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Machine learning

Beyond Accuracy

TESLA AUTOPILOT —

Researchers trick Tesla Autopilot into
steering into oncoming traffic

Stickers that are invisible to drivers and fool autopilot.

DAN GOODIN - 4/1/2019, 8:50 PM
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Syrian hackers claim AP hack that tipped stock market by
S136 billion. Is it terrorism?

AP The Associated Press ©

Breaking: Two Explosions in the White
House and Barack Obama is injured
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Microsoft silences its new A.l bot Tay, after
Twitter users teach it racism [Updated]

Sarah Perez @sarahintampa / 10:16 am EDT « March 24, 2016 ] comment

Microsoft’s © newly launched A.l.-powered bot called Tay, which was responding to tweets and chats on
GroupMe and Kik, has already been shut down due to concerns with its inability to recognize when it was
making offensive or racist statements. Of course, the bot wasn't coded to be racist, but it “learns” from
those it interacts with. And naturally, given that this is the Internet, one of the first things online users
taught Tay was how to be racist, and how to spout back ill-informed or inflammatory political opinions.
[Update: Microsoft now says it's “making adjustments” to Tay in light of this problem.]



Test-time Integrity

Adversarial examples
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 An adversarial example can easily
fool a deep network
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Test-time Integrity
Why matters

» Adversarial examples raises trustworthy and security concerns
* Critical in high-stake, safety-critical tasks

* Helps to understand the model and build a better one (SAM ...)

Researchers trick Tesla Autopilot into
steering into oncoming traffic

Stickers that are invisible to drivers and fool autopilot.




Adversarial examples

Definition

. Given a K-way multi-class classification model f: R — {1,..., K} and an
original example X, the goal is to generate an adversarial example x such that

. Xisclosetox, and argmaxf(x) # argmaxf,(x,)
i i

» i.e., x has a different prediction with x, by model $f$.



Universal adversarial example

Face powder 0 Chihuahual,

Joystick e Chihuahua

* A single perturbation that fools almost all tested
samples

. i Grille c Jay

A Thresher 9 Labrador

k(z + v) # k(z) for “most” z ~ L.

e With two constraints e
1‘ Hv”p S "Sv O
2. P l;'(.f[f —+ ’U) # ]%(C[}) Z 1 — 5 : Lycaenid @ Brabancon griffon
SCN,u, iﬂ
—......Balloon @ .. Labrador [

Whiptail lizard 0 Border terrier




Adversarial example

Attack as an optimization problem

» Craft adversarial example by solving

., argmin |[x — x,||” +c - h(x)
X

¢ |lx — xOHZ: the distortion



Adversarial example

Attack as an optimization problem

» Craft adversarial example by solving
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¢ |lx — xOHZ: the distortion

» /1(x): loss to measure the successfulness of attack



Adversarial example

Attack as an optimization problem

» Craft adversarial example by solving

., argmin |[x — x,||” +¢ - h(x)
X

o |lx — xOH2: the distortion

* Ji(x): loss to measure the successfulness of
attack

» Untargeted attack: success if arg max; ]j-(x) £ Vo

. h(x) = max{ fyo(x) — max f;(x),0}

J 7&)’()

| argmax; f;(x)

logit layer



How to find adversarial examples
White-box vs black-box setting

» Attackers knows the model structure and weights (white-box)
 Can query the model to get probability output (soft-label)
 Can query the model to get label output (hard-label)

* No information about the model (universal)



Adversarial example
White-box setting

. argmin ||x — x,||* + ¢ - A(x)
X

 Model (network structure and weights) is revealed to attacker
« = gradient of 4(x) can be computed

« — attacker minimizes the objective by gradient descent



Adversarial example

White-box adversarial attack

o C&W attack [CW17]:

. h(x) = max{ [Z,, (x) — max Z(x)], — K}
JFY

» Where Z(x) is the pre-softmax layer output



Adversarial example

White-box adversarial attack

« If there is [|x — x|, constraint, we could turn to solve by

e FGSM attack [GSS15]:
o X pr0jx+cs>(x0 + OlSign( VXOK(Ha X, )’)))

e | FGSM attack [KGB17]

. X~ projx+§(xt + asign(V,.£(0,x,y)))



Extend to UAP

» Seek the extra perturbation by

A

Av; < argmin ||r||a s.t. k(z; + v + 1) # k(z;).

 Project to fp ball

e P,e(v) =argmin ||v — v'||2 subject to ||v'||,, < &.
,U/




Extend to UAP

Algorithm 1 Computation of universal perturbations.

1:

» Seek the extra perturbation by

e\

Av; < argmin ||r||a s.t. k(z; +v + 1) # k(z;).
 Project to fp ball

¢ Ppe(v) =argmin v — v'||2 subject to ||v'||, < €.

v 8:

9:
10:
11:

A A A

input: Data points X, classifier k, desired ¢, norm of
the perturbation &, desired accuracy on perturbed sam-
ples 0.
output: Universal perturbation vector v.
Initialize v < 0.
while Err(X,) <1 -9 do
for each datapoint z; € X do
if k(z; + v) = k(z;) then
Compute the minimal perturbation that
sends x; + v to the decision boundary:

A

Av; < argmin |72 s.t. k(z; + v+ 1) # k(z;).

Update the perturbation:
V < Pp,g(’U + Afl)z)

end if
end for
end while




Adversarial example
Black-box Soft-label Setting

* Black-box Soft Label setting (practical setting):
» Structure and weights of deep network are not revealed to attackers
» Attacker can query the ML model and get the

—> f(x)
—> f(x,)

—> f(x,)

Black box (can’t see f)

 Cannot compute gradient V.



Adversarial attack

Soft-label Black-box Adversarial attack

o Soft-label Black-box: query to get the probability output
» Key problem: how to estimate gradient?
 Gradient-based [CZS17,IEAL18]:
v - h(x + fu) — h(x) |
° X ﬁ
* (Genetic algorithm [ASC19]

Uu



Soft-label Black-box Adversarial attack

 Transfer based:
e Train a substitute model to mimic the black-box model

» Attack the substitute model by white-box attack



Adversarial attack
Hard-label Black-box Attack

e Model is not known to the attacker

e Attacker can make query and observe hard-label multi-class output

* (K: number of classes)
* More practical setting for attacker
* Discrete and complex models (e.g quantization, projection, detection)

 Framework friendly



Hard-label black-box attack
The difficulty

 Hard-label attack on a simple 3-layer neural network yields a discontinuous
optimization problem

(a) neural network f(x) (D) h(Z(x))



Hard-label black-box attack

Boundary attack: based on random walk

[Input Dimension 1

Basic Intuition

starting 1image

¢ steps of the algorithm

v

i

)

original image

classified correctly

classified incorrectly
(adversarial)

-

[nput Dimension 2

Single step

#1. random orthogonal step
#2. step towards original image

#1

#2&

Hyperparameters
Adjusting step-size of #1

e — B

~50% of orthogonal perturbations
should be within adversarial region

Adjusting step-size of #2

Success rate of total perturbation should

be higher then threshold (e.g. 25%).



Hard-label black-box attack

Boundary attack: based on random walk

Data: original image o, adversarial criterion c(.), decision of model d(.)

Result: adversarial example o such that the distance d(o0,0) = ||o — 5\\3 is minimized
initialization: k = 0, 6° ~ U(0, 1) s.t. 6" is adversarial;

while £ < maximum number of steps do

draw random perturbation from proposal distribution 13, ~ P(6*~1);

if 6~ + 0y, is adversarial then
- set 68 = 8" + my;

else
| set 6" = 6" ;

end

k=k+1

end



Boundary attack

What P to use?

1. The perturbed sample lies within the input domain,

6. 1 +ny €[0,255]. (1)

2. The perturbation has a relative size of 9,
anHz =4-d(0,6°71). (2)

3. The perturbation reduces the distance of the perturbed image towards the original input by
a relative amount e,

d(0,6° 1) —d(0,06° 1 +n*) =€ d(o,6°71). (3)
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Hotskipjump attack

Formalization

e Turn it Into optimization

mind(z’,z*) such that ¢, (2') =1

£Z

e Where ¢.+(z) :=sign (Sz«(z')) = {1 if Sq+(2') >0,

—1 otherwise.

F.i(x') —max F.(z') (Targeted)

cH#cT

max Fr(z') — Fe«(2)  (Untargeted)
Sx* (ZU/) . C#C
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Hotskipjump attack

Solve the optimization

* |n the hard-label setting, we only have ¢, (x) = sign(Sg«(z))
 Given z; € bd(S;+) , approximate the gradient by VS, (z)

VS(CIJt, ' Z ¢m* Tt 1 5ub)ub7

* Where {ub}le are 1.1.d. draws from the uniform distribution

e How to get to x,?



Hotskipjump attack

Solve the optimization

 Approach the boundary via binary search

it = T T ft’Ut (xt, 575), such that

oy(@0. ;) = VS(zi,8.)/|VS (2,82, if p=2,
t(Zt, Ot sign(V.S(x¢, d;)), if p = oo,

e Correct with variance reduction

B

1
VS(Q?t, c = B 1 bzzjl qu* Tt 1 5ub (b )ub qu* — E bzl¢m* (ZUt + 5“1))7




Hotskipjump attack

Overview

?it o't \ o't l ot
%
¢xt Xt Xt 1 Xt
X
+ x* + x* + x* + x*
Figure 2: Intuitive explanation of HopSkipJumpAttack. (a)
Pertorm a binary search to find the boundary, and then update
x: — x¢. (b) Estimate the gradient at the boundary point x;.

(¢) Geometric progression and then update z; — x¢11. (d)
Perform a binary search, and then update x¢11 — T¢41.



Hotskipjump attack

Untargeted £5 Attack

Trajectories on CIFAR-10 Targeted ¢, Attack

Untargeted €2 Attack TraJ =




Hotskipjump attack
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Hard-label black-box attack

Limited attack

* Limited Attack: Monte Carlo method to get the probability output

Ts + uél r: + (oo Ty + u53

1 | Persian cat Guacamole Tabb cat

2 | Guacamole Tabby cat Egyptlan cat
3 | Siamese cat Egyptian cat Persian cat
4 | Tabby cat Siamese cat Siamese cat

R(z) 2 3 0



Hard-label black-box attack
OPT-attack

* We reformulate the attack optimization
problem (untargeted attack):

*
X (optimal adversarial example)

0* = argmin g(0)
0

N
S
S
T

. where g(6)) = argmin,_, <f(x0 + A ) 7 yo)

 @: the direction of adversarial example



OPT-attack

Examples

_
A .

s

|

Neural network decision function 2(0)




OPT-attack

Two things unaddressed

0* = argmin g(60)
%

. where g(6) = argmin,_,, (f(xo + ﬂﬁ) 7 )’0)

» How to estimate g(0)

« How to find 6%



OPT-attack

Computing Function Value

« Can't compute the gradient of g

» However, we can compute the function value of g using queries of f( - )

* |Implemented using fine-grained search + binary search




OPT-attack

Estimation of ¢(0)

* Fine-grained search

 Binary search / \

» Prediction unchanged enlarge g | ||%n

K- ---0-----0-><-o

A=1 A= A=3
Original image

* Prediction changed shrink g



How to optimize g(6)

» The gradient of g is available by

V() ~ g(9+ﬂ2) —80)

« One u is too noisy, better to use multiple u ( ~ 20)

Uu

» Zeroth order optimization for minimizing 2(6)



Algorithm

Algorithm 1 OPT attack (ICLR"19)

1. Input: Hard-label model f, original image xgq, initial 6.

2: fort=20,1,2,...,7Tdo

3; Randomly choose u from a zero-mean Gaussian distribution
4: Evaluate g(6;) and g(0: + Su)
5
6
7/

Compute gzg(0t+5u)—g(0t) U

p
Update 6111 =60; —n8

return xo + g(07)0r




Algorithm
Algorithm 2 OPT attack (ICLR "19)

- Input: Hard-label model f, original image xq, initial 6.

- fort=0,1,2,...,7do

Randomly choose u; from a zero-mean Gaussian distribution
-valuate g(6¢) and g(6; + pu)

Compute g = 80 Bl’ﬁ’) —80) ,

Update  6iy1 = 60: —ni§
- return xo + g(07)07

S & W s WY =

» 2(0,)) and g(0, + fu) in the gradient estimation takes most of queries, how to further reduce it?



Sign is enough!
 Binary search to estimate g(0) in the gradient estimation takes most of

queries.

 Gradient sign is powerful | (FGSM)

 How to get the gradient sign efficiently ?



Single query oracle

(0 + €u)
|10 + eul|

+1, f(x() + 2(0)

—1, Otherwise.

_ sign(g(0 + eu) — g(0)) = { ) = Yo

Class Y,

Original Image X,



Sign-OPT attack

Algorithm 3 Sign-OPT attack (ICLR '20)

Input: Hard-label model f, original image Xo, initial 8
fort=1,2,...,7T do

Randomly sample uq, ..., ug from a Gaussian or Uniform distribution
-valuate g(6;)

Update 6,1 < 0; — ng

“valuate g(6;) using the same search algorithm




Results

Qualitative evaluation

d=7.77 d=1.13 d=0.94 d=0.86 Original
n=06l18 n=1241 n=2141 n = 3509 n=6037 n=20163
d=7.77 d=3.48 d=3.46 d=3.11 d=2.56 d=1.88 d=1.14 Original
g E "
n=~618 n=1002 n=2134 n=3667 n=6153 n=20149
d=9.02 d=6.96 d=2.98 d=1.12 d=0.73 d=0.61 Original

Figure 2:

n=10052

d=39.63

n=>5556
d =88.83

[ e L

d=7.36

Ao cn pishopcsoTatTi ateocn & :

n=

v “rel
1;,..‘.‘5hr.§1_";4a‘£ﬁ?2.ram gl lishopss

n=6156 n=12248

20024

n=1091 n=1381 n=2101

Example of Sign-OPT targeted attack. Lo distortions and queries used are shown above

and below the images. First two rows: Example comparison of Sign-OPT attack and OPT attack.

T]

hird and fourth rows: Examples of Sign-OPT attack on CIFAR-10 and ImageNet



Results

Quantitive evaluation

MNIST e CIFAR-10 . ImageNet

Ul

Y = Sign-OPT
v\ — = OPT

\ \ - = Boundary

\ — Guessing Smart
--- CW

1SN

W
-~

N
/

/

7

L, Distortion
7’
& 4

=

0k 10k 20k 30k 40k Ok 10k 20k 30k 40k Ok 20k 40k 60k 80k
Queries Queries Queries

Figure 4: Untargeted attack: Median distortion vs Queries for different datasets.

5 ‘ MNIST 50 CIFAR-10 10 | CIFAR-10
\_ m— Sign-OPT Sign-OPT
40 \ - = OPT - OPT
= \ i — Boundary . ZO-signSGD with SQO
'-E 3 (\\ \’ - (Guessing Smart Z0-signSGD w/o SQO
- cw
wn
A 21 g
1 S
Bk 10k 20k 30k 40k 50k Ok 10k 20k 30k 40k Ok 5k 10k 15k 20k
Queries Queries Queries
(a) (b)

Figure 5: (a) Targeted Attack: Median distortion vs Queries of different attacks on MNIST and
CIFAR-10. (b) Comparing Sign-OPT and ZO-SignSGD with and without single query oracle (SQO).



Results

Quantitive evaluation

MNIST CIFARI10 ImageNet (ResNet-50)
#Queries Avg Lo SR(e =1.5) | #Queries Avg Lo SR(e =0.95) | #Quertes Avg Lo SR(e = 3.0)
4,000 4.24 1.0% 4,000 3.12 2.3% 4,000 209.63 0%
Boundary attack 8,000 4.24 1.0% 8,000 2.84 7.6% 30,000 17.40 16.6%
14,000 2.13 16.3% 12,000 0.78 29.2% 160,000 4.62 41.6%
OPT attack 4,000 3.65 3.0% 4,000 0.77 37.0% 4,000 83.85 2.0%
8,000 2.41 18.0% 8,000 0.43 53.0% 30,000 16.77 14.0%
14,000 1.76 36.0% 12,000 0.33 61.0% 160,000 4.27 34.0%
Guessing Smart 4,000 }.74 41.0% 4,000 0.29 75.0% 4,000 16.69 ;_2.0%
8,000 1.69 42.0% 8,000 0.25 80.0% 30,000 13.27 12.0%
14,000 1.68 43.0% 12,000 0.24 80.0% 160,000 12.88 12.0%
Sign-OPT attack 4,000 }.54 46.0% 4,000 0.26 73.0% 4,000 23.19 8.0%
8,000 1.18 84.0% 8,000 0.16 90.0% 30,000 2.99 50.0%
14,000 1.09 94.0% 12,000 0.13 95.0% 160,000 1.21 90.0%
C&W (white-box) - 0.88 99.0% - 0.25 85.0% - 1.51 80.0%




Evaluating test-time integrity

Other Domains

[ Eval u ati n g teSt—ti m e i nteg rity O n teXt Source input seq A child is splashing in the water.

Adv input seq A children is unionists in the water.

11 " S tput Ein Kind im Wasser.
CIaSS|f|Cat|On mOdel A(zlli/ri)it(;)ltlf Eec;eq Klilildei’1 silrrlr(ll inatsiiirWasser @-@ <unk>.

Source input seq Two men wearing swim trunks jump in the air at a moderately populated beach.

Adyv input seq Two men wearing dog Leon comes in the air at a moderately populated beach.

" " " " S tput Zwei M in Badeh 1 f e 1g belebten Strand in die Luft.
* Evaluating test-time integrity on AdY output seq | Zwei Miner fragen Hund , derin der Luft stz ,hat <unkS <unks

seq2seg model

Input
Adv agent  1xbook value 1 4xhat value 1 1xball value 5
: : ' " ' RL agent 1xbook value 2 4xhat value 1 1xball value 4

° -

Evaluating test-time integrity on dialog Ade soen 1 wmnt tho hats snd 3 ball

RL agent  1need the balls and the hat

SySte m Adv agent take book you get rest
RL agent  deal
Adv agent (selection)
Output Reward
Adv agent 4xhat 1xball 9/10
RL agent I1xbook 2/10




