Most slides are adapted from AAAI 2022 tutorial

COMP6211I:
Trustworthy Machine Learning

Test-time Integrity (verification)

TTTTTTTTTTTTTTT

@& | COMPUTER SCIENCE & ENGINEERING
\ TERREIEZENRTIIESZR

Minhao CHENG

Can we trust NNs in safety-critical tasks?

Autonomous Driving Medical Equipments Security/Surveillance
Aircraft Autopiloting Al-based Diagnosis Systems

“Speed Limit 3@”

“Optical adversarial attack” by Gnanasambandam et al., ICCV 2021

Can we trust NNs in safety-critical tasks?

* No! As we have seen in train/test time integrity

[ERRNNNN | Benign
| Malignant

I I I 1] I

Model confidence

Diagnosis: Benign

The patient has a history of
back pain and chronic alcohol
abuse and more recently has
been seen in several...

Opioid abuse risk: High

| Benign
=== Malignant

I I I I I 1

/\‘ Model confidence

Adversarial P
rotation (8) S5
> O Diagnosis: Malignant
Adversarial The patient has a history of
text substitution (9) lumbago and chronic alcohol
- dependence and more recently

has been seen in several...

Opioid abuse risk: Low

“Adversarial attacks on medical machine learning” by N. Cary et al., Science

What is neural network verification?

Robustness perturbation set (e.g. a £, norm ball)

(missed by attack)

any noise in
perturbation set

* Verification requires a formal proof to show the property holds

* In the robustness verification setting, a model can’t be attack # Verified
* Many heuristic defense was broken under stronger attacks

* A verified model cannot be attacked by any attacks (including unforeseen ones)

The Basic Formulation of Robustness Verification

 Consider a simple binary classification case:

4 ¢ \ ¢ N
& S Z
w.() | > @) % e >@ | > f(xg) = 1.2
Input is a point _ \ / \ / Y Output is a score

Neural Network
f(o) >0 f(xo) <0

Positive Negative
Example Example

The Basic Formulation of Robustness Verification

Suppose f(xzo) > 0. Can we verity this property:

m = =
-‘--
.
w

i i
I Safe Goal: Prove
l I
O
Decision Boundary i f(z) >0
e ' For all x in the green box
Class +1 oo = C (a perturbation around xo)

f(z) >0

The Basic Formulation of Robustness Verification

Suppose f(zg) > 0. Can we verify this property:

f(x) >0,V € C

a) -
e R s N\ Outputis a
@ S Z 2 o range/set of scores
28 > Q) >< - d >@ | >| \<) < 2.2
C o
cat” even in the
Input is a set worst case

Neural Network

Must consider a set of infinite points as the input of the NN.

The Basic Formulation of Robustness Verification

Assuming f(zo) > 0, we solve the optimization problem to find the worst case:

f* = min f(2)

rcC

C is usually a perturbation set “around” xg, e.g., C := {z|||z — z¢||, < €}

f* < 0 f* > ()
[
I_l >
Cl 1
Label flipped, 0 Provably ass "
not robust! robust! f(z) < 0. .-
.Dec'lswﬂ

Is it a hard problem?

f(z) >0

The Basic Formulation of Robustness Verification

Multi-class case:
output bounds

Data perturbed
arbitrarily within

(guaranteed score ranges)

a set Neural network or 2.3< cat =45
any general ><>-O.8 < dog =<1.2
computations -4.2 < panda < -0.1

we guarantee that “cat” stays top-1
under input perturbations

Why the verification problem is challenging

This is the fundamental problem we want to solve (wong & Kolter 2018, Salman et al. 2019):

f* — min Z({i) Last layer output f(x), at layer L

pre-activation

w (@ 5=1) 4 p(5) i €{l,---,L} Linear constraints

/'z(i) — o-(z(i)) 1 E {1, JEI ,L — 1} Non-linear, non-convex constraints

3(0) — r, x€C Input perturbations

»(1) 5(1) »(2) 5(2) »(3)

@—> wh ~ RelLU - W - RelLU - W @

Why the verification problem is challenging
3(1) — o(z(i)),i c{l,---,L—1} Non-convex constraints

e.g., ReLU function A

_ 7

(i)

The constraint says that (2(@ ,249) € Graph(ReLU)

Generally, NP-complete (Katz et al., 2017)

Why the verification problem is challenging

e Approach 1: Using mixed integer programming (MIP) encoding of ReLU
neurons (Tjeng et al. 2017) => Complete verification which solves the exact f*

Q(Z)A A a,:O A a,:]_

Why the verification problem is challenging

e Approach 2: Relax the MIP to a LP (salman et al. 2019) => Incomplete verification:
find a lower bound of f* If lower bound >0, the network is verifiably robust

o Still requires an LP solver, which can still be slow for large networks

o LP often produces loose bound; if lower bound << 0 it is useless

lower lower

X
bound f (unknown) bound f* (unknown)
H H ﬂ g [I M >
0 i i I
Provably 0

' |
- Don't know!

CROWN: Bound Propagation based Verification

e We want to find a lower bound for this problem efficiently:

Crowy < 7 = min f(z)

xeC
f(z)

o flowy > 0= >0,s0no adversarial

example exists it f7, o >0 2 B

________ d

e CROWN (Zhang et al. 2018) is an efficient T \inear Jower DOUE

. . . CROWN

J
to find linear lower/upper bounds of NNs M

perturbation set C

e Equivalent to DeepPoly (Singh et al., 2019),
another popular verification algorithm

Find the lower bound on feed-forward networks

w (1) W (2)
= o
s | e 0EGe@ D £ ome
a9 &Y
x €C

e |fthere are no non-linear operations (e.g., ReLUs), all weights can be
multiplied together

f(gg) —_— ,w(S)Tw(Z) W(l)x — aTaj
e Bounds for linear functions are easy (e.g., Holder's inequality for Lp norm)

f*i=—€llalli +a 'z ze{zfllz— 2] <€}

How to convert RelLLU Iinto a linear function

f(x) = w3 ReLU(W P ReLU(W W 1))
ReLU(z) = max(0, 2)
ReLU neurons have three cases depending on bounds on their inputs:

A : : A

1 u 1 u | u
1 > 0, always active u < 0, Always inactive 1<0<mu
(linear) (zero) Unstable (non-linear)

Must be relaxed

1 and u are pre-activation bounds (also called intermediate layer bounds)

Convex envelope

1. If £ < 0 < u, then will take the convex envelope of the RelLU between £ and u.
Specifically, this is the triangular region formed by the points (£,0), (u,), and (0,0).
We can express this region as a set of three inequalities: the region below the line
connecting (£,0) and (u,u), above the line z = 0, and above the line z = z. Then, we
can replace the RelU activation with the convex set C(¢, u) defined by these

inequalities: C(4,u) = {(2,2) : —ul > z(u — L) —uz, 2> 0, z > z}

2
A
2(/ i
4 U

Convex ReLLU set

How to convert RelLLU Iinto a linear function

For the j-th ReLU neuronin layeri: 3% — ReLU (zg?))

‘) and unstable; l(.i) <0< u(.i)

Assuming its input is bounded: 1 § ((

e |dea: use two linear bounds to replace RelLU, to obtain linear bounds for the
entire network

e (an also be extended to non-ReLU functions (e.g., tanh, maxpool).

CROWN backward bound propagation

e In CROWN, we propagate a linear lower bound for output neuron w.r.t.
or input neuron.
neurons =M,z 22 3 ;6

output
input 2(1) 3(1) 2(2) 3(2) 23) f(2) € R

@—» WO —~ RelLU - W - RelLU o w® @

Propagate bounds backwards

o WD W2 w are weights of the NN (output dimensionis 1 so w® is an

vector) f(z),z € C
e Goal:getalower bound for

CROWN backward bound propagation

e Goal: find linear relationships between output and every hidden neuron

@_.

W

RelLU

SR

- RelLU

6

CROWN backward bound propagation

e Goal: find linear relationships between output and every hidden neuron

@—» WO ~ ReLU | W - ReLU w® @

(By definition)

CROWN backward bound propagation

e Goal: find linear relationships between output and every hidden neuron

Z(l) 7:’(1) Z(2) 2(2) Z(S)

@—» WO ~ RelLU | W - RelLU - w® @

f(z) > w® T D® 22 4 const.

Encountered an nonlinear operation, need to maintain this inequality.

A diagonal matrix D® reflects the relaxation of ReLU neurons will be used.

Relaxation during bound propagation

e How to design D® so the lower and upper bounds are maintained?

e First step: for each unstable RelLU neuron, linearly lower and upper bound
the non-linear function

pre-activation bounds 2R

(2) (2) (2)
lj <z <u

Relaxation during bound propagation

e Second step: Take the lower or upper bound based on the worst-case

___lower bound
Goal: lower bound f(z) := w® TReLU(2®) := w2 = wa) zﬂ each term!

e Take the lower bound of z{”’when w”is positive

e Take the upper bound of z{”’when w(is negative

Zw.gs) ' ‘2;(7'2) N Z w‘?) - lower bound ot 2;-2) + Z wg.?’} . upper bound of 2;2)

P w())O P w[) <0

Relaxation during bound propagation

e Second step: Take the lower or upper bound based on the worst-case

3) (2 3 ~ o (2 | ~ 4
Goal: lower bound ng). z‘g.) > Z 'w‘g.) .[lower bound of zﬂ 1 Z w‘,(f) -Ppper bound of zgﬂl
J

.7':‘113_‘;3) =0 j ,10:[’.3} <) \

replace with
linear bounds

Rearrange (ignore bias terms):

w®)T 5(2) > w1 D@ 4(2) 4+ pias

2 3
2) {a;),w()>0

Diagonal matrix Dﬁj —

CROWN backward bound propagation

e Goal: find linear relationships between output and every hidden neuron

@—» WO —~ RelLU - W - RelLU o w® @

f(z) > w7 D® 22 4 const. 5 A

D® depends on the signs in w®), and the linear 5
relaxation of ReLU neuron to make the inequality hold -

CROWN backward bound propagation

e Goal: find linear relationships between output and every hidden neuron

@_.

e

- RelU - W - RelLU - W @

f(z) > w7 D®)22) 4 const.

The rest layers follow the same
way of propagating bounds
By definition 2z(2) = W (2) 3(1)

CROWN backward bound propagation

e Goal: find linear relationships between output and every hidden neuron

@—» Wb —~ ReLU o W - ReLU w® —@

The rest layers follow the same
way of propagating bounds

CROWN backward bound propagation

e Goal: find linear relationships between output and every hidden neuron

(1)

e

5(1) »(2) 5(2) 23)

ReLU - W - RelU - WO - fix) D

f(z) > w®T DAWADOM 4+ const.

The rest layers follow the same
way of propagating bounds

Based on the linear relaxation

of ReLU

CROWN backward bound propagation

e Goal: find linear relationships between output and every hidden neuron

e

~ RelU - W - RelLU o WO - fix) D

f(z) > w® T DR W DLV 4 const.

The rest layers follow the same
way of propagating bounds
By definition 2(1) = W) ¢

CROWN backward bound propagation

e Goal: find linear relationships between output and every hidden neuron,
until we reach the input!

l@l— wh —~ ReLU | W - ReLU | W) @

f(z) > w®TDAWE DLW WM g 4 const.

The rest layers follow the same
way of propagating bounds

CROWN backward bound propagation

e Goal: find linear relationships between output and every hidden neuron,
until we reach the input!

Z(l) 2(1) 2(2) 2’:«(2) 2(3)

@_. wb — Rel U - WP - RelLU SRR @

f(z) >w® T DAW DOW Wz + const.

CROWN linear bound: min f(z) > min a'gROWN:B_'_CCROWN ;= min fepown (Z)

xeC xeC reC

Where acrown and Corown are functions of NN weights, and can be
computed efficiently on GPUs in a backward manner

The CROWN lower bound

" . o T
Linear Bound: ferown (Z) = @/ un @ + CcrOWN
Final lower bound by solving an easier linear optimization problem:

* I T
cROWN — TR @ (poyn T T CCROWN

Simple closed form for Z..norm perturbation = € {z|||z — o/ < €}

éROWN - Ha’CROWN ||16 T agROWN Ty T CCROWN

The CROWN lower bound

»(1) 5(1) »(2) 5(2) »(3)
@_' Wb ~ RelLU - W - ReLU | w? @
<
Propagate bounds backwards

min f(z) > mina ' T+ ;= min T

oy f() — ¢ CROWN CROWN O fCROWN()
f(z)

Terown = 0=
Verification
success
—_>

