COMP62111: **Trustworthy Machine Learning** Fairness

Minhao CHENG

Most slides are adapted from MLSS 2021 tutorial

Machine learning ethics

Ad related to latanya sweeney (i)

Latanya Sweeney Truth www.instantcheckmate.com/ Looking for Latanya Sweeney? Check Latanya Sweeney's Arrests.

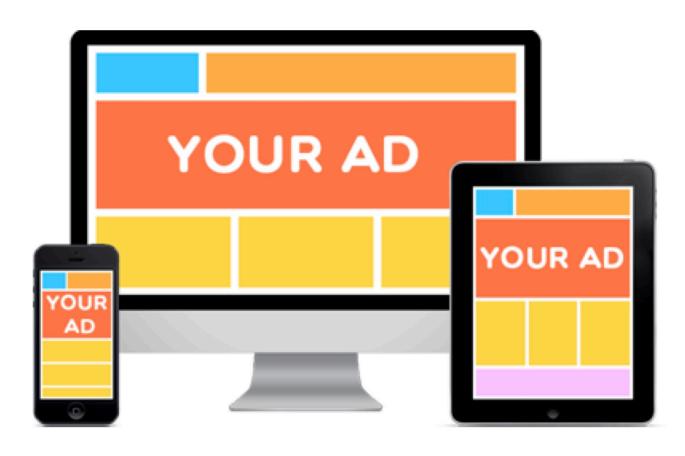
Ads by Google

Latanya Sweeney, Arrested? 1) Enter Name and State. 2) Access Full Background Checks Instantly. www.instantcheckmate.com/

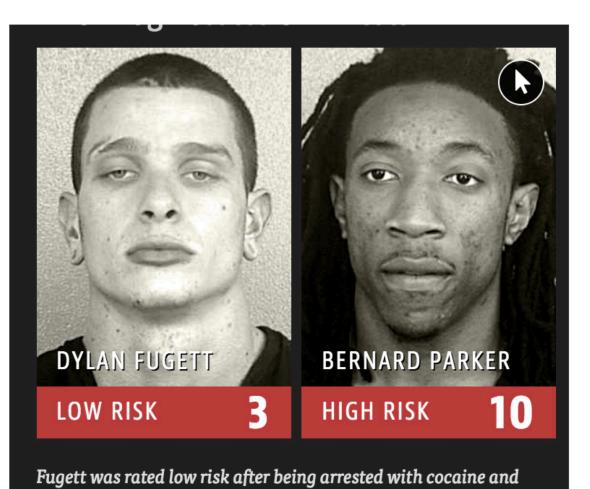
Latanya Sweeney Public Records Found For: Latanya Sweeney. View Now. www.publicrecords.com/

La Tanya Search for La Tanya Look Up Fast Results now! www.ask.com/La+Tanya

Ethical machine learning matters in **high-stakes** domains

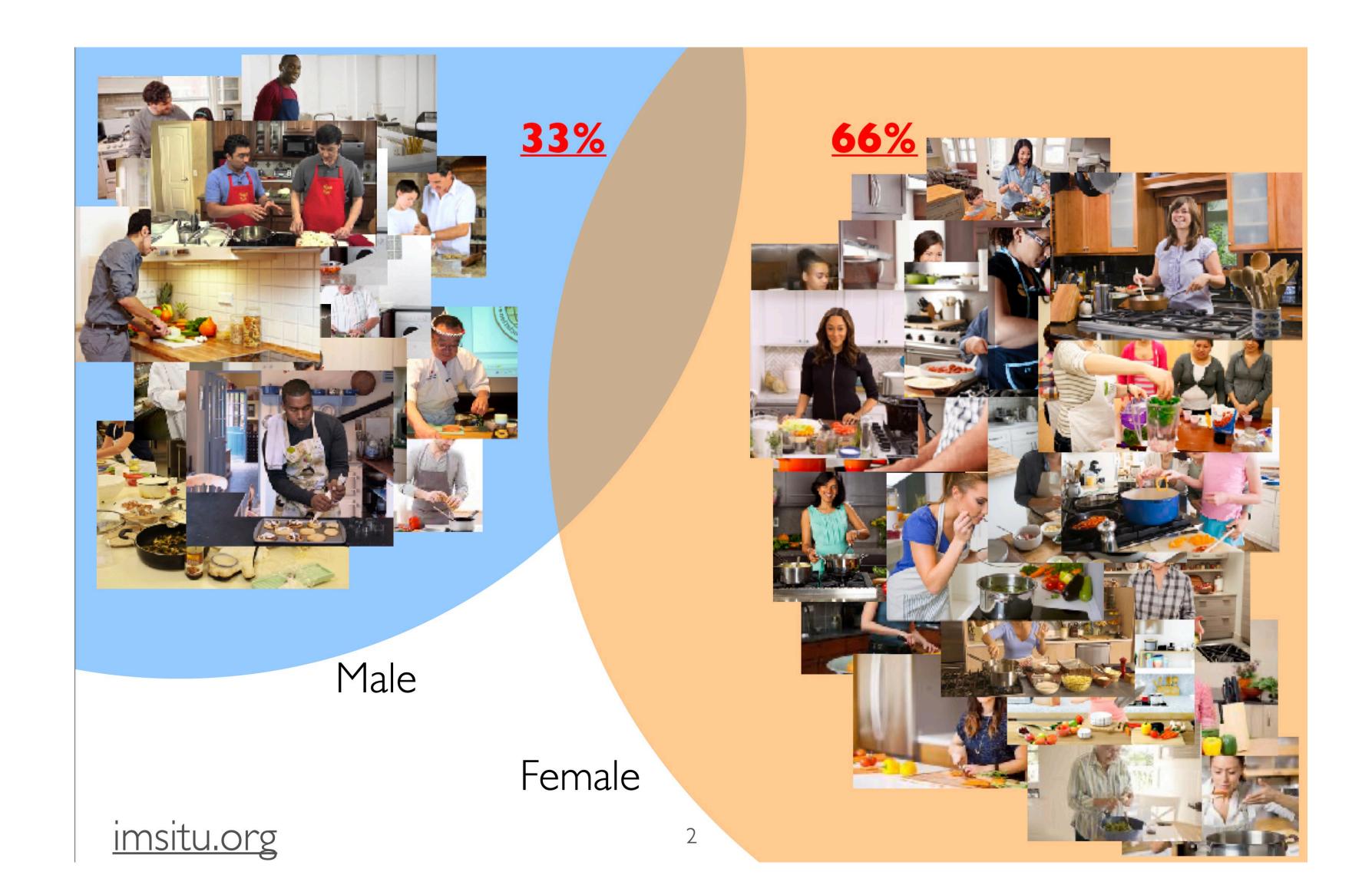


Fairness in ML, David Madras

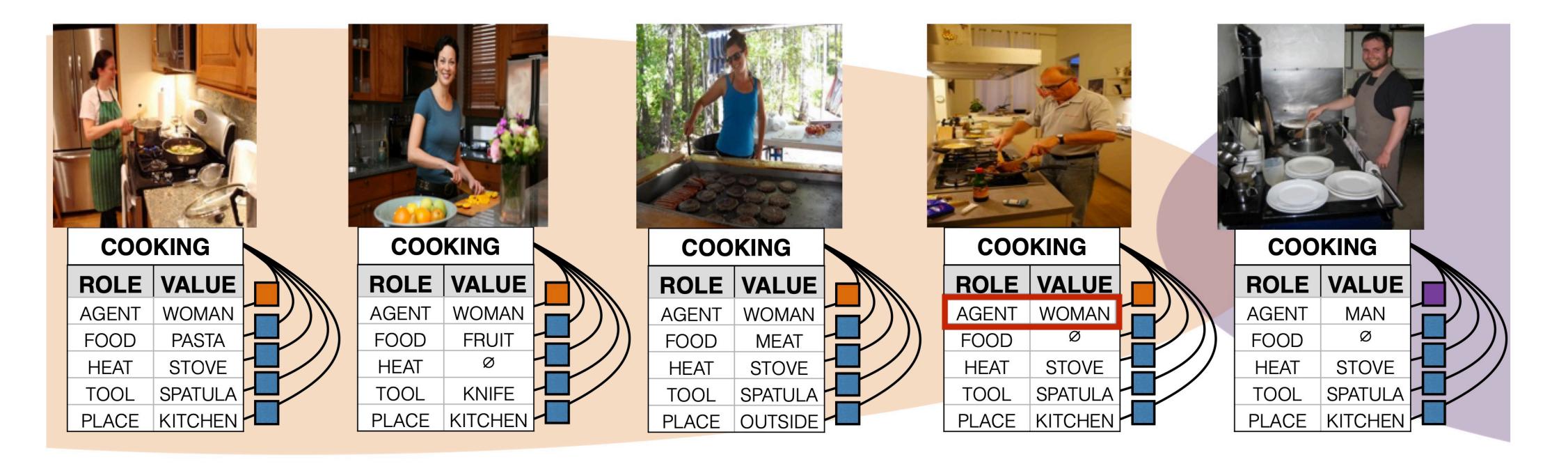


marijuana. He was arrested three times on drug charges after that.

Group bias example: gender bias



Group bias example: gender bias



Fairness in Machine Learning

- Group fairness
 - sexuality, religion, etc.)
- Individual fairness
 - Treat similar individuals similarly

Don't discriminate unnecessarily between protected groups (race, gender,

Bias

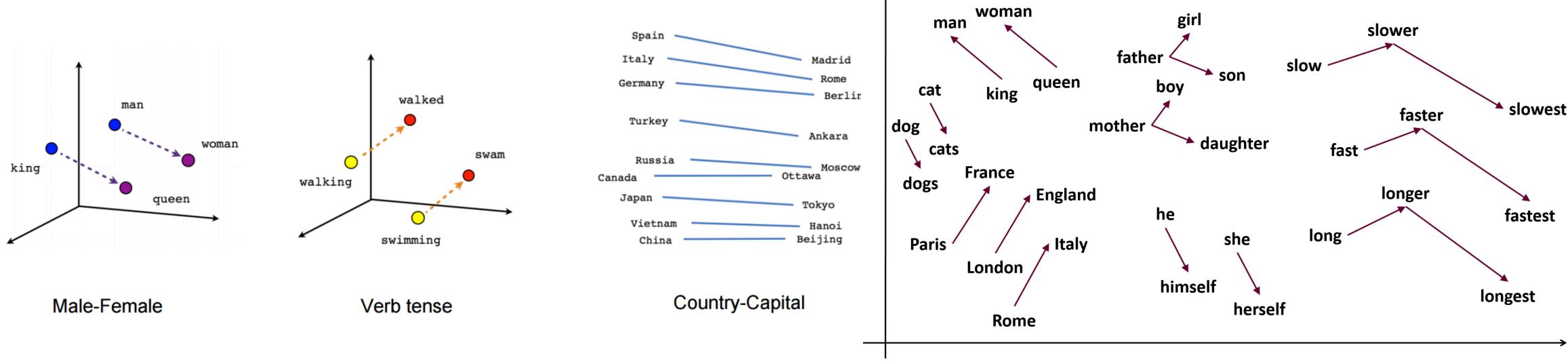
- Found in language data, learned by humans and ML
- Stereotyped bias: "problematic where such information is derived from aspects of human culture known to leant to harmful behavior"
- Prejudiced actions are taken based on stereotyped bias

How to measure word embedding bias?

- Humans:
 - Implicit Association Test
 - compared to concepts that they find different
- Machines:
 - Word embeddings
 - Measure cosine distance between embedding vectors

Response time differs when humans pair concepts that they find similar

Word embeddings



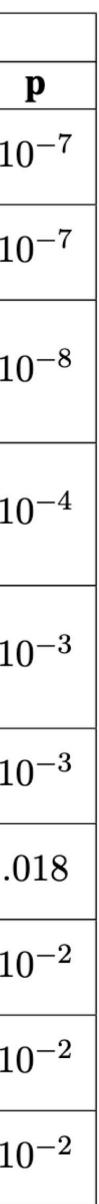
vest st N: population size d: effect size p : p-value

N_T: number of target words N_A: number of attribute words

Target words Flowers vs insects Instruments vs weapons Eur.-American vs Afr.-American names Eur.-American vs Afr.-American names Eur.-American vs Afr.-American names Male vs female names Math vs arts Science vs arts Mental vs physical disease Young vs old

people's names

	Attrib words		Origin	al Find	ing		Our Fi	nding	
	Attrib. words	Ref	N	d	р	NT	NA	d	
	Pleasant vs unpleasant	(5)	32	1.35	10^{-8}	25×2	25×2	1.50	1
	Pleasant vs unpleasant	(5)	32	1.66	10^{-10}	25×2	25×2	1.53	1
1	Pleasant vs unpleasant	(5)	26	1.17	10^{-5}	32×2	25 imes 2	1.41	10
1	Pleasant vs unpleasant from (5)	(7)	N	ot appli	cable	16×2	25×2	1.50	10
1	Pleasant vs unpleasant from (9)	(7)	N	ot appli	cable	16×2	8×2	1.28	10
	Career vs family	(9)	39k	0.72	$< 10^{-2}$	8 imes 2	8 imes 2	1.81	1
	Male vs female terms	(9)	28k	0.82	$< 10^{-2}$	8 imes 2	8 imes 2	1.06	.(
	Male vs female terms	(10)	91	1.47	10^{-24}	8 imes 2	8 imes 2	1.24	1
	Temporary vs permanent	(23)	135	1.01	10^{-3}	6 imes 2	7 imes 2	1.38	1
	Pleasant vs unpleasant	(9)	43k	1.42	$< 10^{-2}$	8×2	8 imes 2	1.21	1



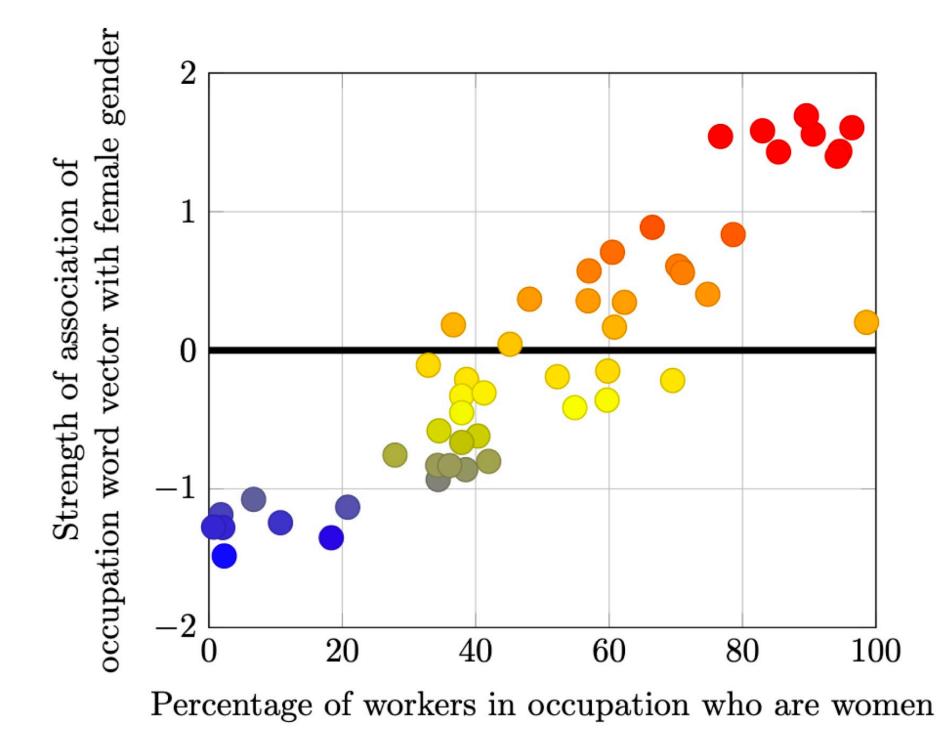
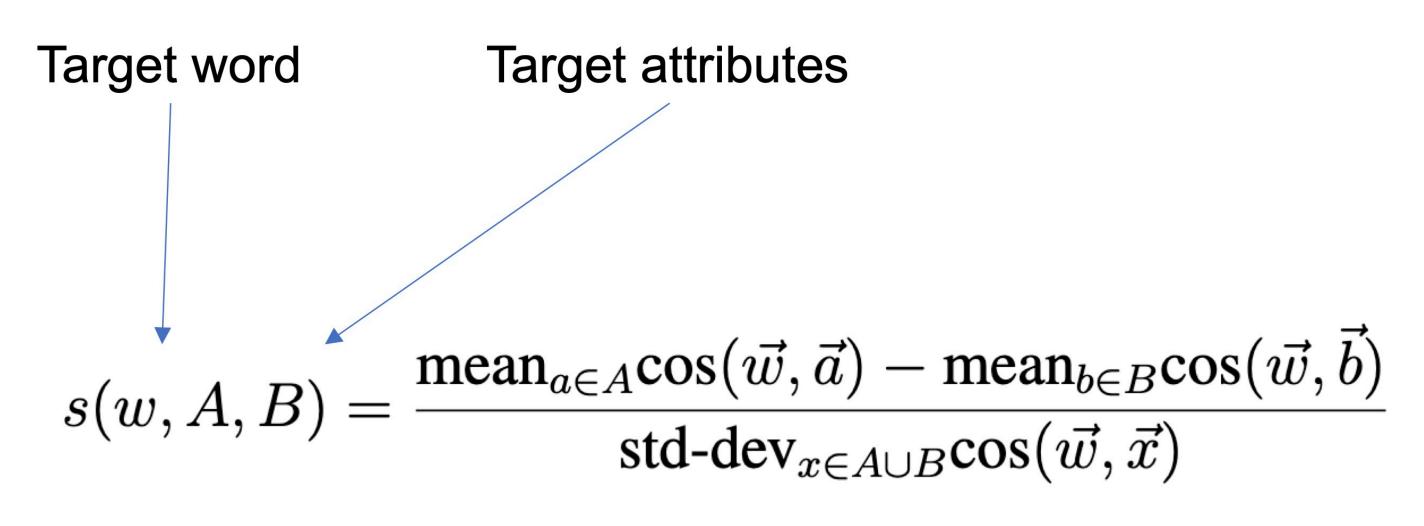


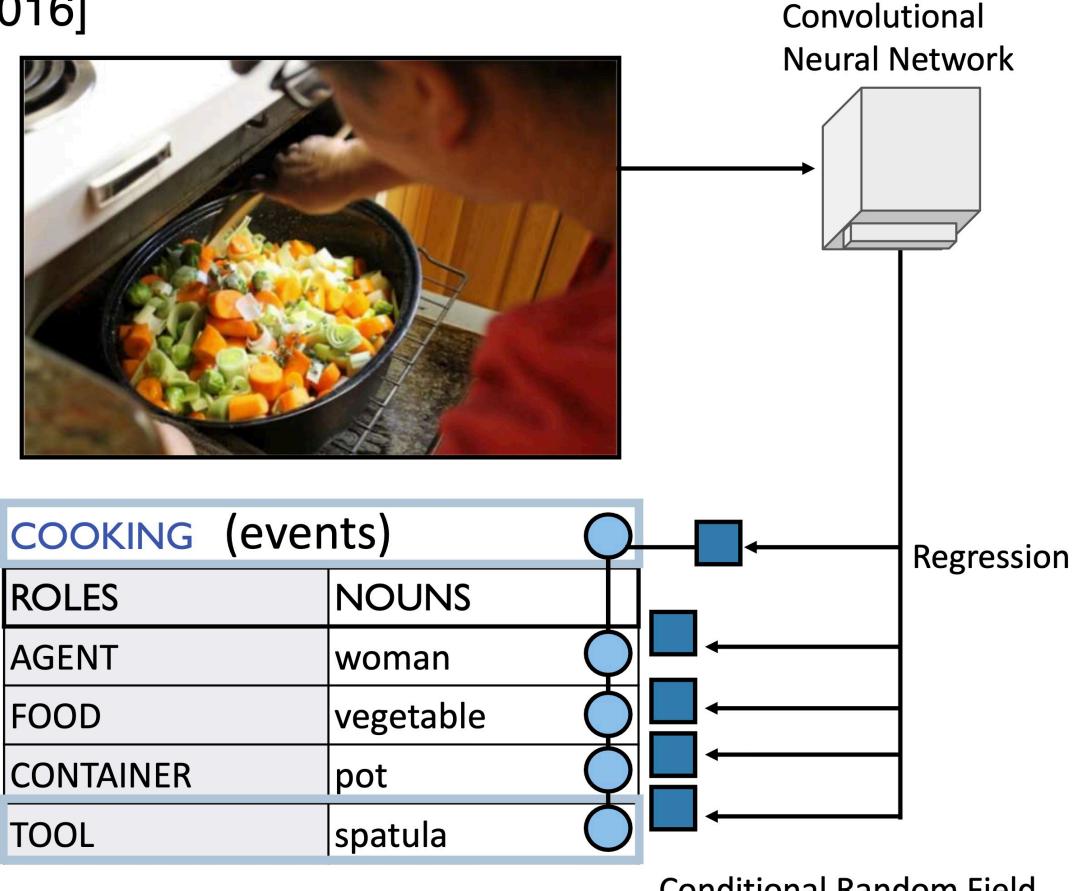
Figure 1: Occupation-gender association. Pearson's correlation coefficient $\rho = 0.90$ with *p*-value $< 10^{-18}$.

Word Embedding Factual Association Test



Visual semantic role labeling

imSitu Visual Semantic Role Labeling (vSRL) [Yatskar et al. 2016] Convolutional



Conditional Random Field

Identifying data bias

$$b(o,g) = \frac{c(o,g)}{\sum_{g' \in G} c(o,g')},$$

where c(o, g) is the number of occurrences of oand g in a corpus. For example, to analyze how genders of agents and activities are co-related in vSRL, we define the gender bias toward man for each verb b(verb, man) as:

$$\frac{c(verb, man)}{c(verb, man) + c(verb, woman)}.$$
 (1)

with g and may exhibit bias.

If b(o,g) > 1/||G||, then *o* is positively correlated

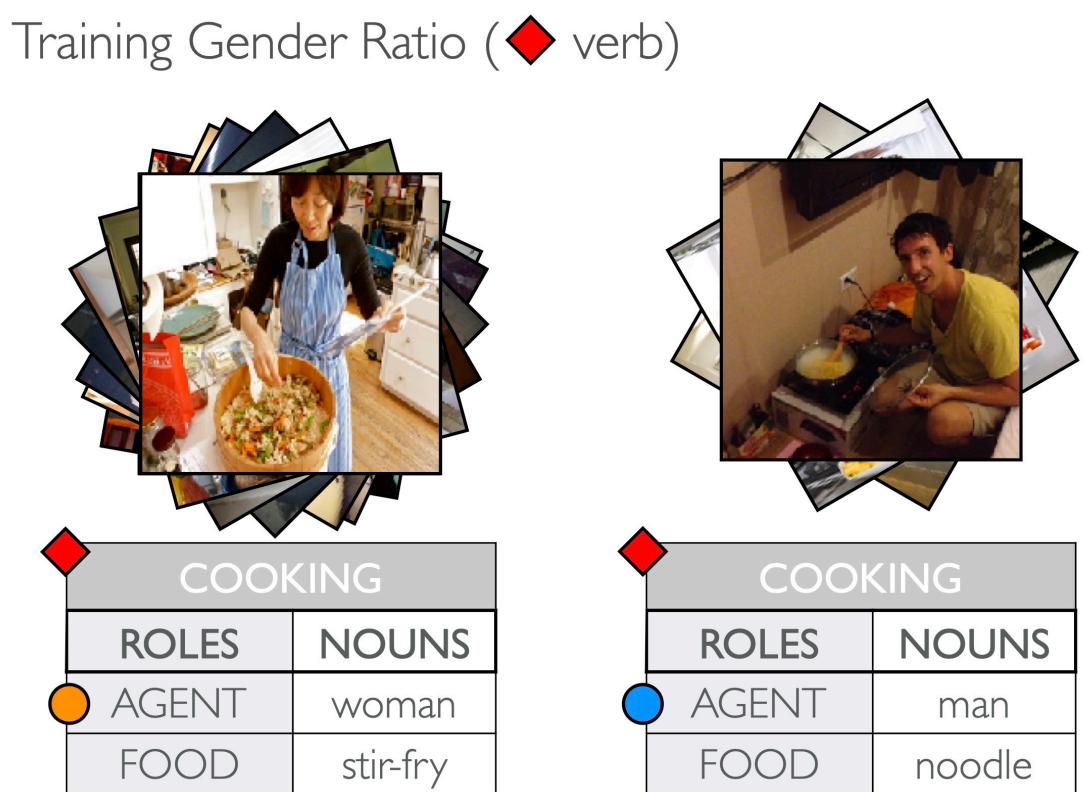
Defining dataset bias Events

Training Set

cooking

woman

man

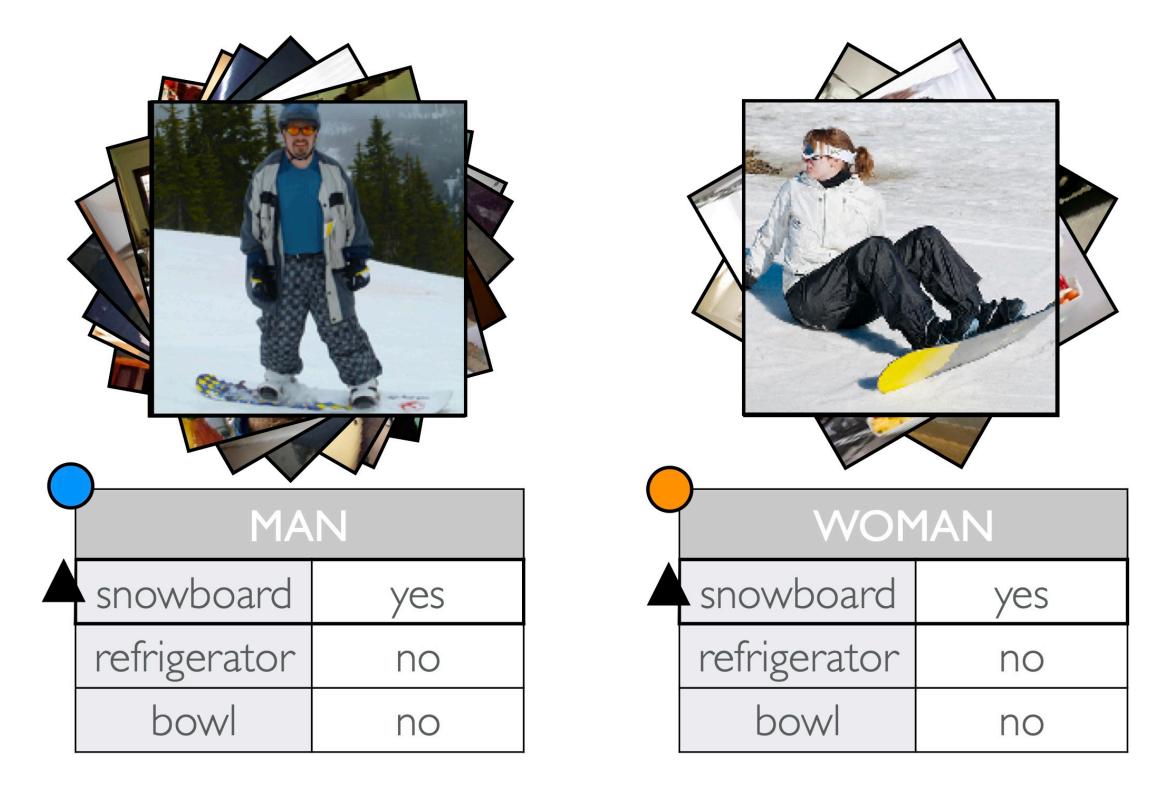


 $#(\diamondsuit$ cooking , \bigcirc man) = |/3| $\#(\diamond \text{cooking}, \bigcirc \text{man}) + \#(\diamond \text{cooking}, \bigcirc \text{woman})$

Defining dataset bias Objects

Training Gender Ratio (A noun)

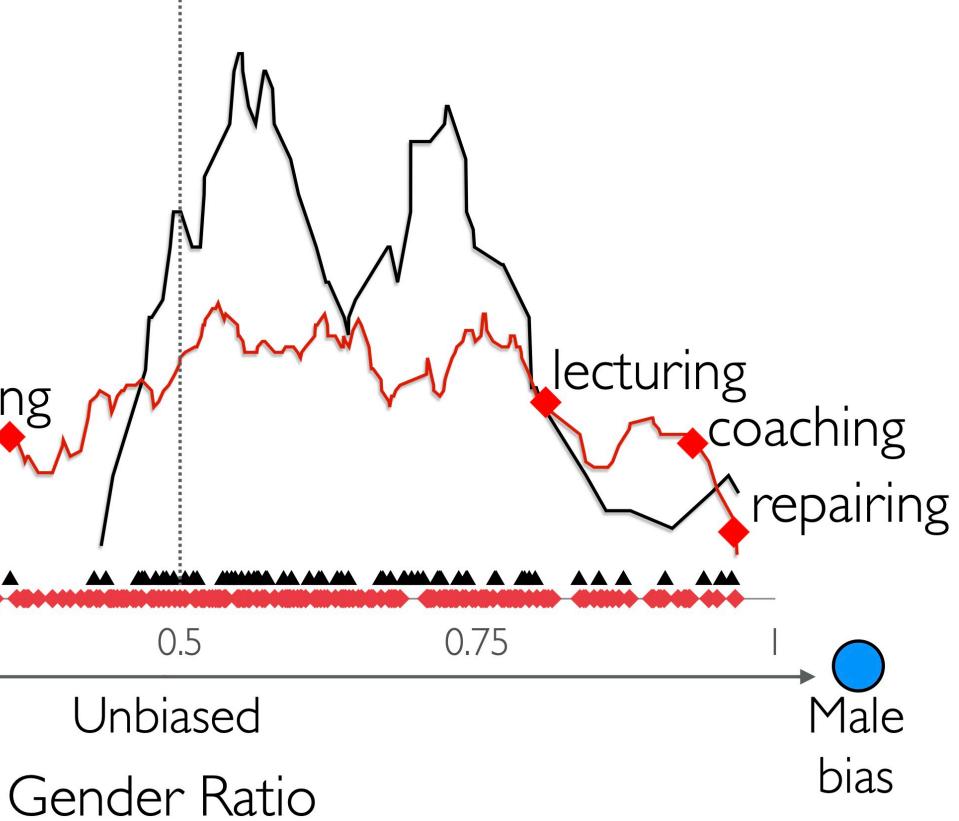
woman man



#(snowboard, oman) $#(\Delta snowboard, \bigcirc man) + #(\Delta snowboard, \bigcirc woman) = 2/3$

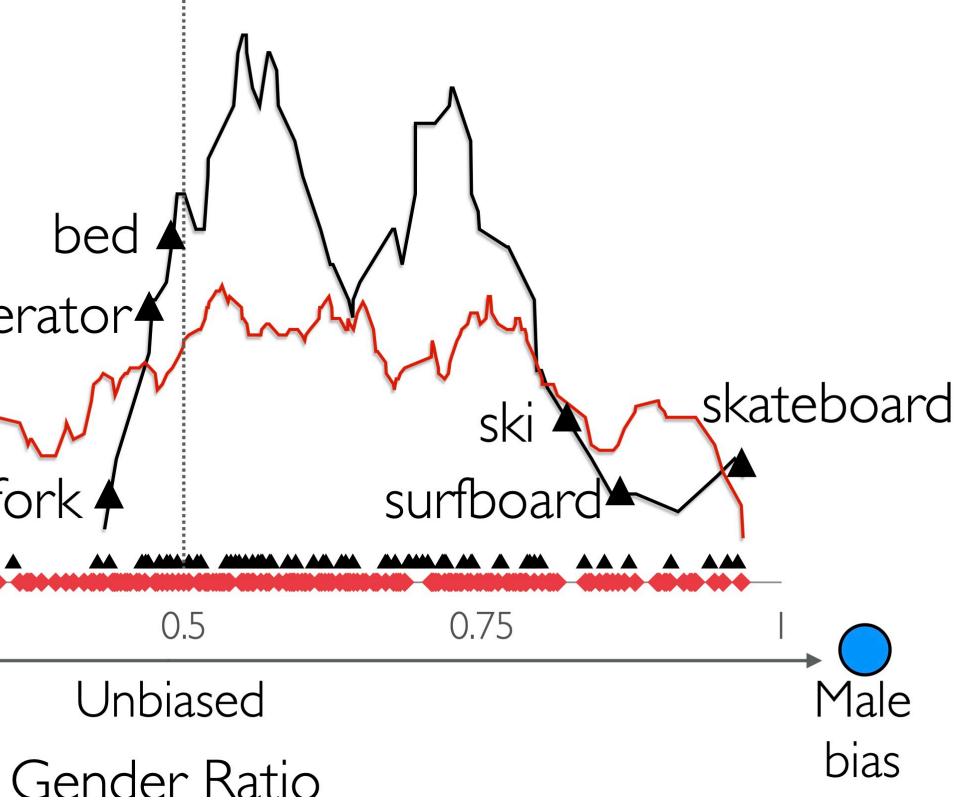
Gender dataset bias

imSitu Verb ▲ COCO Noun 0.25 0.2 % of items 0.15 cooking washing 0. | shopping 0.05 braiding 0.25 0 Female bias

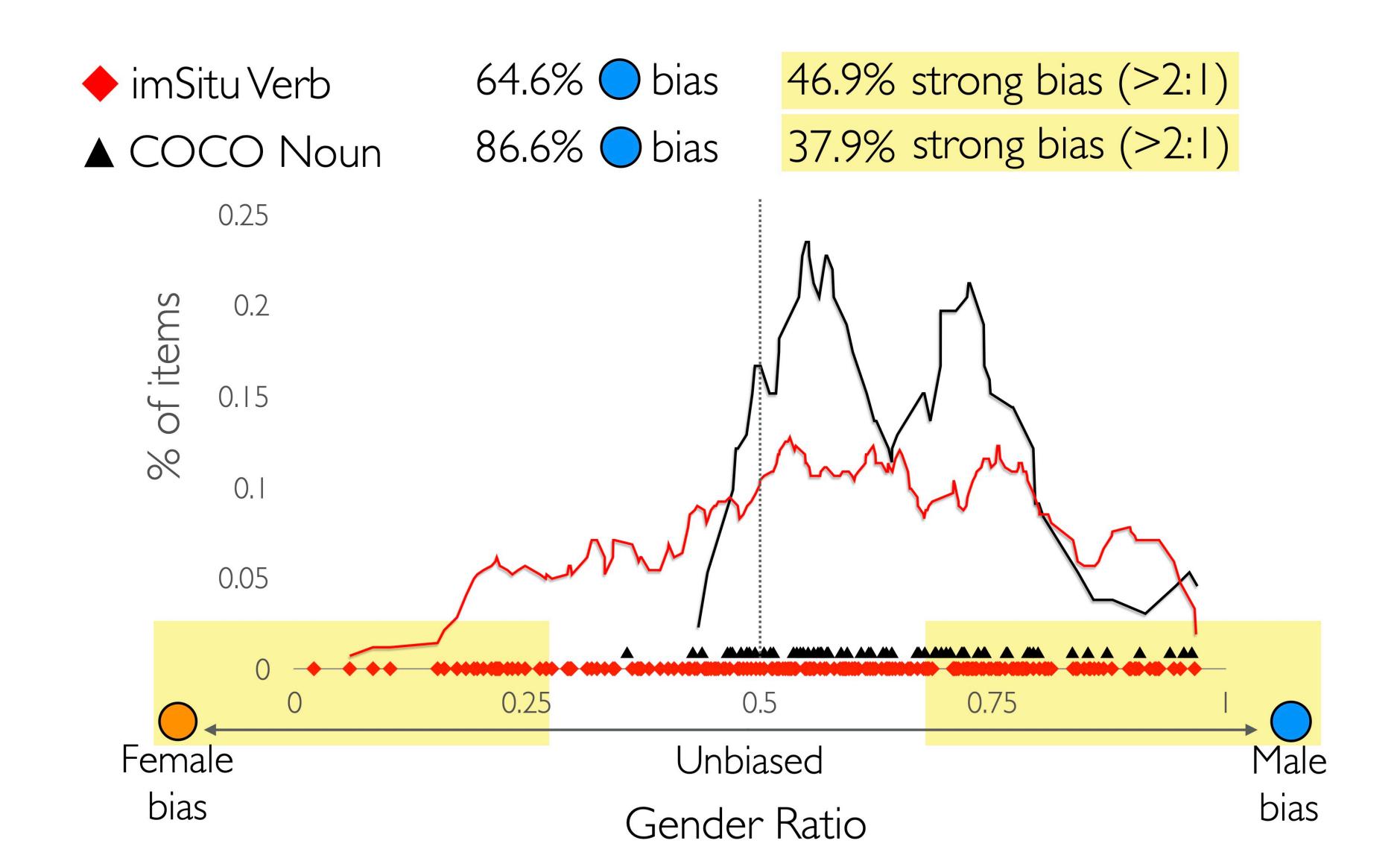


Gender dataset bias

imSitu Verb ▲ COCO Noun 0.25 % of items 0.2 0.15 refrigerator 0.1 0.05 fork 0 0.25 0 Female bias



Gender dataset bias



Evaluating bias amplification

$$\frac{1}{|O|} \sum_{g} \sum_{o \in \{o \in O | b^*(o,g) > 1/||G||\}} \tilde{b}(o,g) - b^*(o,g).$$

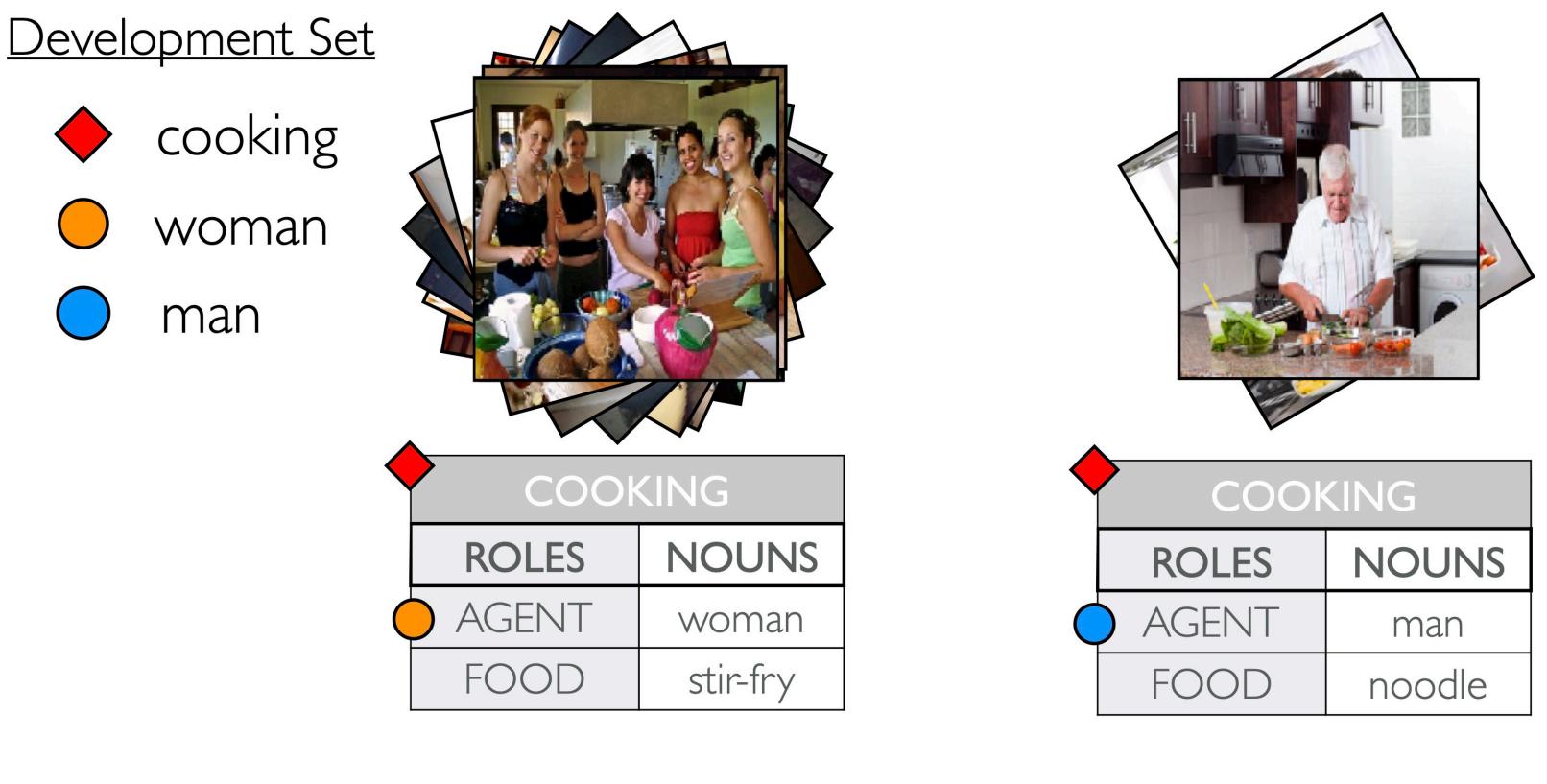
annotated by a predictor

• $b^*(o, g)$: bias score on training set

• $\tilde{b}(o,g)$: bias score on unlabeled evaluation set of images that has been

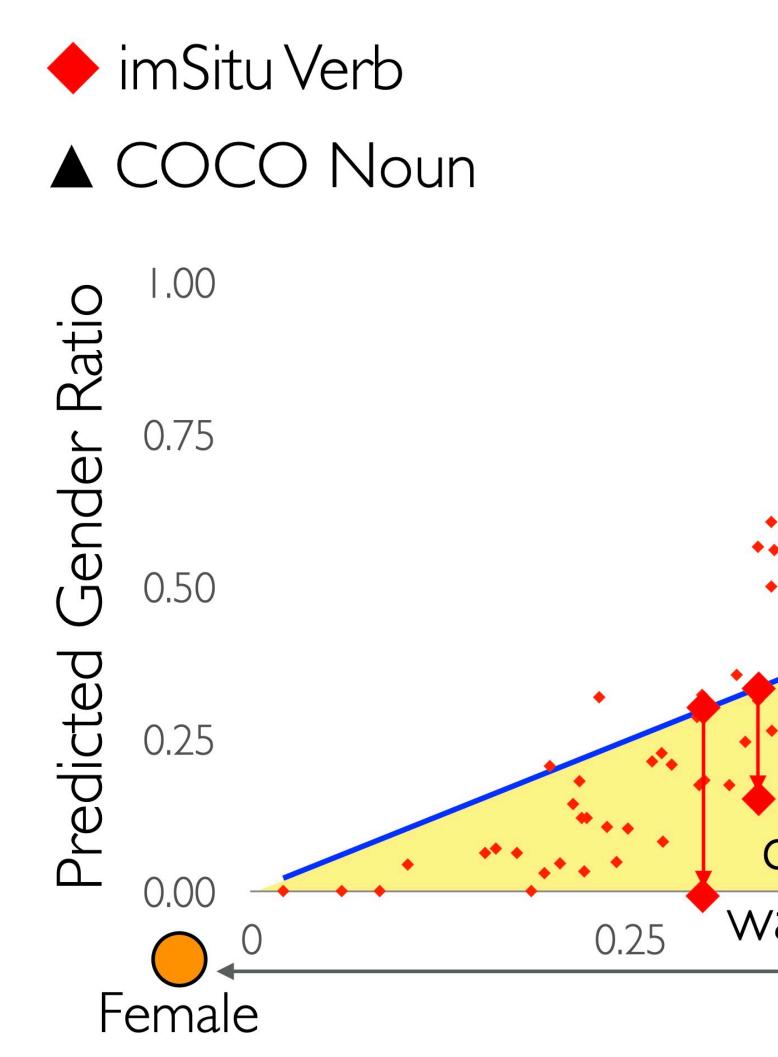
Evaluating bias amplification

Predicted Gender Ratio (verb)

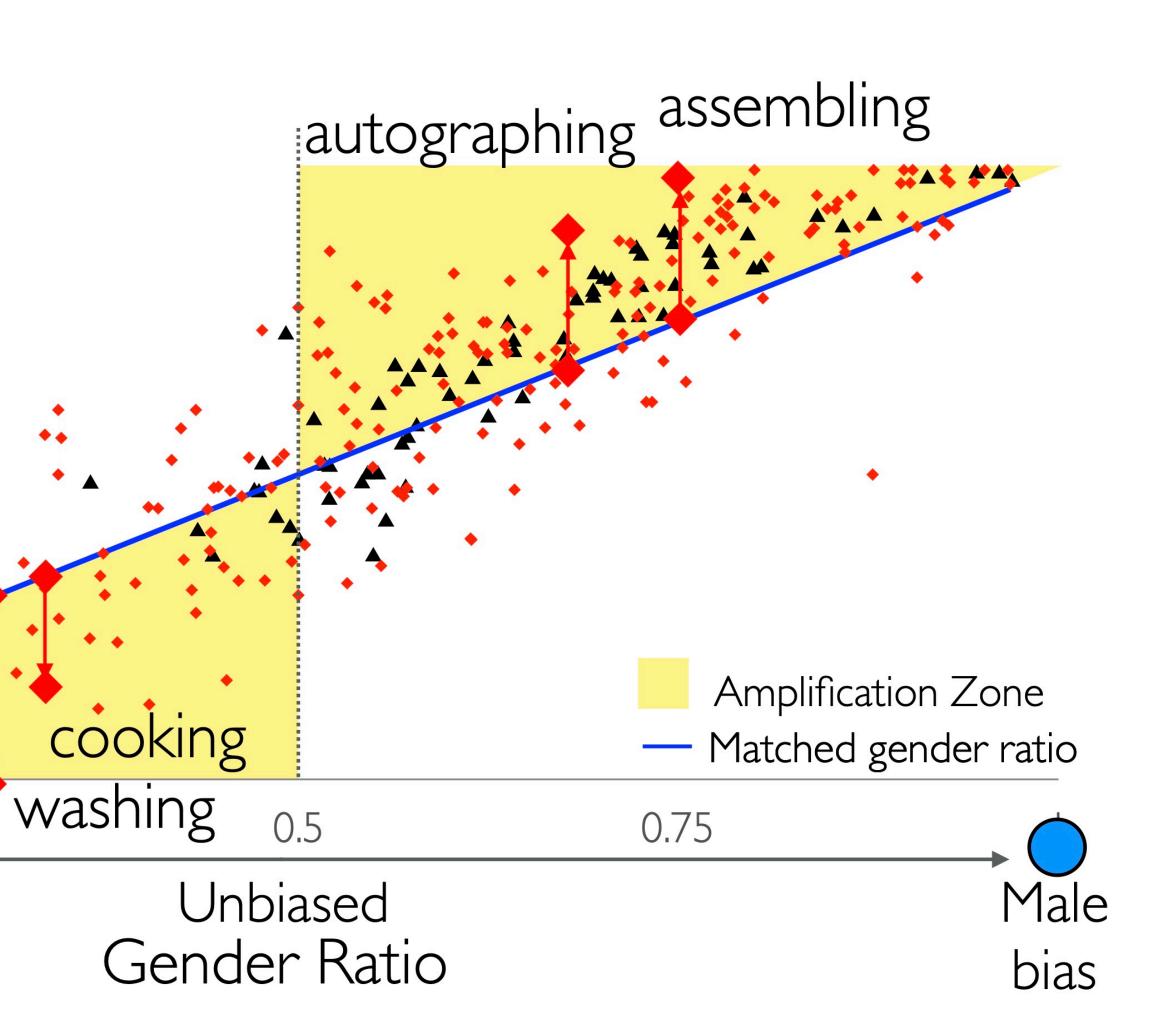


 $#(\diamondsuit$ cooking , \bigcirc man) = 1/6 $#(\label{eq:product} cooking, \bigcirc man) + #(\label{eq:product} cooking, \bigcirc woman)$

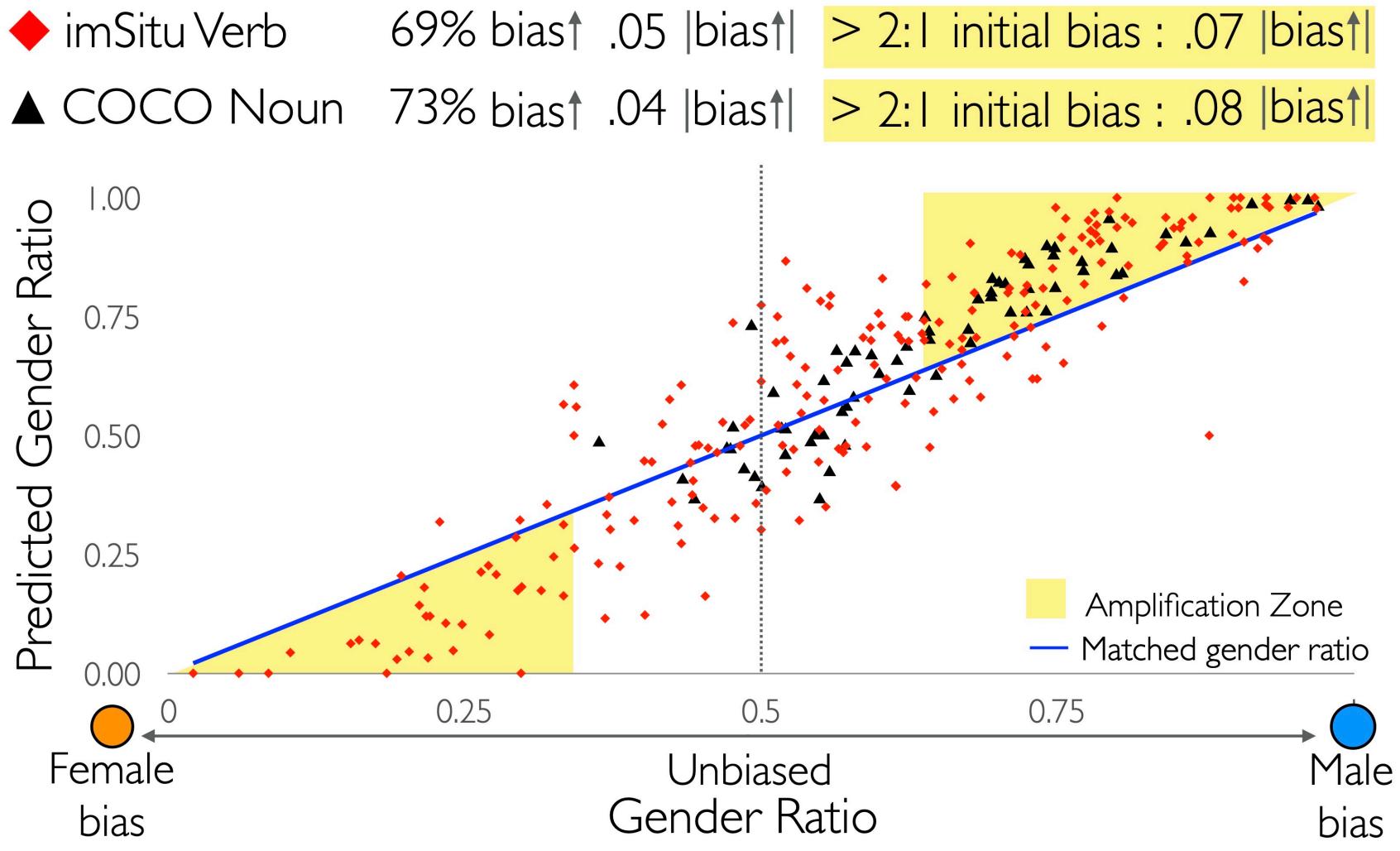
Model bias amplification



bias



Model bias amplification



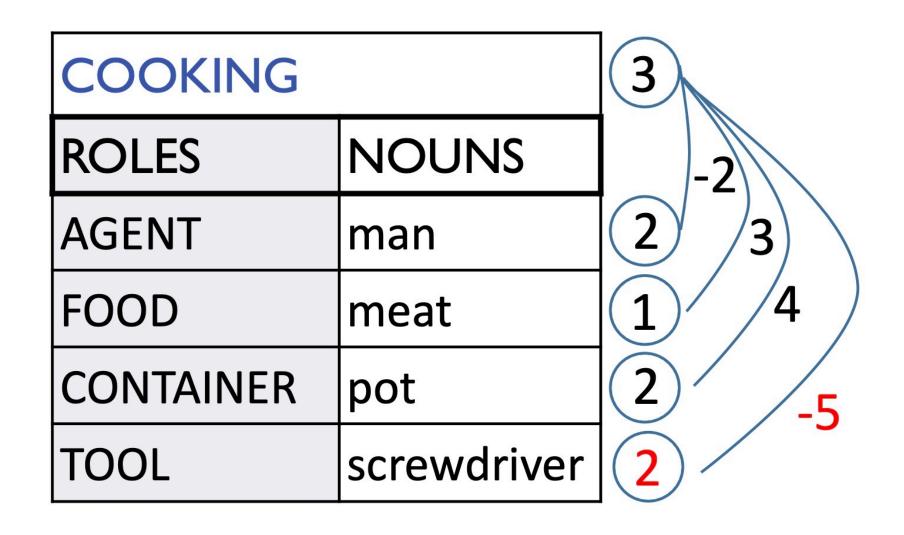
Decomposition of scoring function

3

4

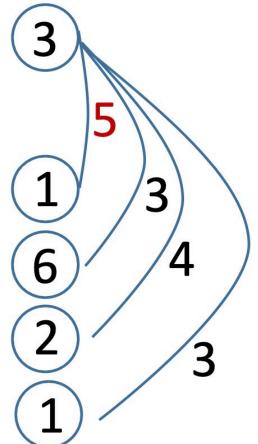
 $\bullet \bullet \bullet$

COOKING	OKING			
ROLES	NOUNS	5		
AGENT	woman			
FOOD	vegetable	6		
CONTAINER	pot	2		
TOOL	spatula			



Decomposition of scoring function

COOKING	3	
ROLES	NOUNS	5
AGENT	woman	
FOOD	vegetable	6
CONTAINER	pot	2
TOOL	spatula	

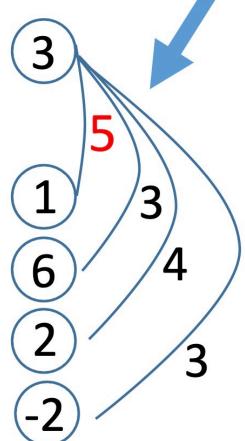


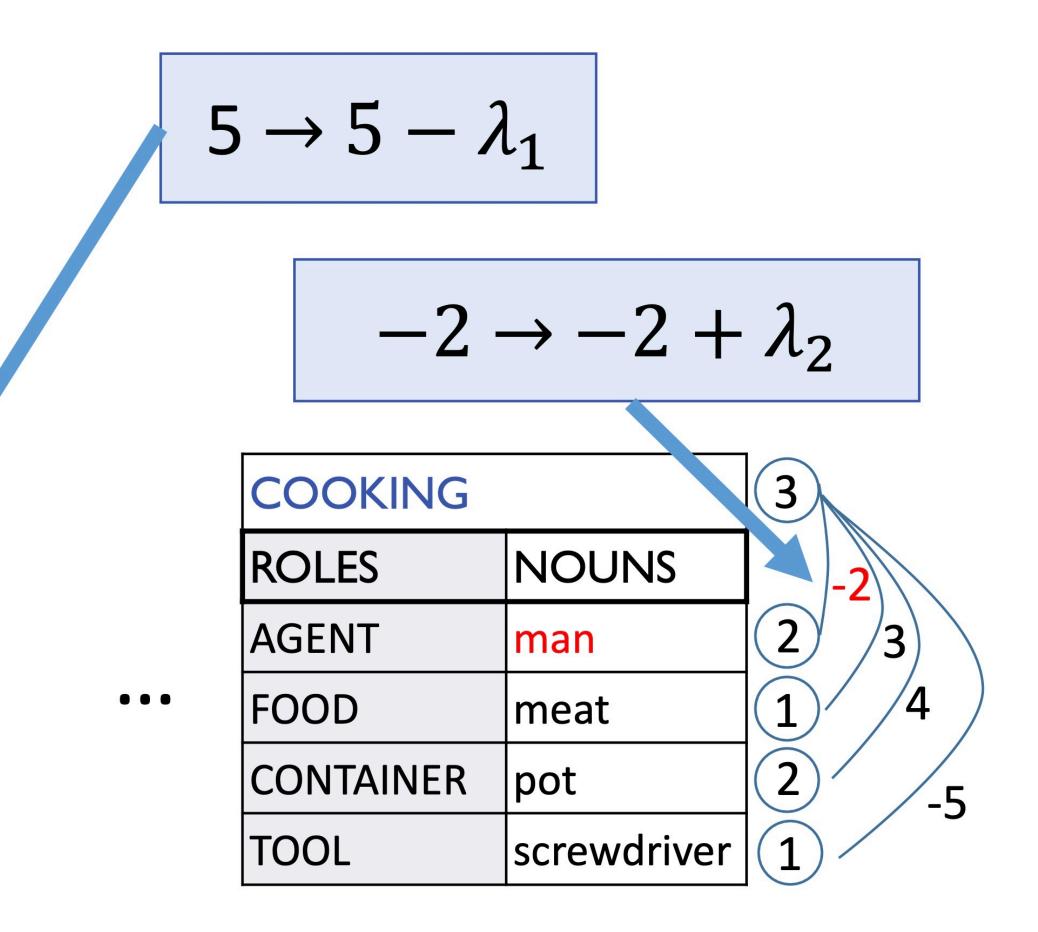
...

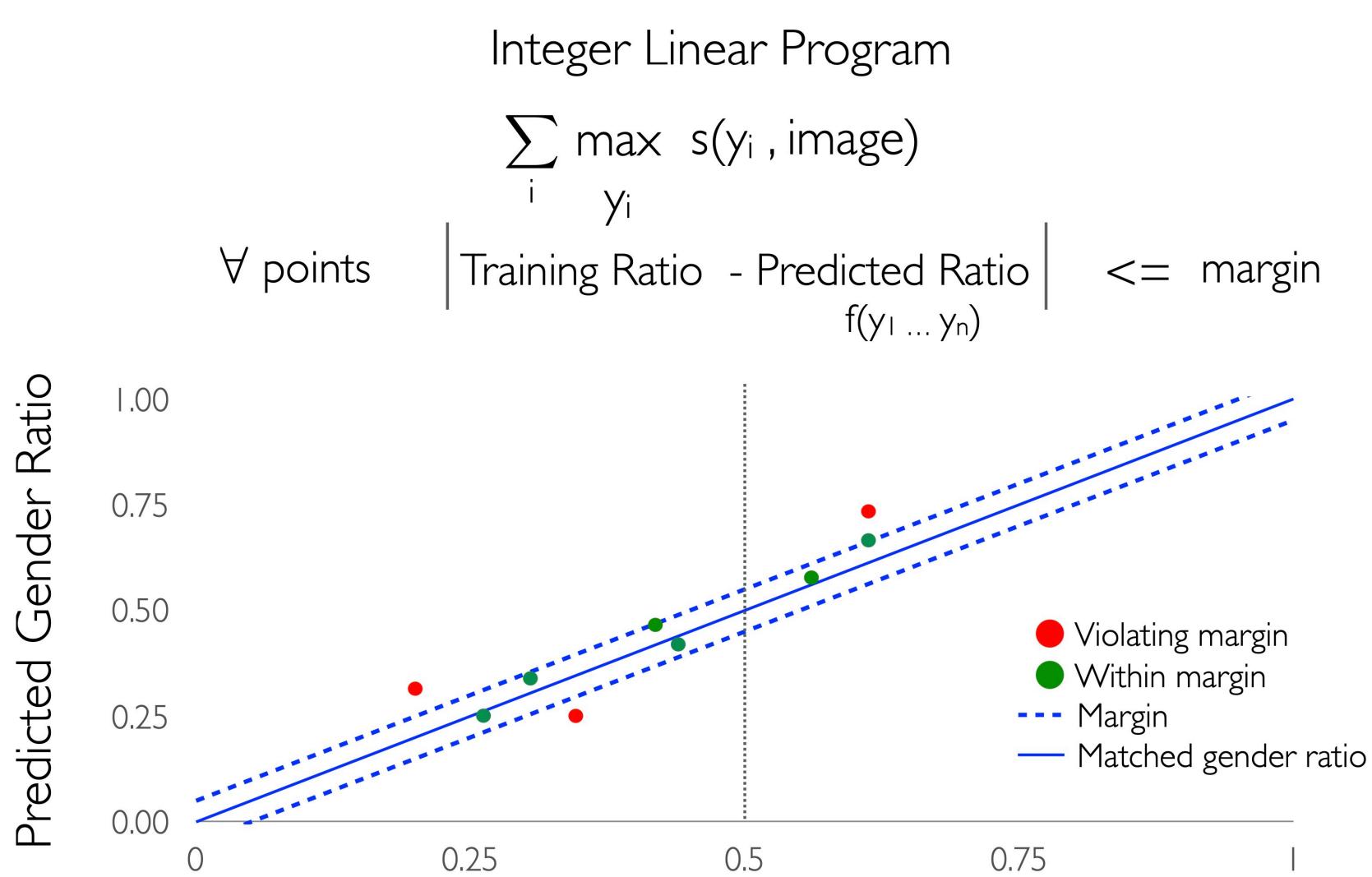
3 COOKING NOUNS ROLES 2 AGENT 3 man 4 FOOD meat 2) CONTAINER pot -5 screwdriver 2 TOOL

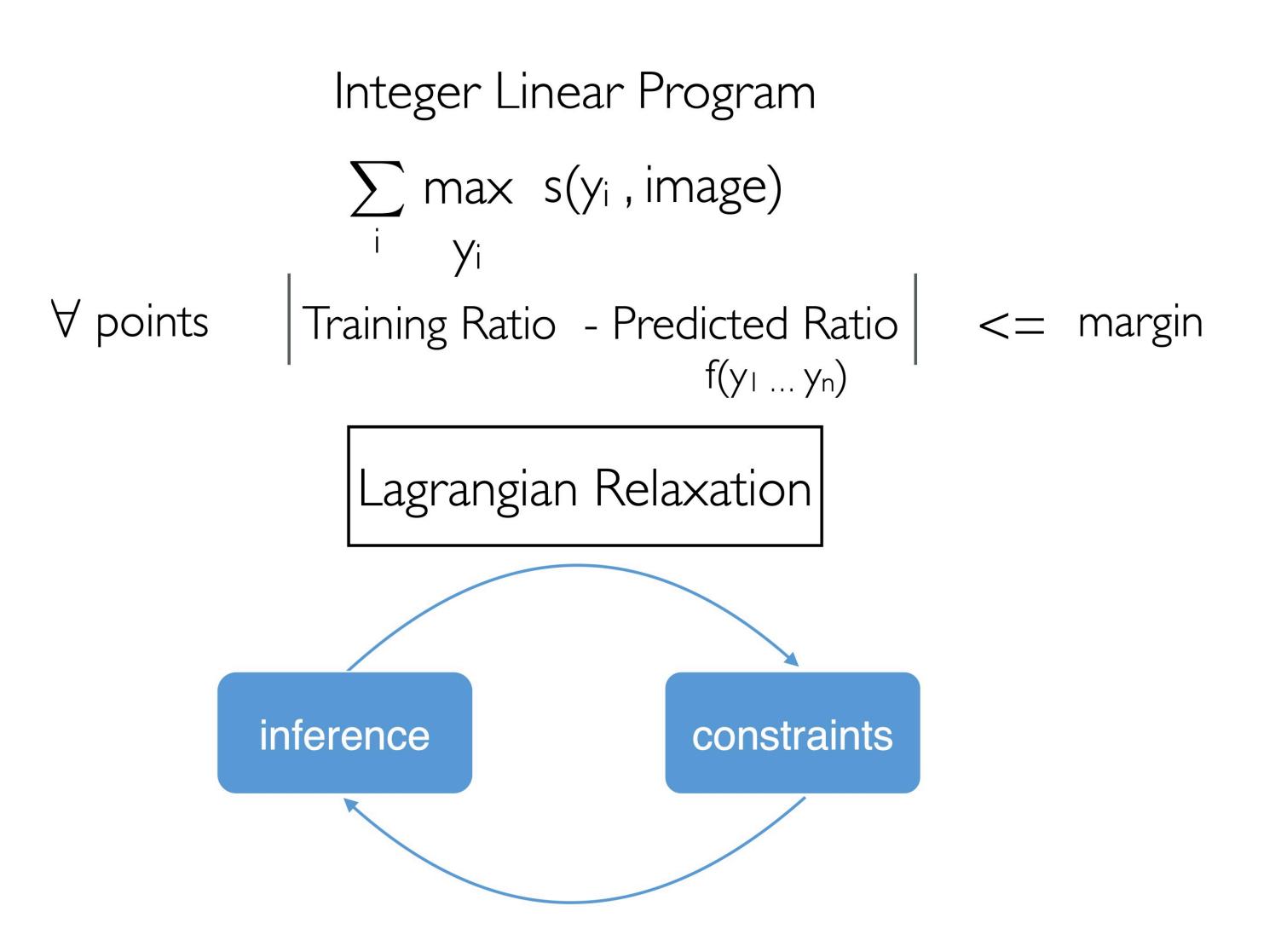
Decomposition of scoring function Intuition of Calibration $\lambda_1, \lambda_2 > 0$

COOKING		(
ROLES	NOUNS	
AGENT	woman	(
FOOD	vegetable	(
CONTAINER	pot	(
TOOL	spatula	(









 $\max_{y_i} \sum_i s$ Training Ratio

Lagrangian Relaxation

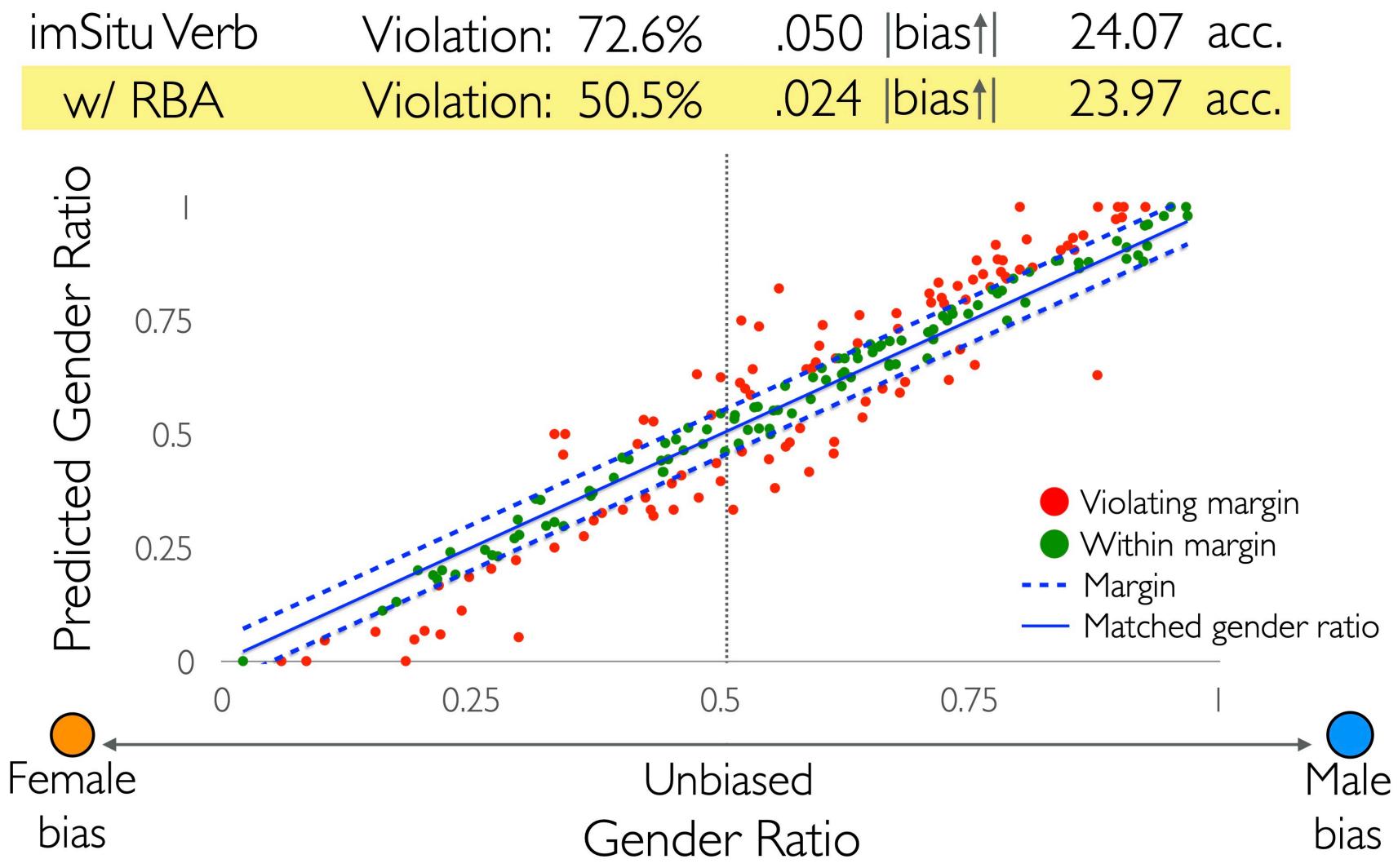
 $\max_{\{y^i\}\in\{Y^i\}} \sum_i f_{\theta}(y^i)$

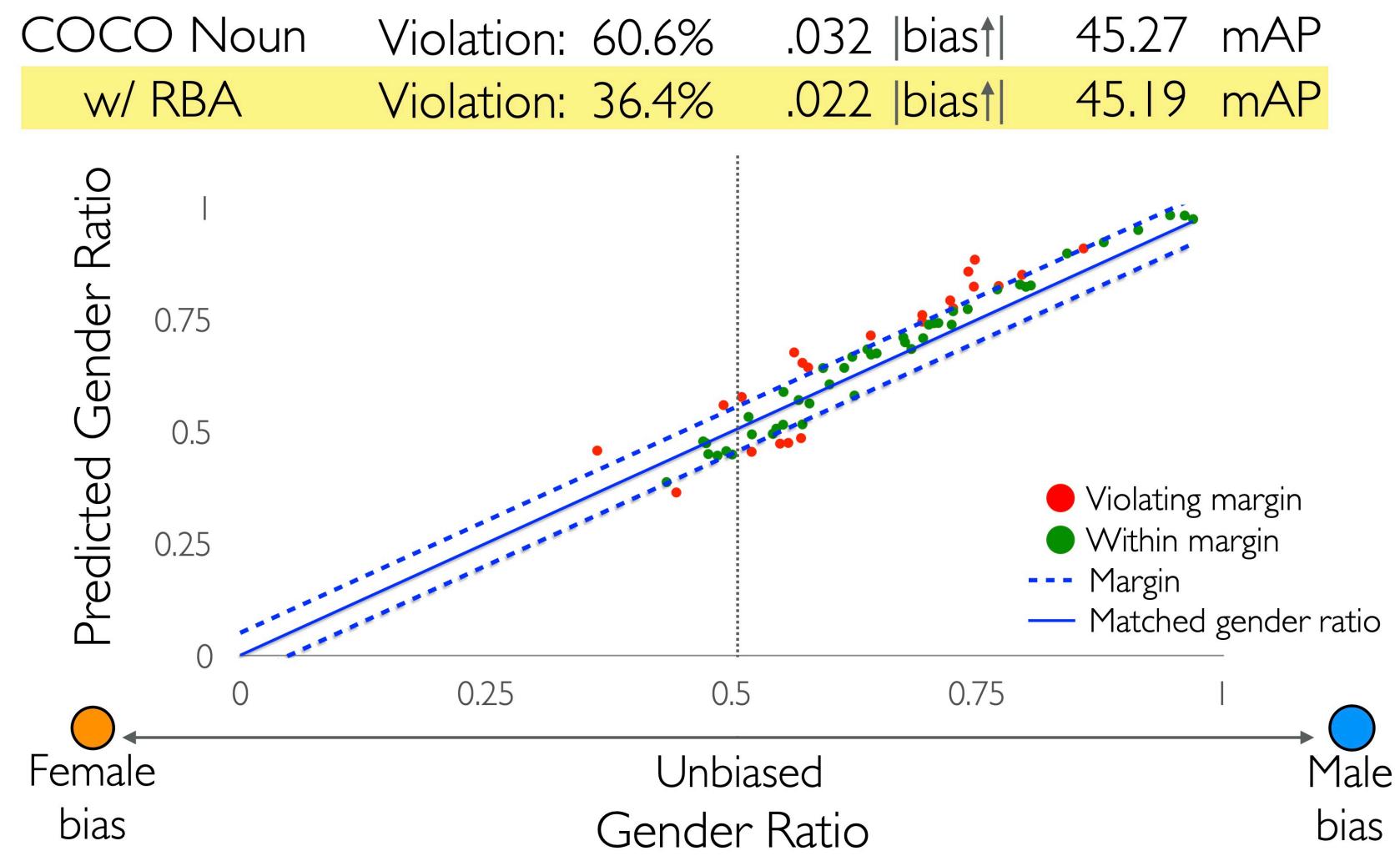
Lagrangian : $\sum_{i} f_{\theta}(y^{i}) - \sum_{j}^{l}$

.

$$y^i, i), \quad \text{s.t.} \quad A\sum_i y^i - b \le 0$$

$$\lambda_{j=1}^{l} \lambda_{j} (A_{j} \sum_{i} y^{i} - b_{j}) \quad \lambda_{j} \ge 0$$





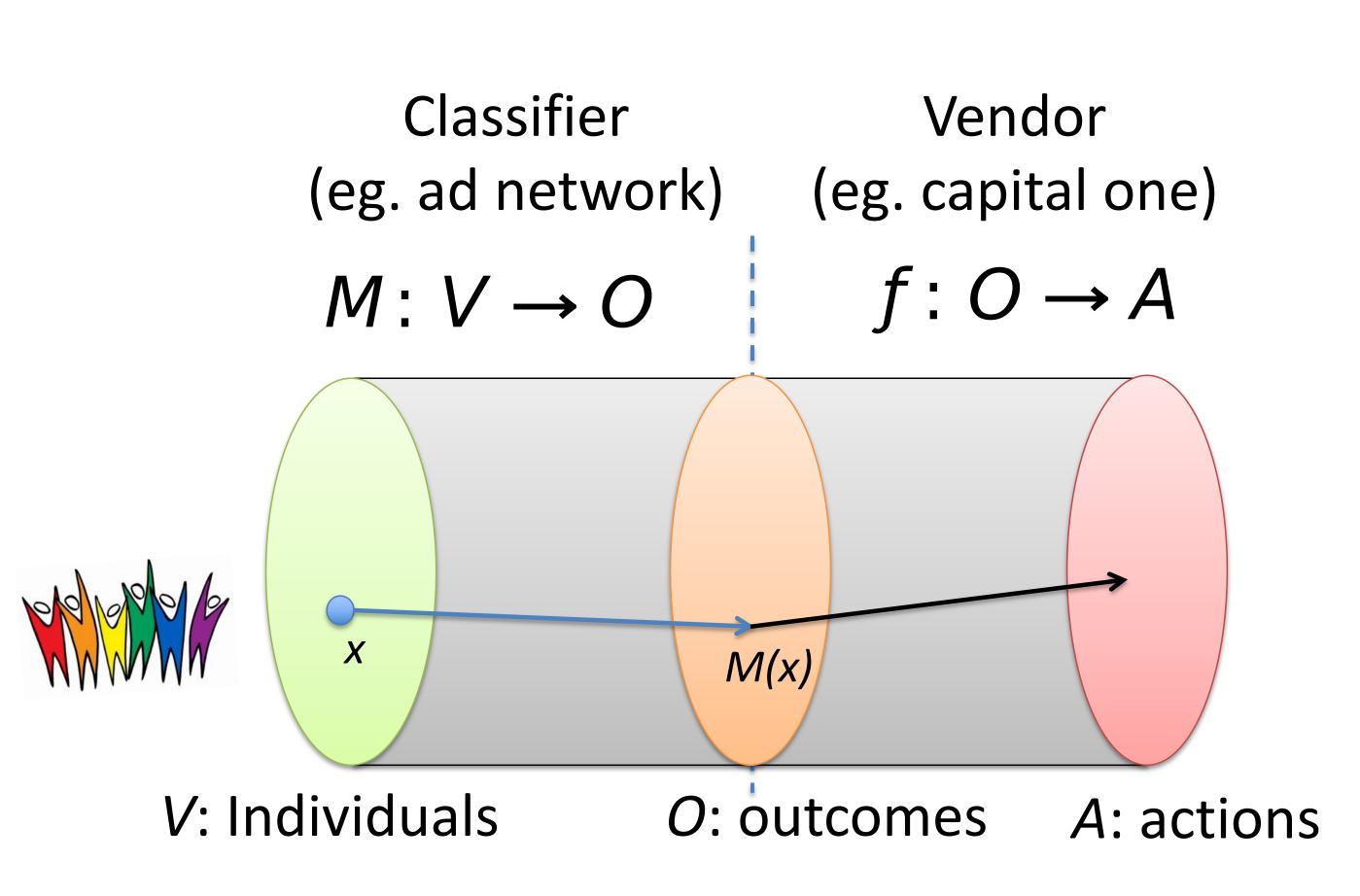
Credit Application

More miles and no annual fee

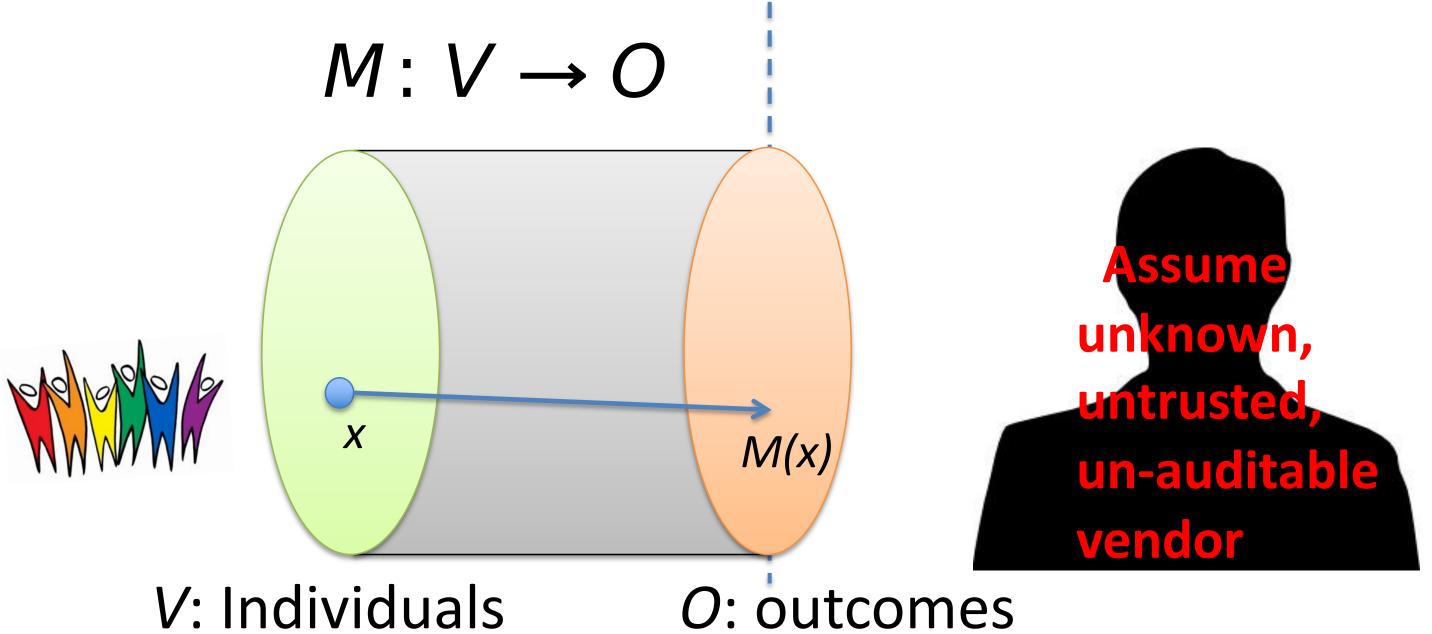
Earn trips faster with VentureOneSM

Capital One Card Lab Platinum Prestige Credit Card Capital One Card Lab VentureOne Card

User visits capitalone.com Capital One uses tracking information provided by the tracking network [x+1] to personalize offers **Concern:** <u>Steering</u> minorities into higher rates (illegal) WSJ 2010



Goal: Achieve Fairness in the classification step



V: Individuals

Through blindness

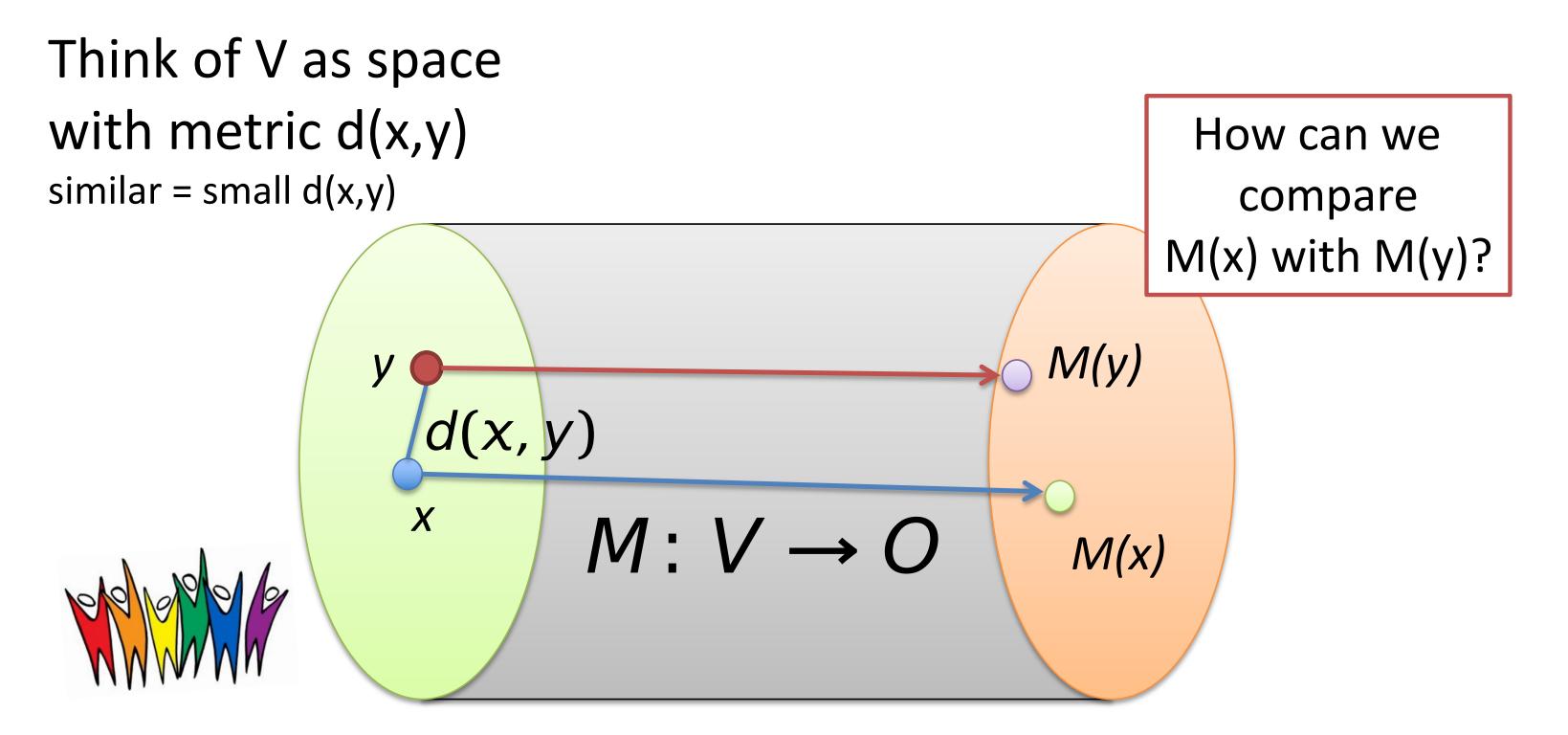
- Ignore all irrelevant/protected attributes
 - You don't need to see an attribute to be able to predict it with high accuracy
 - E.g.: User visits <u>artofmanliness.com</u> ... 90% chance of being male

Individual Fairness

Treat similar individuals similarly

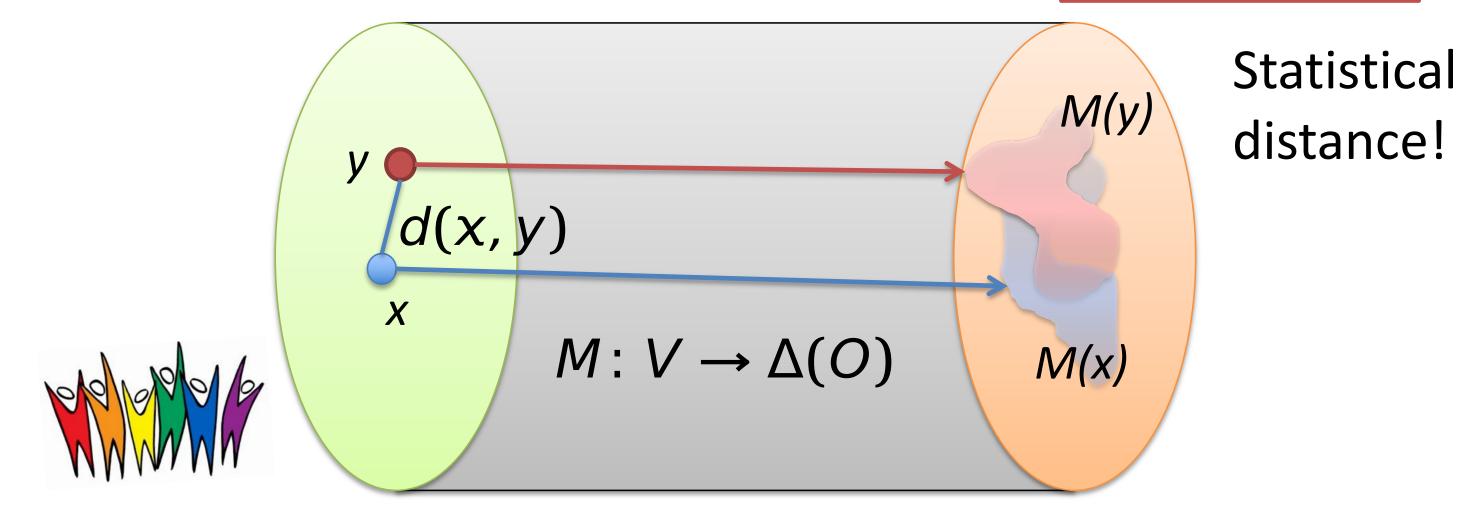
Similar for the purpose of the classification task

Similar distribution over outcomes

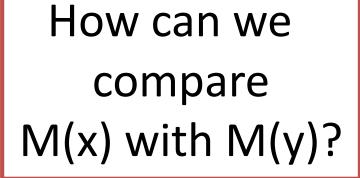


V: Individuals

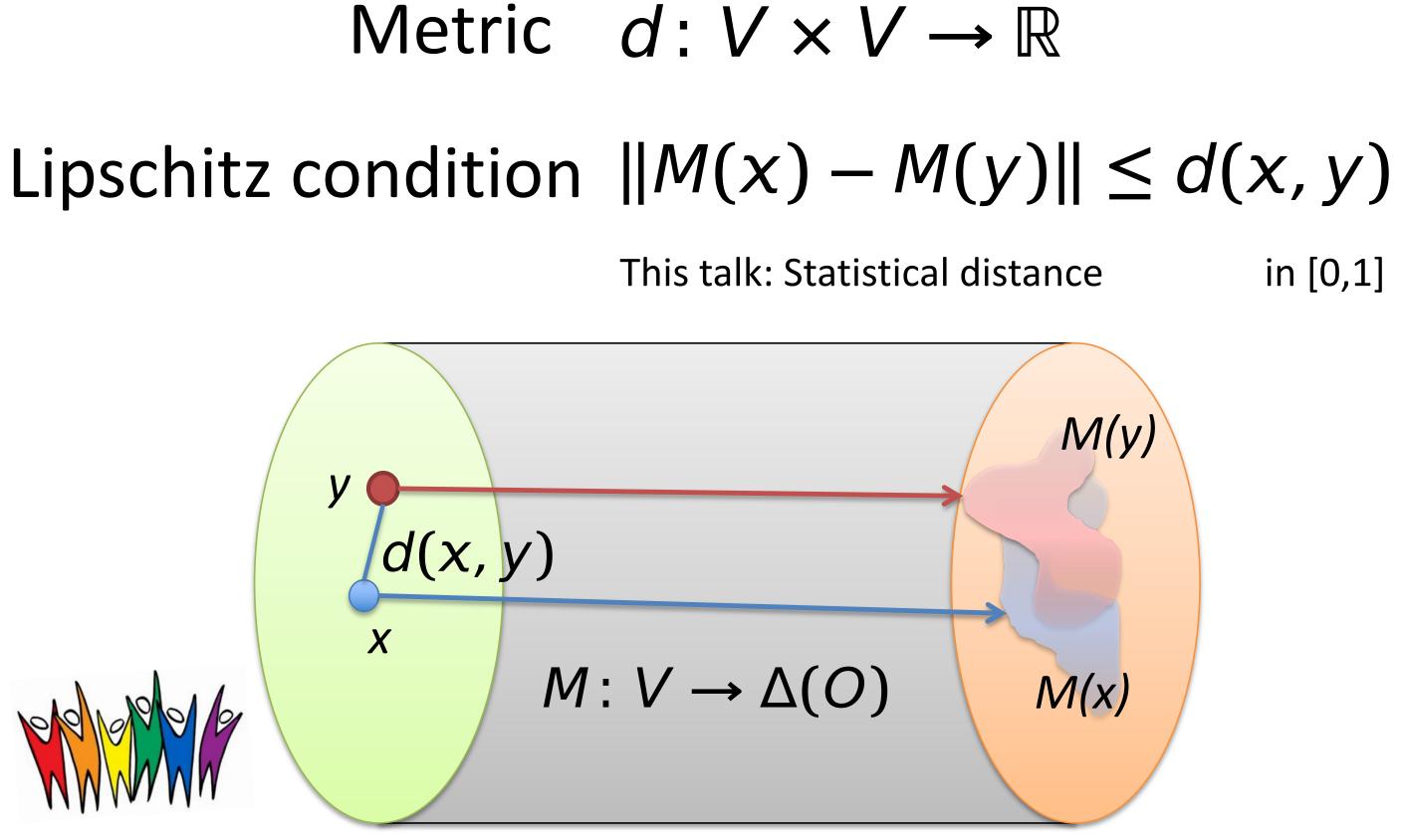
O: outcomes



V: Individuals



O: outcomes



V: Individuals

O: outcomes

Statistical Distance

P, Q denote probability measures on a finite domain A. The statistical distance between P and Q is denoted by

D

$$P_{tv}(P,Q) = \frac{1}{2} \sum_{a \in A} |P(a) - Q(a)|.$$

Example: Mid D $A = \{0, 1\}$ $P(0) = P(1) = \frac{1}{2}$ $Q(0) = \frac{3}{4}, Q(1) = \frac{1}{4}$ $D(P, Q) = \frac{1}{4}$

Utility Maximization

Vendor can specify arbitrary utility function $U: V \times O \to \mathbb{R}$

the outcome o

U(v,o) = Vendor's utility of giving individual v

Maximize vendor's expected utility subject to Lipschitz condition

 $||M(x) - M(y)|| \le d(x, y)$

 $\max_{M(x)} \mathbb{E} = \bigcup_{X \sim V} U(x, o)$ s.t. *M* is *d*-Lipschitz