COMP6211I: Trustworthy Machine Learning Uncertainty

Minhao CHENG

What is uncertainty in machine learning

- We make observations using the sensors in the world
 - (e.g. camera) Based on the observations, we intend to make decisions
 - Given the same observations, the decision should be the same However,
 - The world changes, observations change, our sensors change, the output should not change!
 - We'd like to know how confident we can be about the decisions

Why calibration matters?

- Safety-critical applications.
- Example: Selective prediction in medical diagnosis

Why calibration matters?

Imagine you are designing the vision system for an autonomous vehicle

Applications that require reasoning in earlier stages

What is uncertainty in machine learning

• We build models for predictions, can we trust them? Are they certain?

Where uncertain comes from?

Remember the machine learning's objective: minimize the **expected loss**

Uncertainty in data (Aleatoric)

When the hypothesis function class is "simple" we can build generalization bound that underscore our confidence in average prediction

What is calibration

- Calibration error:
 - Difference between confidence (predicted probability) and accuracy

Calibration

- Measure degree of miscalibration: Expected Calibration Error (ECE) • $\mathbb{E}[|p^* - E[Y \in \arg\max f(X) \mid \max f(X) = p^*|].$
- Break it into bins based on top predicted probability

accuracy
$$(B_i) = \frac{1}{|B_i|} \sum_{j \in B_i} [y_j \in \arg\max f(x_j)]$$
 confidence $(B_i) = \frac{1}{|B_i|} \sum_{j \in B_i} \max f(x_j)$

$$\widehat{\text{ECE}} = \sum_{i=1}^{m} \frac{|B_i|}{n} |\operatorname{accuracy}(B_i) - \operatorname{confidence}$$

Calibration

- The model is calibrated if $\forall p \in \Delta \colon P(Y = y \mid f(X) = p) = p_y.$
- A more practical condition is $P(Y \in \arg\max p \mid \max f(X) = p^*) = p^*,$
- Measure degree of miscalibration: Expected Calibration Error (ECE) $\mathbb{E}[|p^* - E[Y \in \arg\max f(X) \mid \max f(X) = p^*|].$

Calibration **Temperature scaling**

$$\hat{q}_i = \max_k \sigma_{\text{SM}}(\mathbf{z}_i/T)^{(k)}.$$

- T->0, collapses to a point mass
- T->1, recover the original probability
- T-> ∞ , approach to 1/K
- T is optimized with respect to NLL on the validation set

Recent developments

•	Large-scale preparing		100	
	 Big transfer (BiT) 			
•	Weakly supervised pretraining	NCY	75	Ale
	 ResNext-WSL 	ACCURA	50	
•	Unsupervised pretraining	TOP 1 /		
	 SimCLR 		25	
•	Non-convolutional architectures		0	
	 Vision Transformer (ViT) 			

• MLP-Mixer

In-distribution calibration

- Estimating calibration:
 - Expected Calibration Error (ECE)
 - In relation to classification error

Some modern neural network families are both highly accurate and well-calibrated.

Family differences

- Temperature scaling improves calibration and reveals consistent differences between model families.
- Temperature also reveals consistency with prior work
- Families occupy different Pareto sets

What explains family differences

- Model size? No.
- Pretraining dataset size? No.
- Pretraiing duration? No.

- Architecture? Likely.
- Other differences?Maybe.

Out-of-distribution calibration OOD datasets

- 1. IMAGENETV2 (Recht et al., 2019) is a new IMAGENET test set collected by closely following the original IMAGENET labeling protocol.
- 2. IMAGENET-C (Hendrycks & Dietterich, 2019) consists of the images from IMAGENET, modified with synthetic perturbations such as blur, pixelation, and compression artifacts at a range of severities.
- 3. IMAGENET-R (Hendrycks et al., 2020a) contains artificial renditions of IMAGENET classes such as art, cartoons, drawings, sculptures, and others.
- 4. IMAGENET-A (Hendrycks et al., 2021) contains images that are classified as belonging to IMAGENET classes by humans, but adversarially selected to be hard to classify for a ResNet50 trained on IMAGENET.

ImagNet-C

ImagNet-R

ImagNet-A

Out-of-distribution calibration Calibration under distribution shift

- ImageNet-C:
 - Both classification error and calibration error increase under distribution shift.
 - Larger models tend to be more robust to distribution shift

Out-of-distribution calibration Calibration under distribution shift

Out-of-distribution calibration Natural out-of-distribution benchmarks

Discussion Trading off accuracy and calibration

- With families, there is an accuracycalibration tradeoff.
- Which model variant should a practitioner choose?

Discussion It depends on the task

- A decision cost function can relate accuracy and calibration
- In a selective prediction scenario, accuracy tends to outweigh calibration for the observed model differences

Choose the more accurate model

Misclassification cost (relative to abstention cost)

Discussion Estimator bias

- ECE estimators are biased.
- Bias depends on accuracy.
- Prudent choice of binning strategy minimize bias

$$\frac{1}{n_i} \big(\mathbb{V}[A] + \mathbb{V}[C] - 2\mathbf{Cov}[C, A] \big),$$

Discussion **Alternative ECE variants**

- Tested ECE estimator variants:
 - Equal-width binning
 - Equal-mass binning
 - Various bin sizes
 - Various normalization functions
 - All-label ECE
 - Class-wise ECE
- Results are qualitatively consistent

