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Machine learning ethics

Ad related to latanya sweeney @

Latanya Sweeney Truth
www.instantcheckmate.com/
Looking for Latanya Sweeney? Check Latanya Sweeney's Arrests.

Ads by Google

Latanya Sweeney Arrested?

1) Enter Name and State. 2) Access Full Background
Checks Instantly.

www.instantcheckmate.com/

Latanya Sweeney
Public Records Found For: Latanya Sweeney. View Now.
www.publicrecords.comy

La Tanya
Search for La Tanya Look Up Fast Results now!
www.ask.com/La+Tanya

AINEI BERNARD: PARKER
- e
LOW RISK HIGHRISK 10

Fugett was rated low risk after being arrested with cocaine and

Eth |Ca| maChlne Iea rn|ng matte (QNJl|  marijuana. He was arrested three times on drug charges after that.
in high-stakes domains

YOUR AD

e —1
r... A-H": ."HI rl\‘_i
L p—r
Servess e
oNDER N -

p— s T

‘s—'.;;#‘-ﬂ . ’l'. .

O’ I e it FO

Fairness in ML, David Madras



Group bias example: gender bias

Female
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Fairness in Machine Learning

* Group fairness

 Don’t discriminate unnecessarily between protected groups (race, gender,
sexuality, religion, etc.)

 |Individual fairness

* [reat similar individuals similarly



Bias

 Found in language data, learned by humans and ML

o Stereotyped bias: “problematic where such information is derived from
aspects of human culture known to leant to harmful behavior”

* Prejudiced actions are taken based on stereotyped bias



How to measure word embedding bias?

 Humans:
* |mplicit Association Test

 Response time differs when humans pair concepts that they find similar
compared to concepts that they find different

e Machines:
 Word embeddings

 Measure cosine distance between embedding vectors



Word embeddings
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N: population size
d: effect size
p : p-value

N _T: number of target words
N_A: number of attribute words

: Original Finding Our Finding
Target words Attrib. words Ref N d - Ny Na q -
RIS ¥ Pleasantvs | oy | 90 | 135 | 10-® | 25x2 | 252 | 1.50 | 107
Insects unpleasant
Instruments vs | Pleasantvs | 5 g9 |4 66 | 10-10 | 9549 | 25%2 | 1.53 | 107
weapons unpleasant
Eur.-American Pleasant vs
vs Afr.-American | 5 | 26 | 1.17 | 107° | 32x2 | 25x2 | 1.41 | 10°®
names P
Eur.-American Pleasant vs
vs Afr.-American unpleasant (7) Not applicable 16x2 | 25%x2 | 1.50 | 1074
names from (5)
Eur.-American Pleasant vs
vs Afr.-American unpleasant (7) Not applicable 16x2 | 8x2 | 1.28 | 1073
names from (9)
Mal‘;;’;i"“smale C?:;flrly"s 9 | 39k [ 072 <1072 | 8x2 | 8x2 | 1.81 | 1073
Math vs arts fenﬁzl‘iet;’;ns 9) | 28k | 0.82 | <1072 | 8x2 | 8x2 | 1.06 | .018
Science vs arts fenl\lfllclaet;,:ms (10) | 91 |147| 10724 | 8x2 | 8x2 | 124|102
S—— Temporary vs | 52 | 135 | 101 | 1073 |6x2 | 7x2 | 1.38 | 102
physical disease permanent
Young vs old Pleasant vs 9 _9
: 9) | 43k | 1.42 | <10 8x2 | 8x2 | 1.21 | 10
people’s names unpleasant
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Figure 1: Occupation-gender association.

Pearson’s correlation coefficient p = 0.90

with p-value < 10718,



Visual semantic role labeling

imSitu Visual Semantic Role Labeling (vSRL)

[Yatskar et al. 2016]
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ldentifying data bias

_ c(o,9)
b(o,g) = a0, g)’

where c(o, g) is the number of occurrences of o
and g 1in a corpus. For example, to analyze how
genders of agents and activities are co-related in
vSRL, we define the gender bias toward man for
each verb b(verb, man) as:

c(verb, man)

(1)

c(verb,man) + c(verb, woman)

If b(o,g) > 1/||G]||, then o is positively correlated
with g and may exhibit bias.



Defining dataset bias

Events

Training Gender Ratio (4 verb)
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Objects

Defining dataset bias

Training Gender Ratio ( A noun)

Training Set

A snowboard

snowboard

yes

refrigerator

snowboard

yes

bowl

refrigerator

NoO

#( A snowboard, @ man)

bowl

No

#( Asnowboard ,@man) + #( A snowboard ,@ woman)

= 2/3



Gender dataset bias

® mSituVerb

A COCO Noun
0.25

0.2

0.15

% of tems

> cooking

‘washing
00> snopping
braiding

0

lecturing
\»

A AL AAMAAL ANMAA A AMAM AAMMA M A A AAA A AAM

oaching
repairing

O 0 0.25 0.5 0.75
<

Female Unbiased
Dias Gender Ratio

|

- ©
Male
bias



Gender dataset bias
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Gender dataset bias
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Evaluating bias amplification

o1 3 b(0,9) — b*(0,9).

g o€{ocO|b*(0,9)>1/|G||}

. 15(0, 2): bias score on unlabeled evaluation set of images that has been
annotated by a predictor

» b*(0, g): bias score on training set



Evaluating bias amplification

Predicted Gender Ratio (4 verb)
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Model bias amplification
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Model bias amplification
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Decomposition of scoring function
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Decomposition of scoring function

Intuition of Calibration
7
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Reducing bias amplification

Integer Linear Program

Y max s(yi, image)
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Reducing bias amplification

Integer Linear Program

> max s(yi,image)
oy

V points | Training Ratio - Predicted Ratio| <= margin
fyi ... yn)

Lagrangian Relaxation

AN

Inference constraints




Reducing bias amplification

max Z .image)

Training Ratio - Predicted Ratio| <= margin
fr1 .. yn)

Lagrangian Relaxation

max Y fo(y'i), st AY y —b<0

{y*}e{Y"}

. l .
Lagrangian: >_fo(v) =  _ N(A; > v —b) 420




Reducing bias amplification
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Reducing bias amplification
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Credit Application

More miles R e
and no annual fee V—E—N—T—U—R-E,.
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Platinum Prestige Credit Card VentureOne Card ¥ Earn With Great Rates !

User visits capitalone.com

Capital One uses tracking information provided by the
tracking network [x+1] to personalize offers

Concern: Steering minorities into higher rates (illegal)
WSJ 2010



Classifier Vendor
(eg. ad network) (eg. capital one)

M:V—O f:O—A

o
X M(x)
AL

- w
V: Individuals O: outcomes  A: actions




Goal:
Achieve Fairness in the classification step

M:V —-0

AR
X M(x)

—y

V: Individuals O: outcomes




Through blindness

* |gnore all irrelevant/protected attributes
Fairness through

e You don’t need to see an attribute to Blindness
be able to predict it with high
accuracy

 E.g.: User visits artofmanliness.com
... 90% chance of being male



http://artofmanliness.com

Individual Fairness

Treat similar individuals similarly

Similar for the purpose of Similar distribution
the classification task over outcomes



How to formalize this?

Think of V as space

with metric d(x,y) How can we
similar = small d(x,y) compare

M(x) with M(y)?
y O M(y)
Zd(x, y)

g M:V — O M(x)
L N

ﬁamk

V: Individuals O: outcomes



Distributional outcomes

How can we

compare
M(x) with M(y)?

Statistical
M(y)

v distance!
Zd(x, y) B

X

ﬁmk M:V — A(O) M(x)
L A\

———— —

V: Individuals O: outcomes



Metric d:VxV —->R
Lipschitz condition [[M(x) — M(y)|l < d(x, y)

This talk: Statistical distance in [0,1]

M(y)

y
zd(x, y) 3

X
M:V — A(O) M(x)

— —

b

V: Individuals O: outcomes



Statistical Distance

P, Q denote probability measures on a finite domain A. The statistical distance
between P and Q 1s denoted by

B |
Dy(P.Q) = 5 ) |P(a)- Q(a).

acA

Example: Mid D
A=1{0,1}
P(O) =P(1) =%
Q(0)=3%,Q(1) ="
D(P, Q) ="




Utility Maximization

Vendor can specify arbitrary utility function

U:Vx0O—-R

U(v,0) = Vendor’s utility of giving individual v
the outcome o



Maximize vendor’s expected utility subject to
Lipschitz condition

max [ F U(x, o)
M(x) X~V o~M(x)

s.t. M iIs d-Lipschitz
IM(Xx) — M(y)ll < d(x, y)



