Minhao CHENG

COMP6211I: Trustworthy Machine Learning Test-time Integrity (verification) part 2

Most slides are adapted from AAAI 2022 tutorial and from internet

What is neural network verification?

Robustness

any noise in perturbation set

- Verification requires a formal proof to show the property holds
- In the robustness verification setting, a model can't be attack \neq Verified
- Many heuristic defense was broken under stronger attacks
- A verified model cannot be attacked by any attacks (including unforeseen ones)

The Basic Formulation of Robustness Verification

Suppose $f(x_0) > 0$. Can we verify this property:

 $f(x)$ >

Must consider a set of infinite points as the input of the NN.

$$
>0,\forall x\in\mathcal{C}
$$

Neural Network

The Basic Formulation of Robustness Verification

Assuming $f(x_0) > 0$, we solve the optimization problem to find the worst case:

 C is usually a perturbation set "around"

Is it a hard problem?

$$
f^* = \min_{x \in \mathcal{C}} f(x)
$$

"around" x_0 , e.g., $\mathcal{C} := \{x | \|x - x_0\|_p \le \epsilon\}$
* > 0

quably
must! $f(x) < 0 \ldots$
 $f(x) < 0 \ldots$
 Decision Boundary
 $f(x) > 0$
 $f(x) > 0$

CROWN backward bound propagation

 \bullet until we reach the input!

$$
f(x) \ge \boxed{w^{(3)\top}D^{(2)}W^{(2)}D^{(1)}W^{(1)}}x + \text{const}
$$

 $\min f(x)$ **CROWN linear bound:** $x{\in}\mathcal{C}$

computed efficiently on GPUs in a backward manner

Goal: find linear relationships between output and every hidden neuron,

$$
c) \geq \min_{x \in \mathcal{C}} \bm{a}_{\text{CROWN}}^\top x + c_{\text{CROWN}} := \min_{x \in \mathcal{C}} f_{\text{CROWN}}(x)
$$

Where a _{CROWN} and c _{CROWN} are functions of NN weights, and can be

The CROWN lower bound

Propagate bounds backwards

*α***-CROWN: further tighten the bounds**

- ReLU neurons have a flexible lower bound for relaxation
- Try different lower bounds to find tightest bound
- Each unstable ReLU has a lower bound to select, so lots of freedom here

$$
\hat{z}_j^{(i)} \geq \pmb{\alpha}_j^{(i)} z_j^{(i)} \; \boxed{0 \leq \pmb{\alpha}_j^{(i)} \leq 1}
$$

Adjustable!

 $\mathbf{l}^{(i)}_j \leq z^{(i)}_j \leq \mathbf{u}^{(i)}_j$ are pre-activation bounds, also computed using CROWN

α -CROWN: further tighten the bounds

- $f_{\text{CROWN}}^* = \min_{x \in \mathcal{C}} \boldsymbol{a}_{\text{CROWN}}^\top x + c_{\text{CROWN}}$
- Actually a function of α . How to effectively optimize α to find the best bound?
- Key idea: tighten bounds using gradients

$$
\displaystyle \mathop{\rm{ax}}_{\iota\leq 1} \min_{x\in \mathcal{C}} f_{\mathrm{CROWN}}(x;\bm{\alpha})
$$

Inner minimization can usually be solved in closed form

α -CROWN: further tighten the bounds

- We can use gradient to optimize the relaxation, to make the bound tighter \bullet (tighter bound => stronger incomplete verification)
- We can make the bound tighter than the more expensive LP-based verifiers \bullet
- Optimization can be done rapidly on GPUs \bullet

Branch and bound for ReLU Network Verfication

Recall that ReLU neurons have three cases depending on pre-activation bounds:

Branch and bound: The branching step

Split each "unstable" ReLU neurons to two subproblems:

Additional linear constraint ("split constraint"):

 \overline{z}_1

 z_1

 $z_1>0$ OR $z_1 < 0$

The additional constraint can make bounds tighter

Branch and bound: The bounding step

bound for each subproblem:

Using an incomplete solver (traditionally, LP-based verifier) to get the lower

Branch and bound search tree

Branch and bound improves the lower bound

Lower bound $= -3.0$ (computed by a incomplete verifier)

Lower bound = $min(-2.0, 0.5) = -2.0$

Lower bound = $min(-1.0, -0.5) = -1.0$

Lower bound $= -0.5$

Lower bound $= 0.1$

Branch and bound search tree

Branch and bound is complete if each relaxed subproblem (with split constraint) can be solved to optimal.

$$
f^*=\min_{x\in\mathcal{C}}f(x)
$$

Complete Verification Branch and bound with split constraints **Tricomplete Verifier**

Branch and bound search tree

Idea:

Combine rapid bound propagation based incomplete verifiers on GPUs with branch and bound (BaB) to achieve complete verification

Outcome:

up to 100-1000x faster than MIP based approach, enable us to scale complete verification to larger models

constraints; CROWN cannot handle it

- To use branch and bound, bound propagation must incorporate the split
	- hidden neurons

Propagate linear bounds backwards

Deal with split constraints with Lagrangians \bullet

CROWN:

 $\max_{\beta \geq 0} \min_{x \in \mathcal{C}} w^{\theta}$ **B-CROWN:** min (x) $x{\in}\mathcal{C},\frac{z^{(2)}_{1}{<}0}$

Lagrangian/KKT multipliers S is an diagonal matrix with $+/-1$ and 0

 $\min_{x\in\mathcal{C}}f(x)\geq \min_{x\in\mathcal{C}}w^{(3)\top}D^{(2)}z^{(2)}+\text{const.}\ \ \textsf{C}$ annot handle split constraint

$$
{}^{(3)\top }D^{(2)}z^{(2)} + \boxed{\beta^\top S^{(2)}z^{(2)}} + \text{const.}
$$

Lagrangians are also propagated! \bullet

Linear coefficients changed with one additional term during propagation

$$
\overline{w^{(3)\top}D^{(2)}}z^{(2)} + \text{const.}
$$

$$
w^{(3)\top } D^{(2)} + \beta^\top S^{(2)}\Big)z^{(2)} + \text{const.}
$$

B-CROWN main theorem: all split constraints

Compared to (vanilla) CROWN $(\beta=0)$:

 $\min_{x \in \mathcal{C}, z \in \mathcal{Z}} f(x) \geq \max_{\boldsymbol{\beta} \geq 0} \min_{x \in \mathcal{C}} (\boldsymbol{a} + \mathbf{P} \boldsymbol{\beta})^{\top} x + \mathbf{q}^{\top} \boldsymbol{\beta} + c$

$$
\min_{x\in\mathcal{C}}f(x)\geq\min_{x\in\mathcal{C}}\bm{a}^{\top}x\!+\!c
$$

Different β corresponds to different bounds, and we can choose the tightest one

- Assume we have a base classifier f that maps inputs x to labels y, i.e., $f(x) = y$ • The approach creates corrupted versions of the image x by applying Gaussian noise with 0
- mean and variance σ^2 , i.e., $\eta \sim \mathcal{N}(0, \sigma^2 I)$
	-
- Left figure: input sample x; Right figure: image corrupted with Gaussian noise $x + \eta$ • A smoothed classifier g is obtained by outputting the majority vote of the prediction on many Gaussian-corrupted images $x + \eta$
	- The added random noise improves the robustness to adversarial perturbations

- To design a smoothed classifier g at the input sample x requires to identify the most likely class \hat{c}_A returned by the base classifier f on noisy images
	- Step 1: create *n* versions of *x* corrupted with Gaussian noise $\eta \sim \mathcal{N}(0, \sigma^2 I)$
	- Step 2: evaluate the predictions by base classifier for all corrupted images, $f(x + \eta)$
	- predictions for the second highest class \hat{c}_B), return \hat{c}_A as the prediction by $g(x)$ • Otherwise, if $n_A - n_B < \alpha$, abstain from making a prediction
	- Step 3: identify the top two classes \hat{c}_A and \hat{c}_B with the highest number of predictions on $f(x + \eta)$ • Step 4: if n_A (number of predictions by f for the top class \hat{c}_A) is much greater than n_B (number of
-

Examples of noisy images from CIFAR-10 with varying levels of Gaussian noise $\mathcal{N}(0, \sigma^2 I)$ from $\sigma = 0$ to $\sigma = 1$

 $\sigma = 0.00$

 $\sigma = 0.25$

- Intuitively, the certified radius R is large when:
	- The noise level σ is high
	- The probability of the top class
	- The probability of second top cl
- The authors prove that the certified

-
- For binary classification, $R = \sigma \Phi^{-1}(p_A)$, because $\Phi^{-1}(p_B) = -\Phi^{-1}(p_A)$

$$
p_A = \mathbb{P}(g(x + \eta) = c_A)
$$
 is high
lass $p_B = \mathbb{P}(g(x + \eta) = c_B)$ is low
ed radius R is given by:

$$
R = \frac{o}{2} (\Phi^{-1}(p_A) - \Phi^{-1}(p_B))
$$

 \cdot Φ^{-1} is the inverse of the Gaussian cumulative distribution function

Certified robust radius by [Cohen et al.'19]:

Certified robust radius by [Cohen et al.'19]:

Classifier $g(x)$ is certifiably correct for x, if

- 1. certified radius > adv budget
- 2. classifier $g(x)$ is correct for x

Calculate the percentage of certifiably correct x and obtain certified accuracy for a dataset

- Neyman-pearson
	- Given a sample from one of two distributions: null X or alternative Y
	- Two errors:
		- say "X" when the true answer is "Y" \rightarrow better
		-
	- Optimal rule:
		-

• say "Y" when the true answer is "X" \rightarrow limit its probability \lt some failure rate α

deterministically on the set $S^* = \{z \in \mathbb{R}^d : \frac{\mu_Y(z)}{\mu_X(z)} \ge t\}$ for whichever t makes $\mathbb{P}(X \in S^*) = \alpha$.

• Let $X \sim \mathcal{N}(x, \sigma)$

By Lemma 3 it suffices to simply show that for any β , there is some $t > 0$ for which:

$$
\{z : \delta^T z \le \beta\} = \left\{z : \frac{\mu_Y(z)}{\mu_X(z)} \le t\right\} \quad \text{and} \quad \{z : \delta^T z \ge \beta\} = \left\{z : \frac{\mu_Y(z)}{\mu_X(z)} \ge t\right\}
$$

The likelihood ratio for this choice of X and Y turns out to be:

$$
\frac{\mu_Y(z)}{\mu_X(z)} = \frac{\exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^d (z_i - (x_i + \delta_i))^2)\right)}{\exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^d (z_i - x_i)^2\right)}
$$

$$
= \exp\left(\frac{1}{2\sigma^2}\sum_{i=1}^d 2z_i\delta_i - \delta_i^2 - 2x_i\delta_i\right)
$$

$$
= \exp(a\delta^T z + b)
$$

where $a > 0$ and b are constants w.r.t z, specificall Therefore, given any β we may take $t = \exp(a\beta + b)$, noticing that

$$
\delta^T z \le \beta \iff \exp(a\delta^T z + b) \le t
$$

$$
\delta^T z \ge \beta \iff \exp(a\delta^T z + b) \ge t
$$

$$
\sigma^2 I) \text{ and } Y \sim \mathcal{N}(x + \delta, \sigma^2 I).
$$

$$
1y \ a = \frac{1}{\sigma^2} \text{ and } b = \frac{-(2\delta^T x + ||\delta||^2)}{2\sigma^2}.
$$

Proof. To show that $g(x + \delta) = c_A$, it follows from the definition of g that we need to show that

$$
\mathbb{P}(f(x+\delta+\varepsilon)=c_A) > \max_{c_B\neq c_A} \mathbb{P}(f(x+\delta+\varepsilon)=c_B)
$$

We will prove that $\mathbb{P}(f(x+\delta+\varepsilon)=c_A) > \mathbb{P}(f(x+\delta+\varepsilon)=c_B)$ for every class $c_B \neq c_A$. Fix one such class c_B without loss of generality.

For brevity, define the random variables

 $X:=x+\varepsilon=$ $Y := x + \delta +$

In this notation, we know from (6) that

 $\mathbb{P}(f(X) = c_A) \geq p_A$

$$
=\mathcal{N}(x,\sigma^2I)\\+\,\varepsilon=\mathcal{N}(x+\delta,\sigma^2I)
$$

and
$$
\mathbb{P}(f(X) = c_B) \leq \overline{p_B}
$$

Proof. To show that $g(x + \delta) = c_A$, it follows from the definition of g that we need to show that

$$
\mathbb{P}(f(x+\delta+\varepsilon)=c_A) > \max_{c_B\neq c_A} \mathbb{P}(f(x+\delta+\varepsilon)=c_B)
$$

We will prove that $\mathbb{P}(f(x+\delta+\varepsilon)=c_A) > \mathbb{P}(f(x+\delta+\varepsilon)=c_B)$ for every class $c_B \neq c_A$. Fix one such class c_B without loss of generality.

For brevity, define the random variables

 $X:=x+\varepsilon=$ $Y := x + \delta +$

In this notation, we know from (6) that

 $\mathbb{P}(f(X) = c_A) \geq p_A$

$$
=\mathcal{N}(x,\sigma^2I)\\+\,\varepsilon=\mathcal{N}(x+\delta,\sigma^2I)
$$

and
$$
\mathbb{P}(f(X) = c_B) \leq \overline{p_B}
$$

and our goal is to show that

 $\mathbb{P}(f(Y)=c)$

Define the half-spaces:

$$
A := \{ z : \delta^T(z - x) \le \sigma ||\delta||\Phi^{-1}(\underline{p}_A)\}
$$

$$
B := \{ z : \delta^T(z - x) \ge \sigma ||\delta||\Phi^{-1}(1 - \overline{p}_B) \}
$$

Algebra (deferred to the end) shows that $\mathbb{P}(X \in A) = p_A$. Therefore, by (8) we know that $\mathbb{P}(f(X) = c_A) \ge \mathbb{P}(X \in A)$. Hence we may apply Lemma 4 with $h(z) := \mathbf{1}[f(z) = \overline{c_A}]$ to conclude: $\mathbb{P}(f(Y)) =$

Similarly, algebra shows that $\mathbb{P}(X \in B) = \overline{p_B}$. Therefore, by (8) we know that $\mathbb{P}(f(X) = c_B) \leq \mathbb{P}(X \in B)$. Hence we may apply Lemma 4 with $h(z) := \mathbf{1}[f(z) = c_B]$ to conclude: $\mathbb{P}(f(Y)) =$

of inequalities

$$
\mathbb{P}(f(Y) = c_A) \ge \mathbb{P}(Y \in A) > \mathbb{P}(Y \in B) \ge \mathbb{P}(f(Y) = c_B)
$$
\n(12)

$$
A) > \mathbb{P}(f(Y) = c_B)
$$
\n(9)

$$
c_A) \ge \mathbb{P}(Y \in A) \tag{10}
$$

$$
c_B) \le \mathbb{P}(Y \in B) \tag{11}
$$

To guarantee (9), we see from (10, 11) that it suffices to show that $\mathbb{P}(Y \in A) > \mathbb{P}(Y \in B)$, as this step completes the chain

We can compute the following:

 $\mathbb{P}(Y \in A) =$ $\mathbb{P}(Y \in B) =$ Finally, algebra shows that $\mathbb{P}(Y \in A) > \mathbb{P}(Y \in B)$ if and only if:

 $\|\delta\| < \frac{\sigma}{2}(\Phi$

$$
=\Phi\left(\Phi^{-1}(\underline{p_A})-\frac{\|\delta\|}{\sigma}\right)\\=\Phi\left(\Phi^{-1}(\overline{p_B})+\frac{\|\delta\|}{\sigma}\right)
$$

$$
\Phi^{-1}(\underline{p_A})-\Phi^{-1}(\overline{p_B}))
$$

- Certified top-1 accuracy by ResNet50 on ImageNet with the random smoothing approach • Top row: the certified top-1 accuracy of 49% under adversarial perturbations $\ell_2 < 0.5$
	- - This is achieved with noise level $\sigma = 0.25$
		- For any perturbation with radius ℓ_2 < 0.5, the robust classifier will correctly predict the class • Note that perturbation with ℓ_2 norm < 0.5 is fairly small
- - For example, perturbation with $\ell_2 = 1$ can change one pixel by 1 (=255/255), or change 10 pixels by 0.3 (≈80/255), or change 1,000 pixels by 0.03 (≈8/255)
	- Increasing the ℓ_2 radius from 0.5 to 3.0 reduces the certified accuracy
	- For comparison, the standard top-1 accuracy on clean images by the smoothed classifier g is 67%

