COMP6211I:
Trustworthy Machine Learning

Test-time Integrity (defenses)

TTTTTTTTTTTTTTT

@& | COMPUTER SCIENCE & ENGINEERING
\ TERREIEZENRTIIESZR

Minhao CHENG

Test-time Integrity

Adversarial examples

N

%

 An adversarial example can easily
fool a deep network

LR

*

-
N\

2

 Robustness is critical in real systems

+ 0.001x

stop sign speed limit 40

Adversarial example

White-box adversarial attack

« If there is [|x — x|, constraint, we could turn to solve by

e FGSM attack [GSS15]:
o X pr0jx+cs>(x0 + OlSign(VXOK(Ha X,)’)))

. PGD attack [KGB17, MMS18]

. X~ projx+§(xt + asign(V,.£(0,x,y)))

Adversarial defense

Adversarial training

* Adversarial training [MMS18]:

n191np(9), where p(0) = E(,,)p I?Eegx L(6,x+ 4, y)

* Solve the inner loop by

xH_l — HX—I-S (xt -+ Désgn(VxL(el Xy y)))

Adversarial training

Capacity is crucial

MNIST
- Natural
100| e——s—o—o—— | 100 , —=—= —3 | 100 A = FGSM
2> 80 80 80 ke 1 - PGD
g 60 60 60 Y 01 —
O 40 40 40 S ===
éﬁ 20 20 20 2 0.01
0 o=—a—88—2% 3 0O e o ® e o 0 <C
12 4 8 16 1_ 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Capacity scale Capacity scale Capacity scale Capacity scale
CIFARI10
Simple| Wide Simple| Wide Simple| Wide Simple| Wide
Natural 92.7% (95.2% 87.4% 190.3% 79.4% |87.3% 0.00357{0.00371
FGSM 27.5% |32.7% 90.9% (95.1% 51.7% |56.1% 0.0115 |0.00557
PGD 0.8% | 3.5% 0.0% | 0.0% 43.7% |45.8% 1.11 | 0.0218
(a) Standard training (b) FGSM training (c) PGD training (d) Training Loss

Figure 4: The effect of network capacity on the performance of the network. We trained MNIST and
CIFAR10 networks of varying capacity on: (a) natural examples, (b) with FGSM-made adversarial
examples, (c) with PGD-made adversarial examples. In the first three plots/tables of each dataset,
we show how the standard and adversarial accuracy changes with respect to capacity for each
training regime. In the final plot/table, we show the value of the cross-entropy loss on the
adversarial examples the networks were trained on. This corresponds to the value of our saddle
point formulation (2.1) for different sets of allowed perturbations.

Adversarial training

Problems

 Huge overhead
* |ncrease training time by an order magnitude (7x if 7 step PGD)

 Fast method like FGSM doesn’t work

* Easily be attacked by strong attackers such as C&W attack

Fast Adversarial training

* Solve the following optimization:

min ZL: Igleanﬁ(fg(:vi +9), ;).

* Solve the inner max by FGSM

o 0" =¢€-sign(V Ll(f(x),y)).

Free Adversarial training
Attempts

 Free” adversarial training: use each inner max to update

Algorithm 2 “Free” adversarial training for 7' epochs, given some radius €, /N minibatch replays,
and a dataset of size M for a network fy

0=0
// Iterate T/N times to account for minibatch replays and run for T total epochs
fort=1...7T/N do
for:=1...M do
// Perform simultaneous FGSM adversarial attack and model weight updates I’ times
for)=1...Ndo
// Compute gradients for perturbation and model weights simultaneously
v57 v@ — vg(f@ (mz + 5)7 yz)
d =0+ ¢-sign(Vy)
6 = max(min(d, €), —¢)
0 = 0 — Vg // Update model weights with some optimizer, e.g. SGD
end for
end for
end for

Fast Adversarial training

Algorithm 3 FGSM adversarial training for I’ epochs, given some radius €, N PGD steps, step size
o, and a dataset of size M for a network fy

fort=1...7Tdo
for:=1... M do
// Perform FGSM adversarial attack
6 = Uniform(—e, €)
0 =0+ a-sign(Vsl(fo(wi +9),v:))
6 = max(min(d, €), —¢)
0 =0 — Vol(fo(x; +9),y;) // Update model weights with some optimizer, e.g. SGD
end for
end for

The magic of random initialization

Method Standard accuracy PGD (e = 8/255) Time (min)
FGSM + DAWNBench

+ zero 1nit 85.18% 0.00% 12.37

+ early stopping 71.14% 38.86% 7.89

+ previous 1nit 86.02% 42.37% 12.21

+ random 1nit 85.32% 44.01% 12.33

+ a = 10/255 step size 83.81% 46.06% 12.17

+ a = 16/255 step size 86.05% 0.00% 12.06

+ early stopping 70.93% 40.38% 3.81

“Free” (m = 8) (Shafahi et al., 2019)" 85.96% 46.33% 785

+ DAWNBench 78.38% 46.18% 20.91

PGD-7 (Madry et al., 2017)? 87.30% 45.80% 4965.71

+ DAWNBench 82.46% 50.69% 68.8

DAWNBench Improvement

Reduce # of training epochs

* Cyclic learning rate

 Mixed-precision arithmetic

0.2

0.1

0.0 1

0

|
o

(a) CIFARI1O

0.4 4

0.2 1

0.0 15 | | r
0 5 10 15

(b) ImageNet

Catastrophic overfitting

mmms PGD Test

FGSM Train

% Error

50 -

20

m—— PGD Test

FGSM Train

100 A
75—\ /

0 5
0

|
0

10

|
15

Epochs

20

TRADES

Notations

« DB(f) is the decision boundary of f {z € & : f(z) = 0}

» B(DB(f), €) is the neighborhood of decision boundary
fi{x e X:dx' € B(x,¢)s.t. f(x)f(x') <0}

* Robust error R, (f) :=E(x y)~p1{3IX'€B(X,¢) s.t. f(X')Y <0}

* Natural error R_,(f) := Eix y)~p1{f(X)Y < 0}

* Boundary error R (f) := Ex.y).pl{X € B(DB(f),¢), f(X)Y > 0}

7zrob(f) — Rnat(f) + Rbdy(f)°

TRADES

Main theorem

Theorem 3.1. Let Ry(f) := E¢(f(X)Y) and Ry, := ming Ry(f). Under Assumption 1, for any non-
negative loss function ¢ such that ¢(0) > 1, any measurable f : X — R, any probability distribution on

X x {£1}, and any \ > 0, we have!
Rrob(f) = Riar < U7 (Rg(f)—RG)+Pr[X€B(DB(f),¢), f(X)Y > 0]
<Y (Re(f)-RG) +E_max o(f(X)f(X)/N).

X'eB(X ,e)

TRADES

Optimization

» Solve the following optimization to minimize Rrob(f) — R

minE{ §(f(XOY) + _max o(f(X)f(X)/N) .
for accuracy —

regularization for robustness

 Comparison with Adversarial training

min 43{ max qb(f(X')Y)} ,

f X'eB(X e)

TRADS

Controlling trade-off

Table 4: Sensitivity of regularization hyperparameter A on MNIST and CIFAR10 datasets.

MNIST CIFAR10

1/)‘ »Arob(f) (%) Anat(f) (%) Arob(f) (%) Anat(f) (%)

0.1 | 91.09 =0.0385 99.41 = 0.0235 || 26.53 =1.1698 91.31 = 0.0579
0.2 | 92.18 = 0.0450 99.38 = 0.0094 || 37.71 == 0.6743 89.56 £ 0.2154
0.4 | 93.21 = 0.0660 99.35 = 0.0082 || 41.50 == 0.3376 &87.91 £ 0.2944
0.6 | 93.87 = 0.0464 99.33 + 0.0141 || 43.37 = 0.2706 &87.50 = 0.1621
0.8 | 94.32 +0.0492 99.31 = 0.0205 || 44.17 == 0.2834 &7.11 £ 0.2123
1.0 | 94.75 = 0.0712 99.28 = 0.0125 || 44.68 = 0.3088 &87.01 & 0.2819
2.0 | 9545 £0.0883 99.29 £ 0.0262 || 48.22 £ 0.0740 85.22 £ 0.0543
3.0 | 95.57 £ 0.0262 99.24 & 0.0216 || 49.67 = 0.3179 83.82 £ 0.4050
4.0 | 95.65 £ 0.0340 99.16 £ 0.0205 || 50.25 = 0.1883 82.90 = 0.2217
5.0 | 95.65 =0.1851 99.16 = 0.0403 || 50.64 = 0.3336 81.72 == 0.0286

TRADS

Main results

[WSMK 18] robust opt. FGSM?° (PGD) | CIFARI10 | 0.031 ({/so) | 27.07% | 23.54%
[MMST18] robust opt. FGSM?’ (PGD) | CIFARI10 | 0.031 ({s) | 87.30% | 47.04%
[ZSLG16] regularization | FGSM?’ (PGD) | CIFARI10 | 0.031 (/) | 94.64% | 0.15%
[KGB17] regularization | FGSM?’ (PGD) | CIFARI10 | 0.031 (/o) | 85.25% | 45.89%
[RDV17] regularization | FGSM?’ (PGD) | CIFARI10 | 0.031 (Y/s) | 95.34% 0%
TRADES (1/X = 1) || regularization | FGSM'%0 (PGD) | CIFAR10 | 0.031 ({so) | 88.64% | 48.90%
TRADES (1/X = 6) || regularization | FGSM1%° (PGD) | CIFAR10 | 0.031 (Ys.) | 84.92% | 56.43%
TRADES (1/X = 1) || regularization | FGSM?’ (PGD) | CIFARI10 | 0.031 ({s) | 88.64% | 49.14%
TRADES (1/X = 6) || regularization | FGSM?’ (PGD) | CIFARI10 | 0.031 ({s) | 84.92% | 56.61%
TRADES (1/\ = 1) || regularization DeepFool (¢) CIFARI1O | 0.031 (/o) | 88.64% | 59.10%
TRADES (1/)\ = 6) || regularization DeepFool (/) CIFARI10 | 0.031 (/) | 84.92% | 61.38%
TRADES (1/X = 1) || regularization LBFGSAttack | CIFARIO | 0.031 (/so) | 88.64% | 84.41%
TRADES (1/)X = 6) || regularization LBFGSAttack | CIFARIO | 0.031 (Ys0) | 84.92% | 81.58%
TRADES (1/\ = 1) || regularization MI-FGSM CIFARI10 | 0.031 (/) | 88.64% | 51.26%
TRADES (1/X = 6) || regularization MI-FGSM CIFARI0 | 0.031 (¢5,) | 84.92% | 57.95%
TRADES (1/)\ = 1) || regularization C&W CIFARI0 | 0.031 (¢5,) | 88.64% | 84.03%
TRADES (1/X = 6) || regularization C&W CIFARI10 | 0.031 () | 84.92% | 81.24%
[SKC18] gradient mask [ACW 18] MNIST 0.005 (¥5) - 55%
[MMS 18] robust opt. FGSM* (PGD) MNIST | 0.3 (Usy) | 99.36% | 96.01%
TRADES (1/X = 6) || regularization | FGSMY%0 (PGD) | MNIST | 0.3 ({so) | 99.48% | 95.60%
TRADES (1/\ = 6) || regularization | FGSM* (PGD) MNIST | 0.3 ({so) | 99.48% | 96.07%
TRADES (1/)X = 6) || regularization C&W MNIST | 0.005 (¢2) | 99.48% | 99.46%

