COMP62111 Trustworthy Machine Learning Test-time Integrity (verification)

Minhao CHENG

Most slides are adapted from AAAI 2022 tutorial

THE DEPARTMENT OF **COMPUTER SCIENCE & ENGINEERING** 計算機科學及工程學系

Can we trust NNs in safety-critical tasks?

Autonomous Driving Aircraft Autopiloting

Medical Equipments Al-based Diagnosis

Security/Surveillance Systems

Can we trust NNs in safety-critical tasks?

No! As we have seen in train/test time integrity

"Optical adversarial attack" by Gnanasambandam et al., ICCV 2021

"Adversarial attacks on medical machine learning" by N. Cary et al., Science

What is neural network verification?

Robustness

any noise in perturbation set

- Verification requires a formal proof to show the property holds •
- In the robustness verification setting, a model can't be attack \neq Verified lacksquare
- Many heuristic defense was broken under stronger attacks \bullet
- A verified model cannot be attacked by any attacks (including unforeseen ones)

Consider a simple binary classification case:

Neural Network

 $\Longrightarrow f(x_0) = 1.2$

Output is a score

$$f(x_0) > 0$$

Positive Example

 $f(x_0) \leq 0$

Negative Example

Suppose $f(x_0) > 0$. Can we verify this property:

Class +1 f(x)>0

 $f(x) > 0, orall x \in \mathcal{C}$

Goal: Prove f(x) > 0

For all x in the green box (a perturbation around x₀)

Suppose $f(x_0) > 0$. Can we verify this property:

f(x) >

Must consider a set of infinite points as the input of the NN.

$$>0, orall x \in \mathcal{C}$$

Neural Network

Assuming $f(x_0) > 0$, we solve the optimization problem to find the worst case:

 \mathcal{C} is usually a perturbation set "around" x_0 , e.g., $\mathcal{C} := \{x | \|x - x_0\|_p \le \epsilon\}$

Is it a hard problem?

 $f^* = \min_{x \in \mathcal{C}} f(x)$

Multi-class case:

Data perturbed arbitrarily within a set

This is the fundamental problem we want to solve (Wong & Kolter 2018, Salman et al. 2019):

 $\hat{z}^{(i)} = \sigma(z^{(i)}), i \in \{1, \cdots, L-1\}$

e.g., ReLU function

The constraint says that $(\hat{z}^{(i)}, z^{(i)}) \in \text{Graph}(\text{ReLU})$

Generally, NP-complete (Katz et al., 2017)

Approach 1: Using mixed integer programming (MIP) encoding of ReLU

neurons (Tjeng et al. 2017) => *Complete* verification which solves the exact f^*

- Approach 2: Relax the MIP to a LP (Salman et al. 2019) => Incomplete verification: find a *lower bound* of f^* . If lower bound >0, the network is verifiably robust
 - Still requires an LP solver, which can still be slow for large networks
 - LP often produces loose bound; if lower bound << 0 it is useless

CROWN: Bound Propagation based Verification

• We want to find a lower bound for this problem efficiently:

$$f^*_{ ext{CROWN}} \leq f^* = \min_{x \in \mathcal{C}} f(x)$$

• $f^*_{\text{CROWN}} > 0 \Rightarrow f^* > 0$, so no adversarial example exists if $f^*_{\text{CROWN}} > 0$

- CROWN (Zhang et al. 2018) is an efficient linear bound propagation based algorithm to find linear lower/upper bounds of NNs
- Equivalent to **DeepPoly** (Singh et al., 2019), another popular verification algorithm

Find the lower bound on feed-forward networks

- If there are no non-linear operations (e.g., ReLUs), all weights can be lacksquaremultiplied together $f(x) = w^{(3) op} W^{(2)}$
- Bounds for linear functions are easy (e.g., Hölder's inequality for Lp norm) $f^* := -\epsilon \|a\|_1 + a^+ x_0^-$

$$^{(2)}W^{(1)}x=a^{ op}x$$

$$x\in \{x\|\|x-x_0\|_\infty\leq\epsilon\}$$

How to convert ReLU into a linear function

 $f(x) = w^{(3)} \operatorname{ReLU}(W^{(2)} \operatorname{ReLU}(W^{(1)}x))$

ReLU neurons have three cases depending on bounds on their inputs:

 $\operatorname{ReLU}(z) = \max(0, z)$

Unstable (non-linear) Must be relaxed

I and u are pre-activation bounds (also called intermediate layer bounds)

Convex envelope

1. If $\ell < 0 < u$, then will take the convex envelope of the ReLU between ℓ and u. Specifically, this is the triangular region formed by the points $(\ell, 0)$, (u, u), and (0, 0). We can express this region as a set of three inequalities: the region below the line can replace the ReLU activation with the convex set $\mathcal{C}(\ell, u)$ defined by these inequalities: $\mathcal{C}(\ell, u) = \{(\hat{z}, z) : -u\ell \geq z(u)\}$

connecting $(\ell,0)$ and (u,u) , above the line z=0 , and above the line $z=\hat{z}$. Then, we

$$(-\ell)-u\hat{z},\ z\geq 0,\ z\geq \hat{z}\}$$

How to convert ReLU into a linear function

For the *j*-th ReLU neuron in layer *i*:

Assuming its input is bounded:

- entire network
- Can also be extended to non-ReLU functions (e.g., tanh, maxpool).

Idea: use two linear bounds to replace ReLU, to obtain linear bounds for the

hidden or input neuron.

- $W^{(1)}$, $W^{(2)}$, $w^{(3)}$ are weights of the NN (output dimension is 1 so $w^{(3)}$ is an vector) $f(x), x \in \mathcal{C}$
- **Goal**: get a lower bound for

In CROWN, we propagate a linear lower bound for output neuron w.r.t.

Goal: find linear relationships between output and every hidden neuron

Goal: find linear relationships between output and every hidden neuron

• Goal: find linear relationships between output and every hidden neuron

Encountered an nonlinear operation, need to maintain this inequality. A diagonal matrix $D^{(2)}$ reflects the relaxation of ReLU neurons will be used.

Relaxation during bound propagation

- How to design $D^{(2)}$ so the lower and upper bounds are maintained?
- **First step**: for **each unstable** ReLU neuron, linearly lower and upper bound the non-linear function

pre-activation bounds $\mathbf{l}_{j}^{(i)} \leq z_{j}^{(i)} \leq \mathbf{u}_{j}^{(i)}$ $\mathbf{l}_{j}^{(i)}$

$$\operatorname{LeLU}(z_j^{(i)}) \leq \overline{a}_j^{(i)} z_j^{(i)} + \overline{b}_j^{(i)}$$

Relaxation during bound propagation

Goal: lower bound $f(x) := w^{(3)\top} \text{ReLU}(z^{(3)})$

- Take the lower bound of $\hat{z}_{i}^{(2)}$ when $w_{j}^{(3)}$ is positive
- Take the upper bound of $\hat{z}_{i}^{(2)}$ when $w_{j}^{(3)}$ is negative

$$\sum_{j} w_{j}^{(3)} \cdot \hat{z}_{j}^{(2)} \geq \sum_{j, w_{j}^{(3)} \geq 0} w_{j}^{(3)} \cdot \text{lower bound of } \hat{z}_{j}^{(2)} + \sum_{j, w_{j}^{(3)} < 0} w_{j}^{(3)} \cdot \text{upper bound of } \hat{z}_{j}^{(2)} + \sum_{j, w_{j}^{(3)} < 0} w_{j}^{(3)} \cdot \text{upper bound of } \hat{z}_{j}^{(2)} + \sum_{j, w_{j}^{(3)} < 0} w_{j}^{(3)} \cdot \text{upper bound of } \hat{z}_{j}^{(2)} + \sum_{j, w_{j}^{(3)} < 0} w_{j}^{(3)} \cdot \text{upper bound of } \hat{z}_{j}^{(2)} + \sum_{j, w_{j}^{(3)} < 0} w_{j}^{(3)} \cdot \text{upper bound of } \hat{z}_{j}^{(2)} + \sum_{j, w_{j}^{(3)} < 0} w_{j}^{(3)} \cdot \text{upper bound of } \hat{z}_{j}^{(2)} + \sum_{j, w_{j}^{(3)} < 0} w_{j}^{(3)} \cdot \text{upper bound of } \hat{z}_{j}^{(2)} + \sum_{j, w_{j}^{(3)} < 0} w_{j}^{(3)} \cdot \text{upper bound of } \hat{z}_{j}^{(2)} + \sum_{j, w_{j}^{(3)} < 0} w_{j}^{(3)} \cdot \text{upper bound of } \hat{z}_{j}^{(2)} + \sum_{j, w_{j}^{(3)} < 0} w_{j}^{(3)} + \sum_{j, w_{j}^{(3)} < 0} w_{j}^{(3)} \cdot \text{upper bound of } \hat{z}_{j}^{(2)} + \sum_{j, w_{j}^{(3)} < 0} w_{j}^{(3)} + \sum_{j, w_{j}^{(3)} <$$

Second step: Take the lower or upper bound based on the worst-case

$$(2^{(2)}):=w^{(3) op}\hat{z}^{(2)}=\sum_{j}w^{(3)}_{j}\cdot\hat{z}^{(2)}_{j}$$

lower bound each term!

Relaxation during bound propagation

 $\text{Goal: lower bound } \sum_{j} w_j^{(3)} \cdot \hat{z}_j^{(2)} \ge \sum_{j, w_i^{(3)} \ge 0} w_j^{(3)} \cdot \overline{\text{lower bound of } \hat{z}_j^{(2)}} + \sum_{j, w_j^{(3)} < 0} w_j^{(3)} \cdot \overline{y_j^{(3)}} + \sum_{j, w_j^{(3)} < 0} w_j^{(3)} \cdot \overline{y_j^{(3)}}$

Second step: Take the lower or upper bound based on the worst-case

Rearrange (ignore bias terms):

$$w^{(3) op} \hat{z}^{(2)} \geq w^{(3) op} D^{(2)} z^{(2)} + ext{bias}$$

Diagonal matrix
$$D_{j,j}^{(2)} = \left\{ egin{array}{c} a_j^{(2)}, w_j^{(3)} \geq 0 \ \overline{a}_j^{(2)}, w_j^{(3)} < 0 \end{array}
ight.$$

 $D^{(2)}$ depends on the signs in $w^{(3)}$, and the linear relaxation of ReLU neuron to make the inequality hold

Goal: find linear relationships between output and every hidden neuron

Goal: find linear relationships between output and every hidden neuron

 $f(x) \ge w^{(3)\top} D^{(2)} W^{(2)} \hat{z}^{(1)} + \text{const.}$

Goal: find linear relationships between output and every hidden neuron

 \bullet

Goal: find linear relationships between output and every hidden neuron

Goal: find linear relationships between output and every hidden neuron

until we reach the input!

 $f(x) \ge w^{(3)\top} D^{(2)} W^{(2)} D^{(1)} W^{(1)} x + \text{const.}$

Goal: find linear relationships between output and every hidden neuron,

until we reach the input!

$$x W^{(1)} ReLU \hat{z}^{(1)}$$
 $ReLU f(x) \ge w^{(3) op} D^{(2)} W^{(2)} D^{(1)} W^{(1)} x + ext{constants}$

 $\min_{x} f(x)$ **CROWN linear bound:** $x{\in}\mathcal{C}$

computed efficiently on GPUs in a backward manner

Goal: find linear relationships between output and every hidden neuron,

$$f(x) \geq \min_{x \in \mathcal{C}} oldsymbol{a}_{ ext{CROWN}}^ op x \! + \! c_{ ext{CROWN}} \! := \min_{x \in \mathcal{C}} f_{ ext{CROWN}}(x)$$

Where a_{CROWN} and c_{CROWN} are functions of NN weights, and can be

The CROWN lower bound

 $f_{\mathrm{CROWN}}(x) = \boldsymbol{a}_{\mathrm{CROWN}}^{+} x + c_{\mathrm{CROWN}}^{-}$ Linear Bound: Final lower bound by solving an easier linear optimization problem: $f^*_{\text{CROWN}} = \min_{x \in \mathcal{C}} \boldsymbol{a}_{\text{CROWN}}^\top x + c_{\text{CROWN}}$ Simple closed form for ℓ_∞ norm perturbation $x \in \{x | \|x - x_0\|_\infty \leq \epsilon\}$ $f^*_{\text{CROWN}} = - \| \boldsymbol{a}_{\text{CROWN}} \|_1 \epsilon + \boldsymbol{a}_{\text{CROWN}}^\top x_0 + c_{\text{CROWN}} \|_1 \epsilon$ f(x)f(x)J CROWN \boldsymbol{x}

The CROWN lower bound

Propagate bounds backwards

