Minhao CHENG

THE DEPARTMENT OF **COMPUTER SCIENCE & ENGINEERING** 計算機科學及工程學系

COMP6211I: Trustworthy Machine Learning Test-time Integrity (defenses)

Test-time integrity Adversarial examples

- An adversarial example can easily fool a deep network
- Robustness is critical in real systems

 \equiv

 \equiv

Bagle

piano

speed limit 40

Adversarial example White-box adversarial attack

- If there is $||x x_0||_{\infty}$ constraint, we could turn to solve by
- FGSM attack [GSS15]:

•
$$
x^{t+1}
$$
 \leftarrow proj_{x+\delta} $(x^t + \alpha \text{sign}(V_{x^t}t))$

•
$$
x \leftarrow \text{proj}_{x+\delta}(x_0 + \alpha \text{sign}(\nabla_{x_0} \ell(\theta)))
$$

• PGD attack [KGB17, MMS18]

ℓ(*θ*, *x*, *y*)))

 $\mathscr{L}(\theta, x, y))$

Adversarial defense Adversarial training

- Adversarial training [MMS18]:
	- $\min_{\theta} \rho(\theta)$, where $\rho(\theta) = \mathbb{E}_{(x,y)}$
- Solve the inner loop by

 \bullet

• $x^{t+1} = \prod_{x+S} (x^t + \alpha \operatorname{sgn}(\nabla_x L(\theta, x, y)))$

$$
\sup_{\mathcal{D}} \left[\max_{\delta \in \mathcal{S}} L(\theta, x + \delta, y) \right].
$$

Adversarial training Capacity is crucial

Figure 4: The effect of network capacity on the performance of the network. We trained MNIST and CIFAR10 networks of varying capacity on: (a) natural examples, (b) with FGSM-made adversarial examples, (c) with PGD-made adversarial examples. In the first three plots/tables of each dataset, we show how the standard and adversarial accuracy changes with respect to capacity for each training regime. In the final plot/table, we show the value of the cross-entropy loss on the adversarial examples the networks were trained on. This corresponds to the value of our saddle point formulation (2.1) for different sets of allowed perturbations.

Adversarial training Problems

- Huge overhead
	-
- Increase training time by an order magnitude (7x if 7 step PGD) • Fast method like FGSM doesn't work
	- Easily be attacked by strong attackers such as C&W attack

Fast Adversarial training

• Solve the following optimization:

$$
\min_{\theta} \sum_{i} \max_{\delta \in \Delta} \ell(f_{\theta}(x_i + \delta), y_i).
$$

 \bullet

• Solve the inner max by FGSM

•
$$
\delta^* = \epsilon \cdot \operatorname{sign}(\nabla_x \ell(f(x), y)).
$$

Free Adversarial training Attempts

• Free" adversarial training: use each inner max to update

Algorithm 2 "Free" adversarial training for T epochs, given some radius ϵ , N minibatch replays, and a dataset of size M for a network f_{θ}

 $\delta=0$ *If* Iterate T/N times to account for minibatch replays and run for T total epochs for $t=1...T/N$ do for $i=1...M$ do *If* Perform simultaneous FGSM adversarial attack and model weight updates T times for $j = 1 \ldots N$ do // Compute gradients for perturbation and model weights simultaneously $\nabla_{\delta}, \nabla_{\theta} = \nabla \ell(f_{\theta}(x_i + \delta), y_i)$ $\delta = \delta + \epsilon \cdot \text{sign}(\nabla_{\delta})$ $\delta = \max(\min(\delta, \epsilon), -\epsilon)$ $\theta = \theta - \nabla_{\theta}$ // Update model weights with some optimizer, e.g. SGD end for end for end for

Fast Adversarial training

Algorithm 3 FGSM adversarial training for T epochs, given some radius ϵ , N PGD steps, step size α , and a dataset of size M for a network f_{θ}

for
$$
t = 1...T
$$
 do
\nfor $i = 1...M$ do
\n// Perform FGSM adversarial attack
\n $\delta = \text{Uniform}(-\epsilon, \epsilon)$
\n $\delta = \delta + \alpha \cdot \text{sign}(\nabla_{\delta}\ell(f_{\theta}(x_i + \delta), y_i))$
\n $\delta = \max(\min(\delta, \epsilon), -\epsilon)$
\n $\theta = \theta - \nabla_{\theta}\ell(f_{\theta}(x_i + \delta), y_i) \text{ // Update}$
\nend for
\nend for

model weights with some optimizer, e.g. SGD

The magic of random initialization

PGD ($\epsilon = 8/255$) Standard accuracy Time (min)

DAWNBench Improvement Reduce # of training epochs

- Cyclic learning rate
- Mixed-precision arithmetic

Catastrophic overfitting

TRADES Notations

- DB(f) is the decision boundary of f
- $\mathbb{B}(\mathsf{DB}(f), \epsilon)$ is the neighborhood of decision boundary $f: \{x \in \mathcal{X} : \exists x' \in \mathbb{B}(x, \epsilon) \text{ s.t. } f(x)f(x') \leq 0\}$
- Robust error $\mathcal{R}_{\text{rob}}(f) := \mathbb{E}_{(\mathbf{X},Y)\sim \mathcal{D}}1\{\exists \mathbf{X}'\in \mathbb{B}(\mathbf{X},\epsilon) \text{ s.t. } f(\mathbf{X}')Y \leq 0\}$
- Natural error $\mathcal{R}_{nat}(f) := \mathbb{E}_{(\mathbf{X}, Y) \sim \mathcal{D}} \mathbf{1}\{f(\mathbf{X})Y \leq 0\}$
- Boundary error $\mathcal{R}_{\text{bdy}}(f) := \mathbb{E}_{(\boldsymbol{X},Y)\sim \mathcal{D}}\mathbf{1}\{\boldsymbol{X}\in\mathbb{B}(\text{DB}(f),\epsilon), f(\boldsymbol{X})Y>0\}$

$$
\mathcal{R}_{\rm rob}(f) = \mathcal{R}_{\rm nat}(f)
$$

 $f) + \mathcal{R}_{\text{bdy}}(f).$

TRADES **Main theorem**

 $\mathcal{X} \times \{\pm 1\}$, and any $\lambda > 0$, we have

$$
\mathcal{R}_{\mathrm{rob}}(f) - \mathcal{R}_{\mathrm{nat}}^* \leq \psi^{-1}(\mathcal{R}_{\phi}(f) - \newline \leq \psi^{-1}(\mathcal{R}_{\phi}(f) -
$$

Theorem 3.1. Let $\mathcal{R}_{\phi}(f) := \mathbb{E}\phi(f(\mathbf{X})Y)$ and $\mathcal{R}_{\phi}^* := \min_{f} \mathcal{R}_{\phi}(f)$. Under Assumption 1, for any nonnegative loss function ϕ such that $\phi(0) \geq 1$, any measurable $f: \mathcal{X} \to \mathbb{R}$, any probability distribution on

> $-\mathcal{R}^*_\phi\text{)+}\mathrm{Pr}[\bm{X}\!\in\!\mathbb{B}(\mathrm{DB}(f),\epsilon),f(\bm{X})Y>0]$ $-\mathcal{R}_{\phi}^*) + \mathbb{E}\max_{\bm{X}'\in\mathbb{B}(\bm{X},\epsilon)}\phi(f(\bm{X}')f(\bm{X})/\lambda).$

- Solve the following optimization to minimize $\mathcal{R}_{\text{rob}}(f) \mathcal{R}_{\text{nat}}^*$ $\min_{f} \mathbb{E}\Big\{\phi(f(\boldsymbol{X})Y)+\max_{\boldsymbol{X}'\in\mathbb{B}(\boldsymbol{X},\epsilon)}\phi(f(\boldsymbol{X})f(\boldsymbol{X}')/\lambda)\Big\}.$ for accuracy regularization for robustness
- Comparison with Adversarial training

$$
\min_{f} \mathbb{E} \left\{ \max_{\mathbf{X}' \in \mathbb{B}(\mathbf{X}, \epsilon)} \phi(f(\mathbf{X}')Y) \right\},\,
$$

TRADES Optimization

TRADS **Controlling trade-off**

TRADS Main results

