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Defense Categories

Data preprocessing phase.

Training phase.
Model selection phase.

Inference phase.
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Backdoor defenses in the model life cycle




Defense Categories

=« Data preprocessing phase defense.
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= Training phase defense.

Train a clean model under a potentially poison dataset.
High clean data accuracy (CDA) and low attack success rate (ASR).

= Model selection phase defense.

Given a model, identify and mitigate the backdoor.
Model reconstruction, trigger synthesis and model diagnosis.

= Inference phase defense.
Reject or repair the query containing the backdoor trigger.



Defense Challenges

= A weaker defender against a stronger attacker.
= Unknown target class and poisoned samples; Limited (free) clean validation set.

= Various trigger sizes/shapes/types.
= One pixel to blend trigger; Visible and invisible trigger.

= Multiple trigger mechanism.
= Input-agnostic, class-specific and input-specific.
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[1] Ren Wang, et al. " Practical Detection of Trojan Neural Networks: Data-Limited and Data-Free Cases." ECCV 2020.



Model Selection Phase Defense——
Model Reconstruction



Defense Categories

= Model selection phase defense.

= Given a model, identify and mitigate the backdoor.
= Model reconstruction, trigger synthesis and model diagnosis.
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Fine-Pruning

= Motivation: Backdoors exploit spare capacity in the model.
= Assumption: Neurons activated by clean and trigger inputs are different.

= Method: Pruning neurons of the model that contribute least to the main
classification task.
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[1] Kang Liu, et al. "Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks." RAID 2018.



Fine-Pruning

= Adaptive attack: embed backdoor and clean feature in subset neurons.

s Use pruning+fine-tune to defense.
Limitation: requires a clean validation set.
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[1] Kang Liu, et al. "Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks." RAID 2018.



Model Selection Phase Defense——
Trigger Synthesis



Defense Categories

= Model selection phase defense.

= Given a model, identify and mitigate the backdoor.
= Model reconstruction, trigger synthesis and model diagnosis.
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Neural Cleanse

= Motivation: The trigger is closely related to the universal perturbation.

Much smaller modifications to all input samples to misclassify them into the
targeted label than any other uninfected labels.
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s Remove backdoor by retraining with the reversed trigger.
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[1] Bolun Wang, et al. "Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks." IEEE S&P 2019.



Model Selection Phase Defense——
Model Diagnosis



Defense Categories

= Model selection phase defense.

= Given a model, identify and mitigate the backdoor.
= Model reconstruction, trigger synthesis and model diagnosis.
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= A Data-Limited (one sample per class) TrojanNet Detector.
= Motivation: input-agnostic misclassification (shortcut) of TrojanNet.

s Method: per-image and universal perturbations would maintain a strong

similarity while perturbing images towards the Trojan target class.
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[1] Ren Wang, et al. " Practical Detection of Trojan Neural Networks: Data-Limited and Data-Free Cases." ECCV 2020.




DF-TND

= A Data-Free TrojanNet Detector with access to the model weight.

= Motivation: a TrojanNet exhibits an unexpectedly high neuron activation
at certain coordinates.
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[1] Ren Wang, et al. " Practical Detection of Trojan Neural Networks: Data-Limited and Data-Free Cases." ECCV 2020.



