measure the difference in
classification, and θv are the parameters of the veri-
fier. During the watermark injection, we simultane-
ously optimize the similarity loss and classification
loss:

min
θw,θv

Lsim + λ · Lver, (3)

which λ is a hyper-parameter that balances the
two loss terms. We can solve this optimized prob-
lem using standard Stochastic Gradient Descent
(SGD) (Robbins and Monro, 1951) to obtain high-
quality watermarked embeddings.

To increase the robustness of GuardEmb when
facing the embedding out of training distribution,
we apply data augmentations into the training
procedure. We randomly choose embeddings to
employ three augmentation techniques, including
adding Gaussian Noise, rounding the embedding
values, and zeroing out values below a designated
threshold. This strategy further boosts GuardEmb’s
generality under the more practical and challenging
problem setting.

4.3 Watermark Verification

GuardEmb employs a reliable verification method
for detecting potential EaaS model stealers. Using
the verification dataset Dv, which consists of the
test portion from the watermark training datasets,
we query the suspicious EaaS and collect the em-
bedding responses Ev. During the model stealing
process, the attacker not only replicates the LLM
embeddings but also inherits watermarks. Con-
sequently, we leverage the pretrained verifier to
detect watermarks within the response embeddings.
Following a similar protocol as the verifier training
process, the ’true’ outcome indicates the successful
detection of watermarks within the input embed-
ding. We evaluate the verifier’s performance by
computing accuracy, recall, and F1 score. A high
recall and F1 score for the verifier outcomes sug-
gest a high confidence that the suspicious EaaS is
infringing our copyright, given that it has incorpo-
rated watermarks through a model-stealing attack.
Simultaneously, a high accuracy indicates the ef-
fective performance of the verifier.

5 Experiments

5.1 Experimental Setup

Datasets. We conduct comprehensive experi-
ments across multiple widely-used NLP datasets,
including SST2 (Socher et al., 2013), MIND (Wu
et al., 2020), AGNews (Zhang et al., 2015) and En-
ron Spam (Metsis et al., 2006). To avoid the dataset
bias, the token frequency on the WikiText (Merity
et al., 2016) dataset is utilized to sample the special
token set as EmbMarker. To have a fair competition
with EmbMarker, we employ the embeddings they
queried from GPT-3 text-embedding-002 API (Nee-
lakantan et al., 2022) as the clean embeddings.

Implementation Details. We adopt the most
practical setting where our watermark training
datasets have no overlap with the stealing dataset.
To enhance watermark generality, we concatenate
multiple datasets during the training. Specifically,
we collect four NLP datasets and their correspond-
ing embeddings. For each experiment, we leverage
three of them to construct the watermark training
dataset and use the remaining one to measure the
downstream performance and launch the model
stealing attack. We set the size of special token
set to be 20, with a token frequency from 0.5% to
2%. Following settings in Peng et al. (2023), we
use two layers of MLP for downstream classifica-
tion and bert-base-cased model for stolen model
backbone. We utilize a single layer of Transformer
encoder (Vaswani et al., 2023) as our watermark
model whose hidden layer dimension is equal to
the dimension of the GPT embeddings. The ver-
ifier is an LSTM model (Hochreiter and Schmid-
huber, 1997) with two latent layers, followed by
a linear layer. We adopt the Mean Square Error
loss function to compute similarity loss and choose
the binary Cross-Entropy for the classification loss.
AdamW (Loshchilov and Hutter, 2019) is used
to co-train the watermark model and verifier in
5 epochs. Our data augmentations randomly select
embeddings to apply three techniques. 1) Adding
Gaussian Noise N (0, σ2) to embeddings, where σ2

is a hyper-parameter listed in Table 10. 2) Round-
ing: round embedding values to their first decimal
place. 3) Thresholding: retain only the embedding
values above the threshold of 0.005, with the rest
being zeroed out. All embeddings are normalized
after augmentation.

As for the watermark verification, we do not de-
liberately craft the verification dataset. Instead, we



Table 1: Performance comparison of different methods on four datasets.

Dataset Methods DPA (%)
Detection Performance

Acc (%) Recall F1 score

SST2

Original 93.92 94.30 0.0132 0.0259
EmbMarker 93.58 94.39 0.2553 0.3426
RedAlarm 93.92 99.58 0.2832 0.4211

GuardEmb 93.69 96.80 0.7054 0.7161

MIND

Original 77.58 89.58 0.0009 0.0018
EmbMarker 77.47 96.28 0.6458 0.7821
RedAlarm 77.54 65.43 0.9196 0.0348

GuardEmb 77.51 98.82 0.9077 0.9407

AGNews

Original 94.03 95.17 0.1138 0.1649
EmbMarker 94.00 99.88 0.9811 0.9858
RedAlarm 92.97 99.90 0.7557 0.8426

GuardEmb 94.09 99.83 0.9832 0.9799

Enron Spam

Original 95.40 94.10 0.0000 NaN
EmbMarker 95.50 93.62 0.0957 0.1505
RedAlarm 94.75 99.52 0.2731 0.3851

GuardEmb 95.00 96.40 0.7562 0.7127

concatenate the test part of three training datasets
to query the suspicious service and apply the ver-
ifier to detect our watermarks from the responses.
Further experiment setting and hyper-parameter
choices are defined in Appendix A.

Baselines. We compare GuardEmb with three
baselines: 1) Original, where we do not inject any
watermarks. The verifier is trained to identify the
embedding of text containing special tokens. 2)
EmbMarker (Peng et al., 2023), a method to back-
door text embeddings by injecting a designated
embedding as the watermark. The weight of inser-
tion increases linearly with the number of trigger
words in the text. 3) RedAlarm (Zhang et al., 2023),
a method to backdoor pre-trained language mod-
els, which returns a pre-defined target embedding
when a sentence contains the rare special tokens.
We sample special tokens from frequency inter-
val 0.1%-0.2% and view the target embedding as
the watermark. We train the verifier to recognize
the watermark for EmbMarker and RedAlarm. All
baselines follow the same training setting and wa-
termark verification procedure as GuardEmb.

Evaluation Metrics. To evaluate the efficacy of
GuardEmb, we measure performance on down-
stream tasks and watermark detection, reported
through the following metrics: 1) Downstream

Performance Accuracy (DPA): The functionality
of the embeddings when applying to the down-
stream classification task and reporting the accu-
racy. 2) Detection Performance: The accuracy,
recall, and F1 score of the watermark classification
results from our verifier.

5.2 Main Results

Table 1 demonstrates the performance compari-
son of our proposed watermark scheme with other
baselines. GuardEmb demonstrates a substantial
improvement in detection performance across all
datasets compared to EmbMarker and RedAlarm.
This is attributed to the joint training of watermarks
and the verifier, as well as the careful balance be-
tween the two loss components. Our watermarks
are deeply embedded into the embeddings and can-
not be mitigated during the fine-tuning process by
the attacker. At the same time, our downstream
performances remain nearly unchanged compared
to the original baseline. This is because our water-
marks learn and adapt to the distribution of embed-
dings. The similarity loss term ensures the water-
marked embeddings closely align with the original
ones.

Embedding Visualization. We employ PCA and
t-SNE techniques to visualize high-dimensional
embeddings produced by our method. This allows
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Figure 3: The PCA visualization of embeddings when frequency sets to 0.5%-2%

for a better examination of the underlying mecha-
nism and confidential attributes of our watermarks.
We plot the clean and watermarked embeddings
in Figure 3 where we visualize the embeddings at
the frequency interval 0.5%-2% among all datasets.
The results illustrates that most of the watermarked
embeddings wrap in or surround closely around the
benign counterparts, which indicates a shared dis-
tribution between the two distrbutions. To be noted,
as shown in Figure 3(d), even under high special
token frequency, our watermarking scheme still
maintains stealthiness, which makes the proposed
mechanism hard to be detected by the attacker and
maintains good downstream performance. Further
visualizations can be found in Appendix B.

5.3 Resistant to Watermark Removal Attack

The adversary may employ various tactics to evade
watermark verification after obtaining embeddings
from our API. We consider several removal attacks
targeting at watermarked embeddings and stolen
model itself. Furthermore, we evaluate the impact
on embedding utility through DPA for these attacks
applied to watermarked embeddings. More results
are listed in Appendix E.

Feature Rounding Attack (FRA). Inspired by
confidence score rounding in defending against the
membership inference attack (Jia et al., 2019), and
model inversion attack (Fredrikson et al., 2015),
the model stealer could round embeddings into m
decimals to erase the watermark. The intuition is
that watermark information is embedded in specific
features. Rounding features may disrupt the water-
mark signal, making it hard to detect in the stealing
verification process. We test the verification perfor-
mance on the stolen model after the attacker applies
this defense, setting m to 3, 2, 1. Our results in Ta-
ble 2 show that our watermarks are not sensitive
to the feature granularity.When m is set to 1, the
functionality of the embeddings is compromised
because the clean embeddings, when rounded to 1

Table 2: The downstream and detection performance
after feature rounding to m decimals on SST2.

m DPA(%)
Detection Performance

Acc (%) Recall F1 score

4 93.69 96.80 0.7054 0.7161
3 93.81 96.76 0.7009 0.7124
2 93.46 96.85 0.6955 0.7167
1 78.33 94.27 0.0000 NaN

decimal place, suffer a significant DPA drop.

Feature Poisoning Attack (FPA). In this attack,
the stealer introduces perturbations to the water-
marked embeddings. Given the adversary’s lack of
access to the specifics of our watermarking method,
we suppose that he crafts Gaussian noise with dif-
ferent variances to all embeddings. The experi-
ments in Table 3 show that GuardEmb is not sen-
sitive to random perturbation. A variance that is
less than 2e-2 will not cause detection performance
degradation. When an excess of perturbations is
added, there is a great risk of damaging embedding
functionality. This method is widely used in ad-
versarial attacks to gain sensitive information in
membership inference attack (Tramèr et al., 2022)
and evade detection in model evasion attack (Big-
gio et al., 2013).

Table 3: The downstream and detection performance
after FPA on SST2.

Variance DPA(%) Detection Performance
Acc (%) Recall F1 score

0 93.69 96.80 0.7054 0.7161
5e-3 94.46 96.68 0.6785 0.7009
1e-2 93.35 96.65 0.6851 0.7007
2e-2 91.74 96.69 0.6760 0.7004
5e-2 85.67 96.30 0.6810 0.6783

Distillation Attack(DA). To evaluate the robust-
ness and resilience of our embedded watermarks



Table 4: The detection performance after DA across
four datasets.

Dataset Detection Performance
Acc (%) Recall F1 score

SST2 98.17 0.6667 0.8000
MIND 98.68 0.9969 0.8171

AGNews 99.68 0.9741 0.9835
Enron Spam 99.25 0.6216 0.7541

against distillation attacks, we simulate an adver-
sary distilling the stolen model into a smaller "stu-
dent" model. Specifically, we use the stolen bert-
base-cased model with 12 encoder layers as the
"teacher" and distill it into a 6-layer student model
capable of performing the same downstream task.
Following the knowledge distillation benchmark
(Shah et al., 2020), we train the student model with
teacher’s output logits and embedding similarity
loss. we train the student model using the teacher’s
output logits and an embedding similarity loss. Ad-
ditionally, we incorporate a classification head into
the student model to maintain its performance on
the downstream classification task.

The detection performance of our watermark ver-
ification on this distilled model is presented in Ta-
ble 4. As shown, GuardEmb remains robust against
model distillation attacks, achieving detection re-
sults comparable to those obtained with the full-
sized stolen model on both the Mind and AGNews
datasets. These results demonstrate the effective-
ness of our watermarks even when the adversary
alters the model structure and size through distilla-
tion.

5.4 Ablation Study

Special Token Frequency. We evaluate the im-
pact of the special token frequency by sampling
an equivalent number of special tokens from dif-
ferent word frequency intervals and adjusting the
hyper-parameter λ for optimal watermark perfor-
mance. The results for the SST2 dataset are de-
tailed in Table 5 and additional results can be found
in Appendix D.2. The results show that GuardEmb
demonstrates robust performance across a wide
range of special token frequencies. It maintains
a high downstream accuracy on the middle and
high-frequency interval, which is attributed to the
increase of similarity loss term penalization. Be-
sides, special tokens from the high-frequency in-
terval contribute to a large number of watermarked

embeddings, resulting in improved detection per-
formance. Conversely, we find poor DPA and de-
tection performance on SST2 when the frequency
interval is 0.1%-0.2% where the inserted water-
mark sacrifices DPA to increase detectability. This
is attributed to the low watermarking rate leading
to an imbalanced label distribution, making it chal-
lenging to train a strong verifier. The embedding vi-
sualizations also verify our analysis: low-frequency
special tokens are more likely to lead to outliers
watermarks. Our watermarking scheme is better
suited for scenarios with a high special token fre-
quency.

Table 5: The downstream and detection performance
under different special token frequencies on SST2.

Frequency DPA(%) Detection Performance
Acc (%) Recall F1 score

0.1%-0.2% 93.12 96.18 0.5426 0.1124
0.5%-2% 93.69 96.80 0.7054 0.7161
2%-5% 93.58 94.65 0.4126 0.5439

10%-20% 93.58 88.94 0.7280 0.7914
20%-50% 93.69 91.71 0.9711 0.9466

Data Augmentation. In this subsection, we in-
vestigate the effect of augmentation (aug) tech-
niques for embedding data. Given that traditional
text aug techniques are largely incompatible with
embedding data, we come up with three methods
to modify our embeddings. The aug techniques
include thresholding, rounding, and adding Gaus-
sian Noise. The experiment results are presented in
Table 6, where we observe that random augmenta-
tions increase DPA while having mixed effects on
Detection Performance. The watermarks trained
without aug drop DPA from 0.3% to 8%. Co-
training watermarking and verifying models can
lead to overfitting on the training datasets. The aug-

Table 6: The results of our methods w/wo data augmen-
tations.

Dataset DPA (%) Detection Performance
Acc (%) Recall F1 score

SST2 93.69 96.80 0.7054 0.7161
No Aug 91.28 97.26 0.7282 0.7529

Mind 77.51 98.82 0.9077 0.9407
No Aug 77.21 98.74 0.8828 0.9355

AGNews 94.09 99.83 0.9832 0.9799
No Aug 86.00 99.86 0.9791 0.9834

Enron Spam 95.00 96.40 0.7562 0.7127
No Aug 94.70 94.64 0.7785 0.6316



Table 7: The results of different λ on SST2.

λ DPA (%)
Detection Performance

Acc (%) Recall F1 score

5 94.15 94.34 0.0356 0.0672
10 93.69 94.65 0.2065 0.3065
12 93.69 96.80 0.7054 0.7161
15 91.74 97.26 0.7381 0.7550

Table 8: The results of different stealing learning rate
on SST2.

Stolen LR Detection Performance
Acc (%) Recall F1 score

3e-5 95.89 0.5846 0.6196
5e-5 96.40 0.7009 0.6906
1e-4 97.13 0.7348 0.7461
2e-4 97.01 0.7720 0.7471
5e-4 96.96 0.7927 0.7495

mentation we add improves the generalization of
the watermark model. Remind that the test dataset
has no overlap with watermark training datasets.
Consequently, our watermarks can adapt to new
embeddings and minimize the impact on down-
stream classification tasks.

Watermark Loss Weight λ. We demonstrate
the impact of λ associated with the watermark bi-
nary loss term on downstream and detection per-
formance. We observe that an increase in λ leads
to an improvement in detection performance but
a reduction in downstream performance. From
the visualization on SST2, it is obvious a larger λ
compels the watermarked embeddings to evenly
distribute along with the clean embeddings.

Fine-tuning Learning Rate. Chen et al. (2021)
reveals the risk of watermark removal by using
a large learning rate during fine-tuning. Fine-
tuning out-of-distribution data with large strides
may cause the model to remove the watermark.
Therefore, we test the impact of the stealing learn-
ing rates and report the results in Table 8 and Ap-
pendix D.4. We find that the stealer’s model will
not forget about the watermarks with the increase
in fine-tuning learning rate.

6 Conclusion

In this paper, we develop a learnable embedding
watermark method, called GuardEmb, which aims
to detect the copyright infringement of LLM em-
beddings. GuardEmb maintains the embedding
utility and improves the accuracy of watermark
detection compared to the previous method. We
first sample special tokens from the suitable token
frequency interval. Then we watermark the em-
bedding corresponding to text that contains special
tokens by slightly tuning. Meanwhile, we train a
verifier to distinguish the watermarked and clean
embeddings. This verifier will be applied to de-
tect the watermarks from suspicious embeddings
we query from the API, returning the confidence
score about the watermark’s existence. Various ex-
periments demonstrate the effect and robustness of
GuardEmb.

Limitations

In this paper, we introduce GuardEmb, a dynamic
embedding watermarking method designed to safe-
guard LLM Embedding as a Service (EaaS). Our
experiments in Section 5.3 underscore GuardEmb’s
resilience against two watermark removal attacks.
However, we acknowledge a potential limitation:
if the existence or methodology of the watermarks
becomes widely known, adversaries may refine
their strategies, posing a challenge to GuardEmb’s
efficacy. For example, if the attacker applies
some similarity invariant attacks (e.g. dimension-
shift attacks, moving the last dimension of em-
beddings to the front), our previous verification
techniques become ineffective. To proactively ad-
dress this, we advocate equipping adversaries with
enhanced capabilities and knowledge of the water-
marking process, enabling a thorough assessment
of GuardEmb’s resilience against more sophisti-
cated attacks.

Furthermore, the current watermark verification
process involves querying the potential EaaS with
a thousand-level dataset to retrieve responses. Ide-
ally, the detection of unauthorized use should neces-
sitate fewer queries, preferably fewer than 100, to
ensure efficiency and reduce verification costs. An-
other intrinsic limitation of GuardEmb is its ability
to detect past or ongoing attacks, akin to owner-
ship verification, rather than actively prohibiting
attacks. Recognizing this constraint, we plan to
explore these areas further in future investigations.
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A Experiment Setting

We provide further details about the experimen-
tal settings and list the complete set of hyper-
parameters in Table 10.

A.1 Watermark Setting
In our experiment, we selected a transformer en-
coder layer to inject watermarks to embeddings
linked with special tokens. The verifier is an LSTM
model with two latent layers followed by a linear
transformation to generate the possibility of the
watermark. We investigate the impact of the struc-
ture choice through ablation experiments in Table 9.
The result finds that RNN and Attention structure
perform better on this task compared to MLP. We
set a smaller learning rate of 3e-4 for the watermark
model and a larger one of 5e-4 for the verifier, forc-
ing the smaller embedding perturbation but quicker
detection.

A.2 Downstream Classifier Setting
We measure the functionality of the embeddings
by applying them to the downstream classifica-
tion task. The classifier is a two-layer MLP with
a ReLU activation function and a dropout layer.
Cross-entropy loss is utilized for training the clas-
sifier. We apply the early stop technique, in which
the training process continues until the validation
loss exceeds three times the current minimal vali-
dation loss.

A.3 Attacker Setting
We denote the attacker who queries our EaaS API
with natural language data Ds to gain embeddings
Es for training a pirated embedding service fS . As-
suming the attacker employs Mean Square Error
(MSE) to compute the stealing loss term, the opti-
mization problem can be formulated as follows:

min
θs

Lsteal =
1

|Es|
∑

d,e∈Ds,Es

∥fS(d; θs), e∥22,

where θs represents the parameter in the attacker’s
unauthorized embedding service.

During our experiment, we utilize the pretrained
language model Bert (Devlin et al., 2019) to exe-
cute the model stealing attack. We applied a 2-layer
MLP to transform the output of the [CLS] token
to the dimension of the target embedding. Dur-
ing training, we set a smaller learning rate for the
pretrained module and a larger one for the linear
transform module.
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Figure 4: The PCA analysis of embeddings and water-
marks

B Embedding Visualization

In this section, we present the embedding visualiza-
tion by the PCA and t-SNE algorithms. We observe
that watermarked embeddings are closely wrapped
in clean embeddings, indicating a minimal distance
between the watermarked and clean embeddings
within the latent space. It is interesting to observe
that as the token frequency increases, the water-
marked embeddings on Mind approach the benign
ones because the watermarked embeddings have to
be conspicuous to keep the detectability when the
special token frequency is low.

C Quantitative Analysis of Watermarks

We present the nature of watermarks from a quan-
titative perspective here. We propose a hypothesis
that our watermarks only modify unimportant di-
mensions of clean embeddings by analyzing clean
embeddings, watermarked embeddings, and the dif-
ferences between them (i.e., watermarks) with the
PCA algorithm. We visualize the weight of each
dimension to the most dominant component and
zero out the weights under 0.05. In the Figure 4,
we discover that many high-weighted dimensions
between clean embeddings and watermarks are dis-
similar, indicating that our watermarks primarily
modify dimensions with lower contributions to the
clean embeddings. Thus, we can embed detectable
watermarks in the embeddings while preserving
their functionality.



Table 9: The impact of the watermark structure choice on SST2

Module Layer DPA (%)
Detection Performance

acc (%) recall F1 score

Watermark
Transformer Encoder 93.69 96.80 0.7054 0.7161

MLP 93.00 94.12 0.0000 NaN

Verifier
LSTM 93.69 96.80 0.7054 0.7161
MLP 93.35 95.57 0.3753 0.4925

D Hyper-parameter Setting

D.1 Impact of the verification dataset size

Small queries can also be effective during the wa-
termark verification process. In the experiment, we
assess the watermarks with randomly sampled sub-
sets from the original verification dataset. The ex-
periment outcomes in Appendix D.1 illustrate how
the size of the verification dataset impacts perfor-
mance. As the dataset size decreases, we observed
a slight decline in detection performance, but the
detection rate still remained high. Notably, datasets
like SST2 and AGNews achieved high scores with
a dataset size of 100, owing to the infrequent pres-
ence of special tokens.

D.2 Impact of the Special Token Frequency

We present the impact of special token frequency
on other datasets in Table 12, where we address the
almost same conclusion as 5.4.

D.3 Impact of the Hyper-parameter λ

We conduct the experiments to evaluate the im-
pact on other datasets in addition to SST2. The
outcomes show that both downstream and detec-
tion performance remain high on AGNews with the
increase of the λ. We also observe significant per-
formance improvement on the Enron Spam dataset.
Because the watermarking ratio is low therefore
requires high λ to make watermarks detective.

D.4 Impact of the Stealing Learning Rate

In this subsection, we illustrate the impact of the
stealing learning rate in Tables 16 to 18. To re-
trieve better model stealing performance, we set a
small learning rate for the pretrained model and a
larger one for the linear transform module. We find
that on Mind, AGNews and Enron Spam datasets,
the stealing learning rate 5e-4 adversely affects de-
tection performance, possibly due to the learning
rate being too large for effective model fine-tuning.

While on Enron, the small stealing learning rate
fails to steal the embeddings, leading to the low
similarity between the stolen embeddings and wa-
termarked embeddings. The low similarity makes
it challenging for the verifier to detect the water-
marks.

E Watermark Removal Attack

We demonstrate our watermark method can with-
stand watermark removal attacks on various
datasets in addition to SST2. The conclusion aligns
with that of Section 5.3: these attacks cannot erase
the watermark without compromising the utility of
embeddings. Tables 19 to 21 show the watermark
verification performance after the he casts the fea-
ture rounding attack to watermarked embeddings.
Tables 22 to 24, show the watermark verification
performance when he launches the feature poison-
ing attack.

F Experimental Environments

We conduct experiments on a Linux server with
CentOS Linux. The server has seven NVIDIA
GeForce RTX 3090 and one NVIDIA GeForce
RTX 4090 with CUDA 12.2. We use pytorch 2.0.1.



Table 10: The full hyper-parameter setting in our experiments.

Module Hyper-parameter SST2 Mind AGNews Enron

Watermark

learning rate 3e-4 3e-4 3e-4 3e-4
λ 12 5 10 15

batch size 32 32 32 32
σ2 0.01 0.01 0.05 0.01

Verifier
learning rate 5e-4 5e-4 5e-4 5e-4
hidden layer 64 64 64 64
dropout rate 0.5 0.5 0.5 0.5

Downstream Classifier

learning rate 2e-3 2e-3 2e-3 2e-3
batch size 32 32 32 32

hidden layer 256 256 256 256
dropout rate 0.2 0.2 0.2 0.2

Stolen Model
batch size 32 32 32 32

hidden layer 1536 1536 1536 1536

Table 11: The detection performance under different size of verification datasets. The items in the table are Accuracy,
Recall, and F1 Score respectively.

Size SST2 Mind AGNews Enron Spam

100 100.0% | 1.0 | 1.0 99.0% | 0.50 | 0.67 100.0% | 1.0 | 1.0 97.0% | 1.0 | 0.57
1000 98.4% | 0.70 | 0.61 98.3% | 0.66 | 0.78 99.3% | 0.81 | 0.90 96.3% | 0.83 | 0.64
5000 98.4% | 0.74 | 0.71 97.8% | 0.88 | 0.87 99.7% | 0.91 | 0.95 97.5% | 0.87 | 0.69
10000 98.6% | 0.78 | 0.75 97.9% | 0.90 | 0.88 99.8% | 0.94 | 0.97 98.0% | 0.94 | 0.97

Table 12: The downstream and detection performance under different special token frequencies

Dataset Frequency Interval DPA (%)
Detection Performance

acc (%) recall F1 score

Mind

0.1%-0.2% 77.66 99.49 0.5657 0.6788
0.5%-2% 77.51 98.82 0.9077 0.9407
2%-5% 77.58 96.63 0.8168 0.8960

10%-20% 77.66 98.18 0.9720 0.9845
20%-50% 77.52 84.94 0.8888 0.9147

AGNews

0.1%-0.2% 93.91 99.96 0.9459 0.9417
0.5%-2% 94.09 99.83 0.9832 0.9799
2%-5% 93.99 98.79 0.8351 0.8843

10%-20% 94.07 99.43 0.9794 0.9862
20%-50% 94.09 71.02 1.000 0.8306

Enron

0.1%-0.2% 95.85 99.61 0.1708 0.2870
0.5%-2% 95.00 96.40 0.7562 0.7127
2%-5% 93.10 95.03 0.7507 0.6906

10%-20% 95.20 91.64 0.9795 0.8769
20%-50% 95.95 86.63 0.9992 0.9202



Table 13: The impact of lambda on Mind.

λ DPA (%) Detection Performance
acc (%) recall F1 score

3 77.54 98.77 0.8902 0.9373
5 77.51 98.82 0.9077 0.9407
7 77.67 98.69 0.8819 0.9331
10 76.24 96.70 0.7325 0.8211

Table 14: The impact of lambda on AGNews.

λ DPA (%) Detection Performance
acc (%) recall F1 score

5 93.80 99.88 0.9811 0.9858
7 93.96 99.86 0.9832 0.9828
10 94.09 99.83 0.9832 0.9799
15 93.80 99.89 0.9811 0.9865

Table 15: The impact of lambda on Enron.

λ DPA (%) Detection Performance
acc (%) recall F1 score

10 95.70 94.10 0.0000 NaN
12 95.60 94.44 0.2624 0.3579
15 95.00 96.40 0.7562 0.7127
20 95.05 95.73 0.8106 0.6915

Table 16: The impact of the stealing learning rate on
Mind.

Stolen LR Detection Performance
acc (%) recall F1 score

3e-5 96.96 0.7122 0.8292
5e-5 98.94 0.9050 0.9465
1e-4 98.83 0.9142 0.9416
2e-4 98.79 0.9077 0.9394
5e-4 89.65 0.0000 NaN

Table 17: The impact of the stealing learning rate on
AGNews.

Stolen LR Detection Performance
acc (%) recall F1 score

3e-5 99.88 0.9811 0.9861
5e-5 99.88 0.9785 0.9858
1e-4 99.90 0.9811 0.9881
2e-4 99.89 0.9852 0.9865
5e-4 96.81 0.0000 NaN

Table 18: The impact of the stealing learning rate on
Enron.

Stolen LR Detection Performance
acc (%) recall F1 score

3e-5 94.10 0.0000 NaN
5e-5 94.10 0.0000 NaN
1e-4 95.61 0.3214 0.4636
2e-4 97.88 0.8498 0.8258
5e-4 94.10 0.0000 NaN

Table 19: The downstream and detection performance
after FRA on Mind.

m DPA(%) Detection Performance
acc (%) recall F1 score

4 77.51 98.67 0.9004 0.9335
3 77.65 98.96 0.9253 0.9485
2 77.56 98.72 0.9041 0.9360
1 61.36 89.66 0.0009 0.0018

Table 20: The downstream and detection performance
after FRA on AGNews.

m DPA(%) Detection Performance
acc (%) recall F1 score

4 94.09 99.88 0.9832 0.9858
3 93.54 99.86 0.9825 0.9838
2 93.28 99.88 0.9832 0.9858
1 73.62 96.81 0.0000 NaN

Table 21: The downstream and detection performance
after FRA on Enron.

m DPA(%) Detection Performance
acc (%) recall F1 score

4 95.00 96.41 0.7467 0.7104
3 95.20 96.61 0.7145 0.7131
2 95.25 96.49 0.7335 0.7116
1 85.90 94.10 0.0000 NaN

Table 22: The downstream and detection performance
after FPA on Mind.

Variance DPA(%) Detection Performance
acc (%) recall F1 score

5e-3 77.32 98.67 0.9004 0.9335
1e-2 76.98 98.77 0.9031 0.9382
2e-2 75.63 98.74 0.8976 0.9365
5e-2 69.46 96.81 0.7011 0.8198

Table 23: The downstream and detection performance
after FPA on AGNews.

Variance DPA(%) Detection Performance
acc (%) recall F1 score

5e-3 93.25 99.88 0.9832 0.9858
1e-2 93.01 99.90 0.9832 0.9875
2e-2 91.42 99.86 0.9832 0.9828
5e-2 83.32 99.88 0.9811 0.9855

Table 24: The downstream and detection performance
after FPA on Enron.

Variance DPA(%) Detection Performance
acc (%) recall F1 score

5e-3 95.55 96.41 0.7467 0.7104
1e-2 93.75 95.62 0.7488 0.6688
2e-2 91.80 95.77 0.6807 0.6554
5e-2 84.50 94.10 0.0000 NaN
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Figure 5: The PCA visualization of embeddings when the special token frequency sets to 0.1%-0.2%
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Figure 6: The PCA visualization of embeddings when the special token frequency sets to 2%-5%
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Figure 7: The PCA visualization of embeddings when the special token frequency sets to 10%-20%

0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

(a) sst2

clean_emb watermarked_emb

0.2 0.0 0.2 0.4 0.6

0.1

0.0

0.1

0.2

(b) mind
0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

(c) ag_news
0.2 0.1 0.0 0.1 0.2 0.3

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(d) enron

Figure 8: The PCA visualization of embeddings when the special token frequency sets to 20%-50%
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Figure 9: The t-SNE visualization of embeddings when the special token frequency sets to 0.1%-0.2%
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Figure 10: The t-SNE visualization of embeddings when the special token frequency sets to 0.5%-2%
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Figure 11: The t-SNE visualization of embeddings when the special token frequency sets to 2%-5%
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Figure 12: The t-SNE visualization of embeddings when the special token frequency sets to 10%-20%
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Figure 13: The t-SNE visualization of embeddings when the special token frequency sets to 20%-50%
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