COMP6211I: Trustworthy Machine Learning Test-time Integrity (verification) part 2

Minhao CHENG

Most slides are adapted from AAAI 2022 tutorial and from internet

What is neural network verification?

Robustness

any noise in perturbation set

- Verification requires a formal proof to show the property holds •
- In the robustness verification setting, a model can't be attack \neq Verified lacksquare
- Many heuristic defense was broken under stronger attacks \bullet
- A verified model cannot be attacked by any attacks (including unforeseen ones)

The Basic Formulation of Robustness Verification

Suppose $f(x_0) > 0$. Can we verify this property:

f(x) >

Must consider a set of infinite points as the input of the NN.

$$>0, orall x \in \mathcal{C}$$

Neural Network

The Basic Formulation of Robustness Verification

Assuming $f(x_0) > 0$, we solve the optimization problem to find the worst case:

 \mathcal{C} is usually a perturbation set "around" x_0 , e.g., $\mathcal{C} := \{x | \|x - x_0\|_p \le \epsilon\}$

Is it a hard problem?

 $f^* = \min_{x \in \mathcal{C}} f(x)$

CROWN backward bound propagation

until we reach the input!

$$x W^{(1)} ReLU \hat{z}^{(1)}$$
 $ReLU f(x) \ge w^{(3) op} D^{(2)} W^{(2)} D^{(1)} W^{(1)} x + ext{constants}$

 $\min_{x} f(x)$ **CROWN linear bound:** $x{\in}\mathcal{C}$

computed efficiently on GPUs in a backward manner

Goal: find linear relationships between output and every hidden neuron,

$$f(x) \geq \min_{x \in \mathcal{C}} oldsymbol{a}_{ ext{CROWN}}^ op x \! + \! c_{ ext{CROWN}} \! := \min_{x \in \mathcal{C}} f_{ ext{CROWN}}(x)$$

Where a_{CROWN} and c_{CROWN} are functions of NN weights, and can be

The CROWN lower bound

Propagate bounds backwards

$\alpha\text{-}\mathbf{CROWN}$: further tighten the bounds

- ReLU neurons have a flexible lower bound for relaxation
- Try different lower bounds to find tightest bound
- Each unstable ReLU has a lower bound to select, so lots of freedom here

$$\hat{z}_j^{(i)} \ge \boldsymbol{\alpha}_j^{(i)} \boldsymbol{z}_j^{(i)} \ (0 \le \boldsymbol{\alpha}_j^{(i)} \le 1)$$

Adjustable!

 $\mathbf{l}_{i}^{(i)} \leq z_{i}^{(i)} \leq \mathbf{u}_{i}^{(i)}$ are pre-activation bounds, also computed using CROWN

α -CROWN: further tighten the bounds

- Key idea: tighten bounds using gradients

 $f^*_{ ext{CROWN}} = \min_{x \in \mathcal{C}} oldsymbol{a}_{ ext{CROWN}}^ op x + c_{ ext{CROWN}}$

Actually a function of α . How to effectively optimize α to find the best bound?

$$\max_{lpha \leq 1} \min_{x \in \mathcal{C}} f_{ ext{CROWN}}(x;oldsymbol{lpha})$$

Inner minimization can usually be solved in closed form

$\alpha\text{-}\mathbf{CROWN}$: further tighten the bounds

- We can use gradient to optimize the relaxation, to make the bound tighter (tighter bound => stronger incomplete verification)
- We can make the bound **tighter** than the more expensive LP-based verifiers
- Optimization can be done rapidly on **GPUs**

Branch and bound for ReLU Network Verfication

Recall that ReLU neurons have three cases depending on pre-activation bounds:

Branch and bound: The branching step

Split each "unstable" ReLU neurons to two subproblems:

Additional linear constraint ("split constraint"):

 z_1

 z_1

 $z_1 > 0$ OR $z_1 < 0$

The additional constraint can make bounds tighter

Branch and bound: The bounding step

bound for each subproblem:

Using an incomplete solver (traditionally, LP-based verifier) to get the lower

Branch and bound search tree

Branch and bound improves the lower bound

Lower bound = -3.0 (computed by a incomplete verifier)

Lower bound = min(-2.0, 0.5) = -2.0

Lower bound = min(-1.0, -0.5) = -1.0

Lower bound = -0.5

Lower bound = 0.1

Branch and bound search tree

Branch and bound is complete if each relaxed subproblem (**with split constraint**) can be solved to optimal.

$$f^* = \min_{x \in \mathcal{C}} f(x)$$

f* Complete Verification Branch and bound with split constraints

Branch and bound search tree

Idea:

Combine rapid bound propagation based incomplete verifiers on GPUs with branch and bound (BaB) to achieve complete verification

Outcome:

up to 100-1000x faster than MIP based approach, enable us to scale complete verification to larger models

constraints; CROWN *cannot* handle it

- To use branch and bound, bound propagation must incorporate the split
 - hidden neurons

Propagate linear bounds backwards

Deal with split constraints with Lagrangians

CROWN:

 $\max_{eta \geq 0} \min_{x \in \mathcal{C}} w'$ **β-CROWN**: \min (x) $x \in \mathcal{C}, z_1^{(2)} < 0$

Lagrangian/KKT multipliers S is an diagonal matrix with +/-1 and 0

 $\min_{x\in\mathcal{C}}f(x)\geq\min_{x\in\mathcal{C}}w^{(3) op}D^{(2)}z^{(2)}+ ext{const.}$ Cannot handle split constraint

$$^{(3) op} D^{(2)} z^{(2)} + eta^ op S^{(2)} z^{(2)} + ext{const.}$$

Lagrangians are also propagated!

Linear coefficients changed with one additional term during propagation

$$w^{(3) op} D^{(2)} z^{(2)} + ext{const.}$$

$$w^{(3) op} D^{(2)} + eta^ op S^{(2)} \Big) z^{(2)} + ext{const.}$$

β-CROWN main theorem: all split constraints

Compared to (vanilla) CROWN (β =0):

 $\min_{x \in \mathcal{C}, z \in \mathcal{Z}} f(x) \ge \max_{\beta \ge 0} \min_{x \in \mathcal{C}} (\boldsymbol{a} + \mathbf{P}\beta)^\top x + \mathbf{q}^\top \beta + c_{\mathbf{n}}$

$$\min_{x \in \mathcal{C}} f(x) \geq \min_{x \in \mathcal{C}} oldsymbol{a}^ op x + c$$

Different β corresponds to different bounds, and we can choose the tightest one

- Assume we have a base classifier f that maps inputs x to labels y, i.e., f(x) = y• The approach creates corrupted versions of the image x by applying Gaussian noise with 0
- mean and variance σ^2 , i.e., $\eta \sim \mathcal{N}(0, \sigma^2 I)$
- Left figure: input sample x; Right figure: image corrupted with Gaussian noise $x + \eta$ • A smoothed classifier g is obtained by outputting the majority vote of the prediction on many Gaussian-corrupted images $x + \eta$
 - The added random noise improves the robustness to adversarial perturbations

- To design a smoothed classifier g at the input sample x requires to identify the most likely class \hat{c}_A returned by the base classifier f on noisy images
 - Step 1: create *n* versions of x corrupted with Gaussian noise $\eta \sim \mathcal{N}(0, \sigma^2 I)$
 - Step 2: evaluate the predictions by base classifier for all corrupted images, $f(x + \eta)$
 - predictions for the second highest class \hat{c}_B), return \hat{c}_A as the prediction by g(x)• Otherwise, if $n_A - n_B < \alpha$, abstain from making a prediction
 - Step 3: identify the top two classes \hat{c}_A and \hat{c}_B with the highest number of predictions on $f(x + \eta)$ • Step 4: if n_A (number of predictions by f for the top class \hat{c}_A) is much greater than n_B (number of

• Examples of noisy images from CIFAR-10 with varying levels of Gaussian noise $\mathcal{N}(0, \sigma^2 I)$ from $\sigma = 0$ to $\sigma = 1$

 $\sigma=0.00$

 $\sigma = 0.25$

- Intuitively, the certified radius R is large when:
 - The noise level σ is high
 - The probability of the top class
 - The probability of second top cl
- The authors prove that the certifie

- For binary classification, $R = \sigma \Phi^{-1}(p_A)$, because $\Phi^{-1}(p_B) = -\Phi^{-1}(p_A)$

$$p_A = \mathbb{P}(g(x + \eta) = c_A)$$
 is high
lass $p_B = \mathbb{P}(g(x + \eta) = c_B)$ is low
ed radius *R* is given by:

$$R = \frac{o}{2} \left(\Phi^{-1}(p_A) - \Phi^{-1}(p_B) \right)$$

• Φ^{-1} is the inverse of the Gaussian cumulative distribution function

Certified robust radius by [Cohen et al.'19]:

Certified robust radius by [Cohen et al.'19]:

Classifier g(x) is certifiably correct for x, if

- 1. certified radius > adv budget
- 2. classifier g(x) is correct for x

Calculate the percentage of certifiably correct x and obtain certified accuracy for a dataset

- Neyman-pearson
 - Given a sample from one of two distributions: null X or alternative Y
 - Two errors:
 - say "X" when the true answer is "Y" \rightarrow better
 - Optimal rule:

• say "Y" when the true answer is "X" -> limit its probability <= some failure rate α

• deterministically on the set $S^* = \{z \in \mathbb{R}^d : \frac{\mu_Y(z)}{\mu_X(z)} \ge t\}$ for whichever t makes $\mathbb{P}(X \in S^*) = \alpha$.

• Let $X \sim \mathcal{N}(x, \sigma)$

By Lemma 3 it suffices to simply show that for any β , there is some t > 0 for which:

$$\{z:\delta^T z \le \beta\} = \left\{z:\frac{\mu_Y(z)}{\mu_X(z)} \le t\right\} \quad \text{and} \quad \{z:\delta^T z \ge \beta\} = \left\{z:\frac{\mu_Y(z)}{\mu_X(z)} \ge t\right\}$$

The likelihood ratio for this choice of X and Y turns out to be:

$$\frac{\mu_Y(z)}{\mu_X(z)} = \frac{\exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^d (z_i - (x_i + \delta_i))^2)\right)}{\exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^d (z_i - x_i)^2\right)}$$
$$= \exp\left(\frac{1}{2\sigma^2}\sum_{i=1}^d 2z_i\delta_i - \delta_i^2 - 2x_i\delta_i\right)$$
$$= \exp(a\delta^T z + b)$$

where a > 0 and b are constants w.r.t z, specificall Therefore, given any β we may take $t = \exp(a\beta + b)$, noticing that

$$\delta^T z \le \beta \iff \exp(a\delta^T z + b) \le t$$
$$\delta^T z \ge \beta \iff \exp(a\delta^T z + b) \ge t$$

$$\sigma^2 I$$
) and $Y \sim \mathcal{N}(x + \delta, \sigma^2 I)$.

ly
$$a = \frac{1}{\sigma^2}$$
 and $b = \frac{-(2\delta^T x + \|\delta\|^2)}{2\sigma^2}$.

Proof. To show that $g(x + \delta) = c_A$, it follows from the definition of g that we need to show that

$$\mathbb{P}(f(x+\delta+\varepsilon)=c_A) > \max_{\substack{c_B \neq c_A}} \mathbb{P}(f(x+\delta+\varepsilon)=c_B)$$

We will prove that $\mathbb{P}(f(x + \delta + \varepsilon) = c_A) > \mathbb{P}(f(x + \delta + \varepsilon) = c_B)$ for every class $c_B \neq c_A$. Fix one such class c_B without loss of generality.

For brevity, define the random variables

 $X := x + \varepsilon =$ $Y := x + \delta +$

In this notation, we know from (6) that

 $\mathbb{P}(f(X) = c_A) \ge \underline{p_A}$

$$= \mathcal{N}(x, \sigma^2 I)$$
$$\vdash \varepsilon = \mathcal{N}(x + \delta, \sigma^2 I)$$

and
$$\mathbb{P}(f(X) = c_B) \leq \overline{p_B}$$

Proof. To show that $g(x + \delta) = c_A$, it follows from the definition of g that we need to show that

$$\mathbb{P}(f(x+\delta+\varepsilon)=c_A) > \max_{\substack{c_B \neq c_A}} \mathbb{P}(f(x+\delta+\varepsilon)=c_B)$$

We will prove that $\mathbb{P}(f(x + \delta + \varepsilon) = c_A) > \mathbb{P}(f(x + \delta + \varepsilon) = c_B)$ for every class $c_B \neq c_A$. Fix one such class c_B without loss of generality.

For brevity, define the random variables

 $X := x + \varepsilon =$ $Y := x + \delta +$

In this notation, we know from (6) that

 $\mathbb{P}(f(X) = c_A) \ge \underline{p_A}$

$$= \mathcal{N}(x, \sigma^2 I)$$
$$\vdash \varepsilon = \mathcal{N}(x + \delta, \sigma^2 I)$$

and
$$\mathbb{P}(f(X) = c_B) \leq \overline{p_B}$$

and our goal is to show that

 $\mathbb{P}(f(Y) = c_A)$

Define the half-spaces:

$$A := \{ z : \delta^T (z - x) \le \sigma \| \delta \| \Phi^{-1}(\underline{p}_A) \}$$
$$B := \{ z : \delta^T (z - x) \ge \sigma \| \delta \| \Phi^{-1}(1 - \overline{p}_B) \}$$

Algebra (deferred to the end) shows that $\mathbb{P}(X \in A) = p_A$. Therefore, by (8) we know that $\mathbb{P}(f(X) = c_A) \ge \mathbb{P}(X \in A)$. Hence we may apply Lemma 4 with $h(z) := \mathbf{1}[f(z) = \overline{c_A}]$ to conclude: $\mathbb{P}(f(Y) =$

Similarly, algebra shows that $\mathbb{P}(X \in B) = \overline{p_B}$. Therefore, by (8) we know that $\mathbb{P}(f(X) = c_B) \leq \mathbb{P}(X \in B)$. Hence we may apply Lemma 4 with $h(z) := \mathbf{1}[f(z) = c_B]$ to conclude: $\mathbb{P}(f(Y)) =$

of inequalities

$$\mathbb{P}(f(Y) = c_A) \ge \mathbb{P}(Y \in A) > \mathbb{P}(Y \in B) \ge \mathbb{P}(f(Y) = c_B)$$
(12)

$$_A) > \mathbb{P}(f(Y) = c_B) \tag{9}$$

$$c_A) \ge \mathbb{P}(Y \in A) \tag{10}$$

$$c_B) \le \mathbb{P}(Y \in B) \tag{11}$$

To guarantee (9), we see from (10, 11) that it suffices to show that $\mathbb{P}(Y \in A) > \mathbb{P}(Y \in B)$, as this step completes the chain

We can compute the following:

 $\mathbb{P}(Y \in A) = \Phi\left(\Phi^{-1}(Y \in B) = \Phi\left(\Phi^{-1}(Y \in B) = \Phi\left(\Phi^{-1}(Y \in B) = \Phi\left(\Phi^{-1}(Y \in B) \right)\right)\right)$ Finally, algebra shows that $\mathbb{P}(Y \in A) > \mathbb{P}(Y \in B)$ if and only if:

 $\|\delta\| < \frac{\sigma}{2}(\Phi$

$$= \Phi\left(\Phi^{-1}(\underline{p}_{A}) - \frac{\|\delta\|}{\sigma}\right)$$
$$= \Phi\left(\Phi^{-1}(\overline{p}_{B}) + \frac{\|\delta\|}{\sigma}\right)$$

$$\Phi^{-1}(\underline{p_A}) - \Phi^{-1}(\overline{p_B}))$$

- Certified top-1 accuracy by ResNet50 on ImageNet with the random smoothing approach
 - Top row: the certified top-1 accuracy of 49% under adversarial perturbations $\ell_2 < 0.5$
 - This is achieved with noise level $\sigma = 0.25$
 - - Note that perturbation with ℓ_2 norm < 0.5 is fairly small
 - For example, perturbation with $\ell_2 = 1$ can change one pixel by 1 (=255/255), or change 10 pixels by 0.3 ($\approx 80/255$), or change 1,000 pixels by 0.03 ($\approx 8/255$)
 - Increasing the ℓ_2 radius from 0.5 to 3.0 reduces the certified accuracy
 - For comparison, the standard top-1 accuracy on clean images by the smoothed classifier g is 67%

ℓ_2 radius	best σ	Cert. Acc (%)	STD. ACC(%)
0.5	0.25	49	67
1.0	0.50	37	57
2.0	0.50	19	57
3.0	1.00	12	44

• For any perturbation with radius $\ell_2 < 0.5$, the robust classifier will correctly predict the class