COMP6211I: Trustworthy Machine Learning Lecture 4

Minhao Cheng

Course information

- Exam on next Monday (Feb 20) during the class time
- Remember to sign-up paper presentation sign-up
- Remember to submit project proposal (due on Feb 24) (1/2 page)
 - Don't worry if you couldn't find teammates

Recurrent Neural Network Attention in NMT

- Usually, each output word is only related to a subset of input words (e.g., for machine translation)
- Let u be the current decoder latent state, v_1, \ldots, v_n be the latent sate for each input word
- Compute the weight of each state by

•
$$p = \operatorname{Softmax}(u^T v_1, \dots, u^T v_n)$$

Compute the context vector by $Vp = p_1v_1 + \ldots + p_nv_n$

Recurrent Neural Network Attention in NMT

Transformer Transformer

- An architecture that replies entirely on attention without using CNN/RNN
- Proposed in ``Attention Is All You Need'' (Vaswani et al., 2017)
- Initially used for neural machine translation

Transformer **Encoder and Decoder**

- Self attention layer: the main architecture used in Transformer
- of input sentences.

Decoder: will have another attention layer to help it focuses on relevant parts

Transformer Encoder

- Each word has a corresponding ``latent vector'' (initially the word embedding for each word)
- Each layer of encoder:
 - Receive a list of vectors as input
 - Passing these vectors to a self-attention layer
 - Then passing them into a feed-foward layer
 - Output a list of vectors

- Main idea: The actual meaning of each word may be related to other words in the sentence
- The actual meaning (latent vector) of each word is a weighted (attention) combination of other words (latent vectors) in the sentences

\$ The_ animal_ didn_ _ t_ cross_ the_ street_ because_ it_ was_ too_ tire d_{-}

- Input latent vectors: x_1, \ldots, x_n
- Self-attention parameters: W^Q, W^K, W^V (weights for query, key, value)
- For each word *i*, compute
 - Query vector: $q_i = x_i W^Q$
 - Key vector: $k_i = x_i W^K$
 - Value vector: $v_i = x_i W^V$

- - The attention score for word j to word $i: q_i^T k_j$

• For each word i, compute the scores to determine how much focus to place on other input words

• For each word *i*, the output vector

$$\sum_{j} s_{ij} v_j, \quad s_i = \operatorname{softmax}(q_i^T k_1, \dots, q_i^T k_n)$$

Transformer **Matrix form**

• $Q = XW^Q$, $K = XW^K$, $V = XW^V$, $Z = \operatorname{softmax}(QK^T)V$

Transformer Multiply with weight matrix to reshape

- Gather all the outputs Z_1, \ldots, Z_k
- Multiply with a weight matrix to reshape
- Then pass to the next fully connected layer

1) Concatenate all the attention heads

Zo)	Z		Z	2	Z	3	Z	Z 4	Z	Z 5	Z	Z 6		Z 7	

2) Multiply with a weight matrix W^o that was trained jointly with the model

Х

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

=

WO

Transformer **Overall architecture**

5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

Ζ

Transformer Sinusoidal Position Encoding

- The above architecture ignores the sequential information
- Add a positional encoding vector to each x_i (according to i)

Transformer Positional Embedding

• Sin/cosine functions with different wavelengths (used in the original Transformer)

The jth dimension of ith token $p_i[j] =$

$$= \begin{cases} \sin(i \cdot c^{\frac{j}{d}}) \text{ if} \\ \cos(i \cdot c^{\frac{j-1}{d}}) \end{cases}$$

• smooth, parameter-free, inductive

- j is even
- if j is odd

Transformer Residual

Transformer Whole framework

Vision Transformer (ViT) Vision Transformer (ViT)

- Partition input image into $K \times K$ patches
- A linear projection to transform each patch to feature (no convolution)
- Pass tokens into Transformer

Vision Transformer (ViT) Vision Transformer (ViT)

- Patches are non-overlapping in the original ViT
- $N \times N$ image $\Rightarrow (N/K)^2$ tokens
- Smaller patch size \Rightarrow more input tokens
 - Higher computation (memory) cost, (usually) higher accuracy
- Use 1D (learnable) positional embedding
- Inference with higher resolution:
 - Keep the same patch size, which leads to longer sequence
 - Interpolation for positional embedding

Vision Transformer (ViT) **ViT Performance**

• ViT outperforms CNN with large pretraining

Vision Transformer (ViT) **ViT Performance**

• Attention maps of ViT (to input)

11

Vision Transformer (ViT) ViT v.s. ResNet

- Can ViT outperform ResNet on ImageNet without pretraining?
- Deit (Touvron et al., 2021):
 - Use very strong data augmentation
 - Use a ResNet teacher and distill to ViT

Vision Transformer (ViT) ViT v.s. ResNet

ViT tends to converge to sharper regions than ResNet

(a) ResNet

Leading eigenvalue of Hessian: 179.8

(b) ViT

Leading eigenvalue of Hessian: 738.8

Vision Transformer (ViT) **`Sharpness''** is related to generalization

- Testing can be viewed as a slightly perturbed training distribution
- Sharp minimum \Rightarrow performance degrades significantly from training to testing

Figure from (Keskar et al., 2017)

Vision Transformer (ViT) **Sharpness Aware Minimization (SAM)**

- Optimize the worst-case loss within a small neighborhood lacksquare
 - $\min_{w} \max_{\|\delta\|_2 \le \epsilon} L(w + \delta)$
 - ϵ is a small constant (hyper-parameter)
- Use 1-step gradient ascent to approximate inner max:

$$\hat{\delta} = \arg \max_{\|\delta\|_2 \le \epsilon} L(w) + \nabla L(w)^T \delta = \epsilon \frac{\nabla}{\|\nabla\|}$$

Conduct the following update for each iteration:

•
$$w \leftarrow w - \alpha \nabla L(w + \hat{\delta})$$

L(w)

TL(w)

Vision Transformer (ViT) **Sharpness Aware Minimization (SAM)**

• SAM is a natural way to penalize sharpness region (but requires some computational overhead)

Unsupervised pertaining for NLP Motivation

- Many unlabeled NLP data but very few labeled data
- Can we use large amount of unlabeled data to obtain meaningful representations of words/sentences?

Unsupervised pertaining for NLP Learning word embeddings

- Use large (unlabeled) corpus to learn a useful word representation
 - Learn a vector for each word based on the corpus
 - Hopefully the vector represents some semantic meaning
 - Can be used for many tasks
 - Replace the word embedding matrix for DNN models for classification/translation
 - Two different perspectives but led to similar results:
 - Glove (Pennington et al., 2014)
 - Word2vec (Mikolov et al., 2013)

Unsupervised pertaining for NLP Context information

- Given a large text corpus, how to learn low-dimensional features to represent a word?
- For each word w_i , define the "contexts" of the word as the words surrounding it in an *L*-sized window:

•
$$w_{i-L-2}, w_{i-L-1}, w_{i-L}, \cdots, w_{i-1}, w$$

contexts of w_i contexts of w_i

Get a collection of (word, context) pairs, denoted by D.

- $v_i, w_{i+1}, \dots, w_{i+L}, w_{i+L+1}, \dots$

Unsupervised pertaining for NLP Examples

		Training Samples								
The	quick	brown	fox	jumps	over	the	lazy	dog.	\rightarrow	(the, quick) (the, brown)
The	quick	brown	fox	jumps	over	the	lazy	dog.	\rightarrow	(quick, the) (quick, brown) (quick, fox)
The	quick	brown	fox	jumps	over	the	lazy	dog.	\rightarrow	(brown, the) (brown, quick) (brown, fox) (brown, jumps)
The	quick	brown	fox	jumps	over	the	lazy	dog.	—	(fox, quick) (fox, brown) (fox, jumps) (fox, over)

Unsupervised pertaining for NLP Use bag-of-word model

- Idea 1: Use the bag-of-word model to ``describe'' each word
- Assume we have context words c_1, \dots, c_d in the corpus, compute
 - $\#(w, c_i) :=$ number of times the pair (w, c_i) appears in D
- For each word w, form a d

 dimensional (sparse) vector to
 describe w

•
$$#(w, c_1), \cdots, #(w, c_d),$$

Unsupervised pertaining for NLP **PMI/PPMI Representation**

- Similar to TF-IDF: Need to consider the frequency of each word and each context
- Instead of using co-ocurrent count #(w, c), we can define pointwise mutual information:

• PMI(w,c) = log(
$$\frac{\hat{P}(w,c)}{\hat{P}(w)\hat{P}(c)}$$
) = log $\frac{\#(w,c)|D|}{\#(w)\#(c)}$,

•
$$\#(w) = \sum_{c} \#(w, c)$$
: number of times word w occurred in

 $\#(c) = \sum \#(w, c)$: number of times context *c* occurred

- |D|: number of pairs in D
- Positive PMI (PPMI) usually achieves better performance:
 - PPMI(w, c) = max(PMI(w, c), 0)
- *M*^{PPMI}: a *n* by *d* word feature matrix, each row is a word and each column is a context

D

Unsupervised pertaining for NLP PPMI Matrix

Unsupervised pertaining for NLP **Generalized Low-rank Embedding**

• SVD basis will minimize

•
$$\min_{W,V} ||M^{\mathsf{PPMI}} - WV^T||_F^2$$

- Glove (Pennington et al., 2014)
 - Negative sampling (less weights to 0s in M^{PPMI})
 - Adding bias term:

• $M^{\mathsf{PPMI}} \approx WV^T + b_w e^T + eb_c^T$

• Use W or V as the word embedding matrix

Unsupervised pertaining for NLP Word2vec (Mikolov et al., 2013)

- A neural network model for learning word embeddings
- Main idea:
 - Predict the target words based on the neighbors (CBOW)
 - Predict neighbors given the target words (Skip-gram)

context word	target word	context wo
i	like natura	langua
i [like natura	al langua
i	like natura	allangua
i	like natura	langua

ord

age processing

age processing

ge processing

age processing

Unsupervised pertaining for NLP **CBOW (Continuous Bag-of-Word model)**

Predict the target words based on the neighbors

Unsupervised pertaining for NLP Skip-gram

Predict neighbors using target word \bullet

Unsupervised pertaining for NLP More on skip-gram

- Every word has two embeddings:
 - v_i serves as the role of target
 - u_i serves as the role of context
- Model probability as softmax:

•
$$P(o \mid c) = \frac{e^{u_o^T v_c}}{\sum_{w=1}^W e^{u_w^T v_c}}$$

• Learn the probability $P(w_{t+i} | w_t)$: the probability to see w_{t+i} in target word w_t 's neighborhood

Unsupervised pertaining for NLP Results

• The low-dimensional embeddings are (often) meaningful:

Male-Female

Verb tense

Country-Capital

Contextual embedding Contextual world representation

• The semantic meaning of a word should depend on its context

open a bank account

[0.9, -0.2, 1.6, ...] [-1.9, -0.4, 0.1, ...]on the river bank

Solution: Train a model to extract contextual representations on text corpus

Contextual embedding CoVe (McCann et al., 2017)

- Key idea: Train a standard neural machine translation model
- Take the encoder directly as contextualized word embeddings
- **Problems:**
 - Translation requires paired (labeled) data
 - The embeddings are tailored to particular translation corpuses

Contextual embedding Language model pretraining task

- Predict the next word given the prefix
- Can be defined on any unlabeled document

Contextual embedding ELMo (Peter et al., 2018)

- Key ideas:
 - Train a foward and backward LSTM language model on large corpus
 - Use the hidden states for each token to compute a vector representation of each word
- LSTM Layer #2
- LSTM Layer #1

• Replace the word embedding by Elmo's embedding (with fixed Elmo's LSTM weights)

to

Contextual embedding ELMo results

TASK	PREVIOUS SOTA		OUR BASELINI	ELMO + E BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2/9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

Contextual embedding BERT

- Key idea: replace LSTM by Transformer
- Define the generated pretraining task by masked language model
- Two pretraining tasks
- Finetune both BERT weights and task-dependent model weights for each task

Contextual embedding BERT pretraining loss

- Masked language model: predicting each word by the rest of sentence
- sentence is the subsequent sentence in the original document.

• Next sentence prediction: the model receives pairs of sentences as input and learns to predict if the second

Contextual embedding BERT finetuning

- Keep the pretrained Transformers
- Replace or append a layer for the final task
- Train the whole model based on the task-dependent IOSS

Contextual embedding BERT results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Graph Convolutional Neural Network Node classification problem

- Given a graph of N nodes, with adjacency matrix $A \in \mathbb{R}^{N \times N}$
- Each node is associated with a *D*-dimensional feature vector.
- $X \in \mathbb{R}^{N \times D}$: each row corresponds to the feature vector of a node
- Observe labels for a subset of nodes: $Y \in \mathbb{R}^{N \times L}$, only observe a subset of rows, denoted by Y_S
- Goal: Predict labels for unlabeled nodes (transductive setting) or
- test nodes (inductive setting) or test graphs (inductive setting)

Graph Convolutional Neural Network Graph Convolution Layer

- GCN: multiple graph convolution layers
- \hat{A} : normalized version of A:

•
$$\tilde{A} = A + I$$
, $\tilde{D}_{uv} = \sum_{v} \tilde{A}_{uv}$, $P = \tilde{D}^{-1} \hat{A}$

- Graph convolution:
 - Input: features for each node $H^{(l)} \in \mathbb{R}^{n \times D}$
 - Output: features for each node $H^{(l+1)}$ after gathering neighborhood information
 - Convolution: $PH^{(l)}$: Aggregate features from neighbors
 - Convolution + fully-connected layer + nonlinear activation:
 - $H^{(l+1)} = \sigma(PH^{(l)}W^{(l)}),$
 - $W^{(l)}$ is the weights for the linear layer
 - $\sigma(\cdot)$: usually ReLU function

Graph Convolutional Neural Network Graph convolutional network

Graph Convolutional Neural Network Graph convolutional network

- Initial features $H^{(0)} := X$
- For layer $l = 0, \dots, L$
 - $Z^{(l+1)} = PH^{(l)}W^{(l)}, \quad H^{(l+1)} = \sigma(Z^{(l+1)}),$
- Use final layer feature $H^{(L)} \in \mathbb{R}^{N \times K}$ for classification:

• Loss =
$$\frac{1}{|S|} \sum_{s \in S} \operatorname{loss}(y_s, Z_s^{(L)})$$

- Each row of $Z_{s}^{(L)}$ corresponds to the output score for each label
- Cross-entropy loss for classification

Graph Convolutional Neural Network Graph convolutional network

- Model parameters: $W^{(1)}, \cdots, W^{(L)}$
- Can be used to
 - Predict unlabeled nodes in the training set
 - Predict testing nodes (not in the training set)
 - Predict labels for a new graph
- Also, features extracted by GCN $H^{(L)}$ is usually very useful for other tasks

Graph Convolutional Neural Network Graph Attention Networks

- Each edge may not contribute equally \bullet
- Using attention mechanism to automatically assign weights to each edge:

$$exp(LeakyReLU(a^{T}[Wh_{i} | Wh_{j}]))$$

•
$$\alpha_{i,j} = \overline{\sum_{k \in N_i} \exp(\text{LeakyReLU}(a^T[Wh_i \mid Wh_k]))}$$

parameter for attention

• where h_i , h_j are the features for node *i* and *j* at previous layer, W is the GNN weight, a is the additional learnable

Graph Convolutional Neural Network GNN Pretraining

- Standard GNN pipeline:
 - Text features \Rightarrow BERT/Word2vec \Rightarrow GNN
- •

GIANT-XRT: pretrain the feature extractors (e.g., BERT) based on the graph information.