Most slides are adapted from AAAI 2022 tutorial and from internet

COMP6211I:
Trustworthy Machine Learning

Test-time Integrity (verification) part 2

COMPUTER SCIENCE & ENGINEERING
ATRHEERTIESZR

Minhao CHENG g \

What is neural network verification?

Robustness perturbation set (e.g. a £, norm ball)

(missed by attack)

any noise in
perturbation set

* Verification requires a formal proof to show the property holds

* In the robustness verification setting, a model can’t be attack # Verified
* Many heuristic defense was broken under stronger attacks

* A verified model cannot be attacked by any attacks (including unforeseen ones)

The Basic Formulation of Robustness Verification

Suppose f(zg) > 0. Can we verify this property:

f(x) >0,V € C

a) -
e R s N\ Outputis a
@ S Z 2 o range/set of scores
28 > Q) >< - d >@ | >| \<) < 2.2
C o
cat” even in the
Input is a set worst case

Neural Network

Must consider a set of infinite points as the input of the NN.

The Basic Formulation of Robustness Verification

Assuming f(zo) > 0, we solve the optimization problem to find the worst case:

f* = min f(2)

rcC

C is usually a perturbation set “around” xg, e.g., C := {z|||z — z¢||, < €}

f* < 0 f* > ()
[
I_l >
Cl 1
Label flipped, 0 Provably ass "
not robust! robust! f(z) < 0. .-
.Dec'lswﬂ

Is it a hard problem?

f(z) >0

CROWN backward bound propagation

e Goal: find linear relationships between output and every hidden neuron,
until we reach the input!

Z(l) 2(1) 2(2) 2’:«(2) 2(3)

@_. wb — Rel U - WP - RelLU SRR @

f(z) >w® T DAW DOW Wz + const.

CROWN linear bound: min f(z) > min a'gROWN:B_'_CCROWN ;= min fepown (Z)

xeC xeC reC

Where acrown and Corown are functions of NN weights, and can be
computed efficiently on GPUs in a backward manner

The CROWN lower bound

»(1) 5(1) »(2) 5(2) »(3)
@_' Wb ~ RelLU - W - ReLU | w? @
<
Propagate bounds backwards

min f(z) > mina ' T+ ;= min T

oy f() — ¢ CROWN CROWN O fCROWN()
f(z)

Terown = 0=
Verification
success
—_>

a-CROWN: further tighten the bounds

e RelLU neurons have a flexible lower bound for relaxation
* T[ry different lower bounds to find tightest bound

e Each unstable RelLU has a lower bound to select, so lots of freedom here

*
’

i) (i) (0)

Adjustable!

a-CROWN: further tighten the bounds

* — TR T
cROWN — TUR @rpown® T CCROWN

Actually a function of a. How to effectively optimize & to find the best bound?

Key idea: tighten bounds using gradients

Inner minimization

*— min f(z) >| max I[min T,
f* = min f(z) 2| max (min ferown (%5 @) can sualy e sovec

4 f(z)

——

——
_—
_—
===
=
—-—
==l

a-CROWN: further tighten the bounds

e We can use gradient to optimize the relaxation, to make the bound tighter
(tighter bound => stronger incomplete verification)

e We can make the bound tighter than the more expensive LP-based verifiers

e Optimization can be done rapidly on GPUs

2(-i) 2@ ~0.04
J J
M : A ~0.06 1
: € —0.08-
. —
i . = > 1(7/) _ - - _8 —0.101
. - ' -~ S _0.191
: (2) J —— (4) : —0.12
: -2 = -Z ~ -0.14
- () 0161 — Typical LP verifier
U, — a-CROWN

0O 25 50 75 100
iteration

Branch and bound for ReLU Network Verfication

Recall that ReLU neurons have three cases depending on pre-activation bounds:

A : : A : A

] u | u 1 u
1 > 0, always active u < 0, Always inactive 1<0<u
(linear) (zero) Unstable (non-linear)

Must be relaxed; relaxation
makes bounds looser

Branch and bound: The branching step

Split each “unstable” ReLU neurons to two subproblems:

5. Additional linear constraint
| (“split constraint”):

B % I z1 >0
21

Relu is linear, no OR
relaxation needed

21y z1 <0

1 u

5 | The additional constraint can make
- — - bounds tighter

Branch and bound: The bounding step

Using an incomplete solver (traditionally, LP-based verifier) to get the lower

bound for each subproblem:
Iogyver tgmund =20 % Bound improved from -3.0 to -2.0

lower bound = -3.0 / Split next unstable

%— .l BN % ReLU neuron...
| 1 u

1 u Igwer bound = 0.5

Goal: prove f* > 0 % Subproblem Verified /
|

u

Zl<0

Branch and bound search tree

K]y R4y R34 24
are unstable neurons

Lower bound = -3.0

(computed by a incomplete verifier)
z1 >0

Lower bound = min(-2.0, 0.5) =-2.0

Lower bound = min(-1.0, -0.5) =-1.0

Lower bound =

<5 Lower bound = 0.1 L <uborop) .
All subproblems verified!
vy / i

Branch and bound improves the lower bound

Branch and bound search tree

Branch and bound is complete if each
relaxed subproblem (with split
constraint) can be solved to optimal.

f* = min f(z)
reC
« Complete Verification
fr-rem -ttt

Branch and bound
with split constraints

Branch and bound improves the lower bound

Incomplete Verifier All subproblems verified!

o= [—_— — =] e — — H— =] = e e — =

Branch and bound search tree

ldea:

Combine rapid bound propagation
based incomplete verifiers on GPUs
with branch and bound (BaB) to
achieve complete verification

Outcome:

up to 100-1000x faster than MIP based
approach, enable us to scale complete
verification to larger models

Z4<O

Bounds for these nodes
can be computed in a
batch in parallel on GPUs

/-CROWN: Bound propagation with split constraints

e To use branch and bound, bound propagation must incorporate the split

constraints: CROWN cannot handle it

>

neurons
input 21 3 2(2) 5(2)
@—» W - RelLU | W ReLU
@ 0
r e C A=

WO

output
f(z) e R

split constraint

Propagate linear bounds backwards

/-CROWN: Bound propagation with split constraints

e Deal with split constraints with Lagrangians

Z(l) 2(1) 2(2) 2(2) Z(S)
L2
1 =
CROWN: min f(z) > min w® T D@ ,2) 4 onst. Cannot handle split constraint
' zeC - zeC
BCROWN: _minf(s) > megminul® D=0 4[5 S0 coms

Lagrangian/KKT multipliers
S is an diagonal matrix with +/-1 and 0

/-CROWN: Bound propagation with split constraints

e Lagrangians are also propagated!

Z(l) 2(1) 2(2) 2(2) Z(S)
(x)— wo | ReLU W - ReLU S w® - fr) D

L@ <
1 =

CROWN: min f(z) > min BT D(2)],(2) —+ const.

zecC zeC
. : (3)T T (2)
p-CROWN: mecr,il(})ne P f(z) >Igggcgl€1g1(D® 4 g7 s) + const.

Linear coefficients changed with one additional term during propagation

/-CROWN: Bound propagation with split constraints

-CROWN main theorem: ' > ' P3)" b .
B werglrézf(:ﬂ)_rggggg(aJr B) z+q B+c

all split constraints

Compared to (vanilla) CROWN (8=0): min f(z) > min a' z4c

rxeC xeC

Different B corresponds to different bounds,
and we can choose the tightest one

B-CROWN

Randomized smoothing

Randomized smoothing

- Assume we have a base classifier f that maps inputs x to labels y, i.e., f(x) =y

- The approach creates corrupted versions of the image x by applying Gaussian noise with 0
mean and variance o2, i.e., n~N (0, a%1)

- Left figure: input sample x; Right figure: image corrupted with Gaussian noise x + 7

- A smoothed classifier g is obtained by outputting the majority vote of the prediction on many
Gaussian-corrupted images x + n

- The added random noise improves the robustness to adversarial perturbations

Randomized smoothing

Randomly perturbe
data point x + 7

Output majority

vote: I8
Proposed by
[Cohen et al.’19],
[Lecuyer et al.’19]

[Li et al.’19]

smoothing

’ Test point x

I D Gariiad Base Classifier Smoothed Classifier

£ glx) = arg}r,nax P, [f(x +1n)=y]

‘Cohen et al."19] Certified Adversarial Robustness via Randomized Smoothing, ICML 2019.
Lecuyer et al.”19] Certified Robustness to Adversarial Examples with Differential Privacy, S&P 2019.
Li et al."19] Certified Adversarial Robustness with Additive Noise, NeurlPS 2019.

Randomized smoothing

To design a smoothed classifier g at the input sample x requires to identify the most likely class ¢,
returned by the base classifier f on noisy images

Step 1: create n versions of x corrupted with Gaussian noise n~N'(0, a%1)
Step 2: evaluate the predictions by base classifier for all corrupted images, f(x + n)
Step 3: identify the top two classes ¢, and ¢z with the highest number of predictions on f(x + n)

Step 4: if ny (number of predictions by f for the top class ¢,) is much greater than ng (number of
predictions for the second highest class ¢z), return ¢, as the prediction by g(x)

Otherwise, if n, — ng < a, abstain from making a prediction

Randomized smoothing

- Examples of noisy images from CIFAR-10 with varying levels of Gaussian noise N (0, 021I)
fromoc=0tooc =1

Randomized smoothing

Intuitively, the certified radius R is large when:
The noise level o Is high
The probability of the top class p,= P(g(x + n) = c4) is high
The probability of second top class pz= P(g(x + 1) = cp) is low
The authors prove that the certified radius R is given by:

R = %(Cp_l(PA) — & 1(pp))

®~1 is the inverse of the Gaussian cumulative distribution function
For binary classification, R = c®~1(p,), because & 1(pg) = —d1(p,)

Randomized smoothing

Certified robust radius by [Cohen et al.’19]:

Confidence of majority vote

Given any input x € R%, let n be Gaussian noise N (0, 0?I) and p = max P,[f(x+mn) =1y]. Then
y

g(x) = g(x + &) for any 6 such that ||§]|, < @ *(p)a, where @ is CDF of standard Gaussian.
Computable certified

radius for x
Randomly perturbe Carfified
data point x +n radius \
Output majority
vote: I8
_ Adversarial
Test point x budget
to be certified . .
Base Classifier Smoothed Classifier

f(x) g(x) = arg;nax P, [f(x +7n) =y]

Randomized smoothing

Certified robust radius by [Cohen et al.’19]:

Confidence of majority vote

Given any input x € R%, let n be Gaussian noise N'(0,0%1) and p = max P,[f(x+mn)=y]. Then
y
g(x) = g(x + 6) for any 6 such that ||6]|, < @ 1(p)a, where ® is CDF of standard Gaussian.

Computable certified

radius for x
Certified
radius
Classifier g(x) is certifiably correct for x, if \
1. certified radius > adv budget
2. classifier g(x) is correct for x
Calculate the percentage of certifiably .
. r Adversarial
correct x and obtain certified accuracy for budget

a dataset

Smoothed Classifier

g(x) = arg;nax P, [f(x+n)=1y]

Proof sketch

* Neyman-pearson
* Given a sample from one of two distributions: null X or alternative Y
* WO errors:

e say “X” when the true answer Is “Y” —> better

* say “Y” when the true answer is “X” —> limit its probability <= some failure rate

e Optimal rule:

. deterministically on the set S* = {z € R® Z . g; > t} for whichever £ makes P(X € S*) = .

Proof sketch
o Let X ~ N(z,0%I)andY ~ N(x + 6,0°I).

By Lemma 3 it suffices to simply show that for any (3, there is some ¢ > 0 for which:

%gt} and {z:éTzzﬁ}z{z:Z;EZ; Zt}

The likelihood ratio for this choice of X and Y turns out to be:

py(z) SXP (—2 Thi(z — (@i +6.))%)

px(z) exp (_# Z:;l:l(z’i - mZ)Q)

d
1 E ' 2
1=1

= exp(ad’ z + b)

N

{z:5Tz§5}:{z:Z;E

N
N

Tz+|8]1°)

where a > 0 and b are constants w.r.t z, specifically a = % and b = —(2° 52

Therefore, given any 8 we may take ¢ = exp(af + b), noticing that

612 < B <= exp(adlz+0b) <
612> p <= exp(ad’z+b) >

Proof sketch

Proof. To show that g(x + d) = ca, it follows from the definition of g that we need to show that

P(f(x+d+¢e)=ca)> max P(f(x+9+¢) =cp)

CBFCA

We will prove that P(f(x +d+¢€) = ca) > P(f(x + 6 +¢€) = cp) for every class cg # ca. Fix one such class cg without
loss of generality.

For brevity, define the random variables

X :=x+¢e=N(z,o°I)
Yi=zx+6+e=N(z+ 6 0°])

In this notation, we know from (6) that

P(f(X) =ca) 2pa and P(f(X)=cp) <DPB (8)

Proof sketch

Proof. To show that g(x + d) = ca, it follows from the definition of g that we need to show that

P(f(x+d+¢e)=ca)> max P(f(x+9+¢) =cp)

CBFCA

We will prove that P(f(x +d +¢€) = ca) > P(f(x + 6 +€) = cp) for every class cg # ca. Fix one such class cg without
loss of generality.

For brevity, define the random variables

X :=xz+¢e=N(z,o°I)
Yi=zx+6+e=N(z+ 6 0°])

In this notation, we know from (6) that

P(f(X) =ca) 2pa and P(f(X)=cp) <DPB (8)

Proof sketch

and our goal 1s to show that
P(f(Y) =ca) >P(f(Y) = cB) %)

Define the half-spaces:

A:={z:6"(z—z) <062 " (pa)}
B:={z:61(z—2)>0|d]|® (1 —pB)}

Algebra (deferred to the end) shows that P(X € A) = p4. Therefore, by (8) we know that P(f(X) =c4) > P(X € A).

Hence we may apply Lemma 4 with A(z) := 1[f(z) = ca] to conclude:

'V

P(f(Y) =ca) 2P(Y € A) (10)

Similarly, algebra shows that P(X € B) = pg. Therefore, by (8) we know that P(f(X) = cg) < P(X € B). Hence we
may apply Lemma 4 with h(z) := 1[f(2) = cg] to conclude:

P(f(Y) = cp) <P(Y € B) (11)

To guarantee (9), we see from (10, 11) that it suffices to show that P(Y € A) > P(Y € B), as this step completes the chain
of inequalities

P(f(Y)=ca) 2P(Y € A)>P(Y € B) 2 P(f(Y) = cB) (12)

Proof sketch

We can compute the following:

P(Y € A) = (cb—l(p_A) ”i”) (13)
P(Y e B)=9® (<I>—1(ﬁ) | Hg”) (14)

Finally, algebra shows that P(Y € A) > P(Y € B) if and only if:

3] < 5 (@7 (pa) — 27 (PB)) (15)

Randomized smoothing

Certified top-1 accuracy by ResNet50 on ImageNet with the random smoothing approach

Top row: the certified top-1 accuracy of 49% under adversarial perturbations £, < 0.5
This is achieved with noise level o = 0.25

For any perturbation with radius ¢, < 0.5, the robust classifier will correctly predict the class
Note that perturbation with £, norm < 0.5 is fairly small

For example, perturbation with £, = 1 can change one pixel by 1 (=255/255), or change 10
pixels by 0.3 (=80/255), or change 1,000 pixels by 0.03 (=8/255)

Increasing the £, radius from 0.5 to 3.0 reduces the certified accuracy
For comparison, the standard top-1 accuracy on clean images by the smoothed classifier g is 67%

/o RADIUS BEST o |CERT. ACC (%)| STD. ACC(%)

0.5 0.25 49 67
1.0 0.50 37 S7
2.0 0.50 19 57
3.0 1.00 12 44

