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Training-time and Test-time Integrity



Machine learning
Beyond Accuracy



Trustworthy ML
What and why

• Not alchemy


• Explainability


• Security


• Privacy


• Fairness


• Integrity


• …


• Establish model understanding



Trustworthy ML
Integrity

• Training-time integrity and Testing-time integrity



Training-time Integrity



Training-time integrity
Backdoor attacks

• Perform maliciously on trigger 
instances 


• Maintain similar performance on 
normal data.



Training-time integrity
Backdoor attacks

• 


• Where 

min
|𝒟p|

∑
j=1

ℓ( fi(x̃j), yt) + λ
|N|

∑
k=1

ℓ(F(xj), fi(xj))

A(xi, yt) = x̃i



Training-time integrity
Taxonomy of backdoor attacks



Training-time integrity
Taxonomy of backdoor attacks



Training-time integrity
Backdoor attacks in text

• Trigger could be a word, a short phrase, or a syntax



Training-time integrity
Counter Backdoor attack

• Backdoor detection


• Build a detector to tell whether a given neural network contains a backdoor


• Backdoor analysis


• Target label prediction


• Identify the target label 


• Trigger Synthesis


• Reverse-engineer the trigger



Backdoor detection
By distribution difference

• Final hidden layer output distributions (kernel density estimation based)



Backdoor analysis
Neural Cleanse

• 


•

min
m,Δ

ℓ(yt, f(A(x, m, Δ))) + λ ⋅ |m |

for x ∈ X
A(x, m, Δ) = x′ x′ i,j,c = (1 − mi,j) ⋅ xi,j,c + mi,j ⋅ Δi,j,c



Backdoor defenses
By class-wise explanation



Test-time Integrity



Test-time integrity
Adversarial examples

•  An adversarial example can easily 
fool a deep network


• Robustness is critical in real systems



Test-time integrity
Why matters

• Adversarial examples raises trustworthy and security concerns


• Critical in high-stake, safety-critical tasks


• Helps to understand the model and build a better one (SAM …)



Adversarial examples
Definition

• Given a -way multi-class classification model  and an 
original example , the goal is to generate an adversarial example  such that


• 


• i.e.,  has a different prediction with  by model $f$. 

K f : ℝd → {1,…, K}
x0 x

x is close to x0  and  arg max
i

fi(x) ≠ arg max
i

fi(x0)

x x0



Adversarial example
Attack as an optimization problem

• Craft adversarial example by solving


• 


• : the distortion

arg min
x

∥x − x0∥2 +c ⋅ h(x)

∥x − x0∥2



Adversarial example
Attack as an optimization problem

• Craft adversarial example by solving


• 


• : the distortion


• : loss to measure the successfulness of attack

arg min
x

∥x − x0∥2 +c ⋅ h(x)

∥x − x0∥2

h(x)



Adversarial example
Attack as an optimization problem

• Craft adversarial example by solving


• 


• : the distortion


• : loss to measure the successfulness of 
attack


• Untargeted attack: success if 


•

arg min
x

∥x − x0∥2 +c ⋅ h(x)

∥x − x0∥2

h(x)

arg maxj fj(x) ≠ y0

h(x) = max{fy0
(x) − max

j≠y0

fj(x),0}



How to find adversarial examples
White-box vs black-box setting

• Attackers knows the model structure and weights (white-box)


• Can query the model to get probability output (soft-label)


• Can query the model to get label output (hard-label)


• No information about the model (universal)



Adversarial example
White-box setting

• 


• Model (network structure and weights) is revealed to attacker


•  gradient of  can be computed


•  attacker minimizes the objective by gradient descent

arg min
x

∥x − x0∥2 + c ⋅ h(x)

⇒ h(x)

⇒



Adversarial example
White-box adversarial attack

• C&W attack [CW17]:


• 


• Where  is the pre-softmax layer output

h(x) = max{[Zy0
(x) − max

j≠y
Zj(x)], − κ}

Z(x)



Adversarial example
White-box adversarial attack

• If there is  constraint, we could turn to solve by 


• FGSM attack [GSS15]:


• 


• PGD attack [KGB17, MMS18]


•

∥x − x0∥∞

x ← projx+𝒮(x0 + αsign(∇x0
ℓ(θ, x, y)))

xt+1 ← projx+𝒮(xt + αsign(∇xtℓ(θ, x, y)))



Adversarial example
Black-box Soft-label Setting

• Black-box Soft Label setting (practical setting): 


• Structure and weights of deep network are not revealed to attackers


•  Attacker can query the ML model and get the probability output


• Cannot compute gradient ∇x



Adversarial attack
Soft-label Black-box Adversarial attack

• Soft-label Black-box: query to get the probability output 


• Key problem: how to estimate gradient?


• Gradient-based [CZS17,IEAL18]:


• 


• Genetic algorithm [ASC19]

∇x =
h(x + βu) − h(x)

β
⋅ u



Adversarial attack
Hard-label Black-box Attack

• Model is not known to the attacker


• Attacker can make query and observe hard-label multi-class output


• ( : number of classes)


• More practical setting for attacker


• Discrete and complex models (e.g quantization, projection, detection)


• Framework friendly

K



Hard-label black-box attack
The difficulty

• Hard-label attack on a simple 3-layer neural network yields a discontinuous 
optimization problem



Hard-label black-box attack
Boundary attack: based on random walk



Hard-label black-box attack
Limited attack

• Limited Attack: Monte Carlo method to get the probability output



Hard-label black-box attack
OPT-attack

• We reformulate the attack optimization 
problem (untargeted attack):


•



• : the direction of adversarial example

θ* = arg min
θ

g(θ)

where  g(θ) = argminλ>0 (f(x0 + λ
θ

∥θ∥
) ≠ y0)

θ



OPT-attack
Examples



OPT-attack
Two things unaddressed

•



• How to estimate 


• How to find 

θ* = arg min
θ

g(θ)

where  g(θ) = argminλ>0 (f(x0 + λ
θ

∥θ∥
) ≠ y0)

g(θ)

θ*



OPT-attack
Computing Function Value

• Can't compute the gradient of 


• However, we can compute the function value of  using queries of 


• Implemented using fine-grained search + binary search 

g

g f( ⋅ )



OPT-attack
Estimation of g(θ)

• Fine-grained search


• Binary search


• Prediction unchanged enlarge 


• Prediction changed shrink 

g

g



Adversarial defense
Adversarial training

• Adversarial training [MMS18]:


• 


• TRADES


•

min
θ

𝔼x[ max
∥x′ −x∥∞≤ϵ

loss(θ, x′ )]

min
θ

𝔼x[loss(θ, x)

clean acc

+ λ max
∥x′ −x∥∞≤ϵ

loss(θ, x′ )

robust reg

]



Adversarial defense
Customized adversarial training

• Adversarial training [MMS18]:


• 


• Problems:


• Same large  uniformly for all samples.


• Force the prediction to match the one-hot label


• Solutions:


• Adaptively assigns a suitable  for each example


• 


• Adaptive label smoothing


•

min
θ

𝔼x[ max
∥x′ −x∥∞≤ϵ

loss(θ, x′ )]
ϵ

ϵ
ϵi = arg min

ϵ
{ max

x′ i∈ℬp(xi,ϵ)
fθ(x′ i) ≠ yi}

ỹi = (1 − cϵi)yi + cϵiDirichlet(β) .



Adversarial defense
Limitations

• Adversarial training [MMS18]:


• 


• Attack dependency: The max doesn't 
have a closed form solution and is 
normally done by using adversarial 
attack (i.e. need several back-
propagations).


• Adversarially trained network are 
sacrificing accuracy

min
θ

𝔼x[ max
∥x′ −x∥∞≤ϵ

loss(θ, x′ )]



Robustness verification
Why

• Many heuristic defense was broken under stronger attacks 


• A verified model cannot be attacked by any attacks (including unforeseen 
ones) 



Robustness verification
Basic formulation

• Consider a binary classification case:



Robustness verification
Basic formulation

• Suppose , can we verify this property:f(x0) > 0



Robustness verification
Basic formulation

• Suppose , can we verify this property:f(x0) > 0



Robustness verification
Basic formulation



Robustness verification
Basic formulation



Robustness verification
How to solve?



Robustness verification
Types

• Convex polytope


• Randomized smoothing



Q&A


