COMP6211I:
Trustworthy Machine Learning

Lecture 4

Minhao Cheng

Course information

 Exam on next Monday (Feb 20) during the class time
« Remember to sign-up paper presentation sign-up
« Remember to submit project proposal (due on Feb 24) (1/2 page)

 Don’t worry if you couldn’t find teammates

Recurrent Neural Network
Attention iIn NMT

* Usually, each output word is only related to a subset of input words (e.g., for
machine translation)

» Let u be the current decoder latent state, vy, ..., v, be the latent sate for
each input word

 Compute the weight of each state by
« D = Softmax(uTvl, Cees uTvn)

« Compute the context vectorby Vp =p v, + ... + p,v,

Recurrent Neural Network
Attention iIn NMT

Transformer

Transformer

* An architecture that replies entirely on attention without using CNN/RNN

* Proposed in "Attention Is All You Need'' (Vaswani et al., 2017)

 |nitially used for neural machine translation | am a student
A

7 N
ENCODER DECODER

. W

4 4 ’ Y
ENCODER DECODER

. Y

4 4 * Y
ENCODER DECODER

. J

{ 4 4 N
ENCODER DECODER

. J

a * * N
ENCODER DECODER

. J

~ i B _
ENCODER DECODER

- i

_ @ _J

Transformer

Encoder and Decoder

o Self attention layer: the main architecture used in Transformer

 Decoder: will have another attention layer to help it focuses on relevant parts

Feed Forward

Feed Forward Encoder-Decoder Attention

of input sentences.

Self-Attention Self-Attention

Transformer

Encoder

* Each word has a corresponding latent
vector' (initially the word embedding for
each word)

 Each layer of encoder:
* Recelve a list of vectors as input

* Passing these vectors to a self-attention
layer

* Then passing them into a feed-foward
layer

* Qutput a list of vectors

Self-Attention

Transformer

Self-attention layer

 Main idea: The actual meaning of each word may be related to other words in the sentence

* The actual meaning (latent vector) of each word is a weighted (attention) combination of other words (latent
vectors) in the sentences

Layer: S § | Attention: Input - Input —

The_ The_
animal_ animal_
didn_ didn_
t_ t_
Cross_ Cross_
the_ the_
street_ street_
because because
it_ it_
was_ was_
too_ too_
tire tire

d d

Transformer

Self-attention layer

 Input latent vectors: Xy, ..., x,

o Self-attention parameters:
We, WK WV (weights for query, key,
value)

* For each word 1, compute
- Query vector: g; = x;W¥
» Key vector: k; = xiWK

 Value vector: v; = xl-WV

Input

Embedding

Queries

Keys

Values

Transformer

Self-attention layer

« For each word i1, compute the scores to determine how much focus to place on other input words

 The attention score for word j to word i: ql.Tkj

Input

Embedding

Queries

Keys

Values

Score °

Transformer

Self-attention layer

* For each word 1, the output vector

)

J

S;iVin

s; = softmax(q; ky, ..., q

'k

1 N

)

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (

Softmax

Softmax
X

Sum

dy

)

Transformer

Matrix form

. O =XWY K=XWX V=XW"Y, Z=softmax(QK")V

softmax(

Transformer

Multiply with weight matrix to reshape

o Gather a” the OUtpUtS Zl, e o o0 Zk 1) Concatenate all the attention heads 2) Multiply with a weight

matrix that was trained
jointly with the model

 Multiply with a weight matrix to ‘
reshape

¢ Then pass tO the neXt fu I Iy ?)The Irleshult Woulq behthed matrix that cdap;yrfs info;mati;)n
connected layer |

T

Transformer

Overall architecture

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
X Wo®
Qo
T
—J_.
W;0
* In all encoders other than #0, | 01

we don't need embedding. T

We start directly with the output]

of the encoder right below this one

Q-

Transformer

Sinusoidal Position Encoding

* The above architecture ignores
the sequential information

* Add a positional encoding vector
to each x; (according to 1)

ENCODER #1

' ' C DECODER #1

(ENCODER #0 ' ' (DECODER #0
EMBEDDING
WITH TIME

SIGNAL

POSITIONAL
ENCODING

EMBEDDINGS

INPUT

L[1]
NN

NN

L L[]
NN

L[]

Transformer
Positional Embedding

* Sin/cosine functions with different wavelengths (used in the original Transformer)

L | | , sin(- CJE) if j is even
_ The jth dimension of ith tokenp,| j] =

.o J=1
cos(i-c 7)ifjis odd

 smooth, parameter-free, inductive

Transformer

Residual

> Add & Normalize

ENCODER #1

‘------

POSITIONAL
ENCODING

X1 X2
Thinking Machines

Transformer

Whole framework

lll

- |
I 2
= || Feed Forward Feed Forward : v,
% ' SRRL (TPF > DECODER #2
a :
S t .
& : Re Add & Normalize)
'Ej : Feed Forward Feed Forward
S = [S vyyy py——— R oy ————
i
: QO . Add & Normalize
: ., |
i; : Feed Forward Feed Forward Ii® Encoder-Decoder Attention
= T Y PPy REPCIIIIT IITTTTLTTTTITTTITrTY
O .
o\, , > Add & Normalize
i | ; : S
: E Self-Attention

"
‘~ ---------------------------) ‘~ ---------------------------
POSITIONAL
ENCODING

X1 X2

Thinking Machines

Vision Transformer (ViT)

Vision Transformer (ViT)

Vision Transformer (ViT) 0 Transfornier Encoder
» Partition input image into K X K Class o RO
Eall Head b
patches L | i

N\

N orm

Transformer Encoder

* A linear projection to transform each

patch to feature (no convolution) Pag;;eggggn; 08 é‘ @15 @fg

* Extra learnable
[class] embedding

Multi-Head
Attention

1 3

|
Con)
|

(U

Linear Projection of Flattened Patches

i
S AT il WY = |

e Pass tokens into Transformer

Embedded
Patches

Vision Transformer (ViT)

Vision Transformer (ViT)

 Patches are non-overlapping in the original ViT
. N x N image = (N/K)* tokens

 Smaller patch size = more input tokens

* Higher computation (memory) cost, (usually) higher accuracy
 Use 1D (learnable) positional embedding
* |Inference with higher resolution:

 Keep the same patch size, which leads to longer sequence

* |nterpolation for positional embedding

Vision Transformer (ViT)

ViT Performance

* VIiT outperforms CNN with large pretraining

\O
-

ImageNet Topl Accuracy [%]
~ o0
N -

70 -

o0
N
R B

BiT ViT-L/32

ViT-B/32 ViT-L/16

ViT-B/16 ViT-H/14
ImagleNet Imagel\llet-z 1k JFT-300M

Pre-training dataset

Vision Transformer (ViT)

ViT Performance

e Attention maps of VIT (to input)

Vision Transformer (ViT)
ViT v.s. ResNet

86
e Can ViT outperform ResNet on

ImageNet without pretraining? R
e Deit (Touvron et al., 2021): 82
* Use very strong data ESO

augmentation &
« Use a ResNet teacher and ”
distill to VIiT N

oDeiT-B21384

\.
\.

T4 DeiT-B™
B7 2
\.
\.
*« N
S “o DeiT-S2
EfficientNet '\'*.\
ViT N,
\.
—&—- Ours N
| —e— Ours? N,
»
Bl
ViT-B
ViT-L BO

50 100 200 500 1000 2500
images/s

Vision Transformer (ViT)
ViT v.s. ResNet

* VIT tends to converge to sharper regions than ResNet

\8u7 —7 78(0
7 ‘6§ H7.5 (763 F7.5
‘4-% 5.0 e — '4-'(% 5.0
*2’: .2}:
2.5 2.5
——— | /1!?00 H0.0 \AU /1 oO io.o
£ /0.5 & 0.5
~1.0 oo ~1.0 ;«"‘/6.0
-0.5 —05
0.0 -0.5 0.0 /=0.5
0.5 0.5 A
1.0 ~1.0 10 -1.0
(a) ResNet (b) ViT
Leading eigenvalue of Leading eigenvalue of

Hessian: 179.8 Hessian: 738.8

Vision Transformer (ViT)

“Sharpness' is related to generalization

* Jesting can be viewed as a slightly perturbed training distribution

e Sharp minimum = performance degrades significantly from training to testing

Training Function

T ' Testing Function

Flat Minimum Sharp Minimum

Figure from (Keskar et al., 2017)

Vision Transformer (ViT)

Sharpness Aware Minimization (SAM)

* Optimize the worst-case loss within a small neighborhood

min max L(w + o)
wo ||6l,<e

* ¢ is a small constant (hyper-parameter)

 Use 1-step gradient ascent to approximate inner max:

n - V L(w)
o =arg max L(w)+ VL(w)' 0 =€
l5ll,<e |V Lw)|

 Conduct the following update for each iteration:

. w<—w—aVL(w+(§)

Vision Transformer (ViT)

Sharpness Aware Minimization (SAM)

« SAM is a natural way to penalize sharpness region (but requires some
computational overhead)

Training Furiction

' Testing Function

Flat Minimum Sﬁarp Minimum

Unsupervised pertaining for NLP

Motivation

 Many unlabeled NLP data but very few labeled data

 Can we use large amount of unlabeled data to obtain meaningful
representations of words/sentences?

Unsupervised pertaining for NLP

Learning word embeddings

* Use large (unlabeled) corpus to learn a useful word
representation

* | earn a vector for each word based on the corpus

 Hopefully the vector represents some semantic
meaning

* Can be used for many tasks

* Replace the word embedding matrix for DNN models
for classification/translation

» Two different perspectives but led to similar results:
* Glove (Pennington et al., 2014)
 Word2vec (Mikolov et al., 2013)

-
v

travel

" relative

=

Unsupervised pertaining for NLP

Context information

* (Given a large text corpus, how to learn low-dimensional features to represent
a word?

» For each word w;, define the “contexts'' of the word as the words surrounding
it in an L-sized window:

Wi I Z’Wi I 1’Wi—L’ -..,Wi_l,Wi,Wi_l_l’ ---,Wl._I_L,WiILIl, coe

- 4

contexts of w,

- 4

contexts of w,

» Get a collection of (word, context) pairs, denoted by D.

Unsupervised pertaining for NLP

Examples

Training
Samples

Source Text

-quick brown |[fox jumps over the lazy dog. = (the, quick)
(the, brown)

The-brown fox|jumps over the lazy dog. == (quick, the)
(quick, brown)

(quick, fox)

The quick-fox jumps|over the lazy dog. = (brown, the)
(brown, quick)

(brown, fox)
(brown, jumps)

jumps|over|the lazy dog. = (fox, quick)
(fox, brown)
(fox, jJumps)
(fox, over)

The| quick|brown JE¢

Unsupervised pertaining for NLP

Use bag-of-word model

* |dea 1: Use the bag-of-word model
to "describe'' each word

 Assume we have context words o ‘ ‘
Ci, =+, C4in the corpus, compute e
_ . | ‘ | d-dimensional
* #(w,c;) ;= number of times the pair(w, ¢;) appears in D (brown) w, #w, c) E?t'}jbrfovwerﬁor
 For each word w, form a d o W
-dimensional (sparse) vector to
describe w

e #(w,cy), -+, #(w, c)),

Unsupervised pertaining for NLP
PMI/PPMI Representation

e Similar to TF-IDF: Need to consider the frequency of each word and each context

» Instead of using co-ocurrent count #(w, ¢), we can define pointwise mutual information:

P(w, ¢) #(w,)| D|
PMI(w, =3 | — - =3 | ,
) (. €) = log(P(W)P(C)) 08 #(w)H#(c)

_H#Hw) = Z #(w, ¢): number of times word w occurred in D

C

 #(o) = Z #(w, ¢): number of times context ¢ occurred

w
e |D|: number of pairs in D
e Positive PMI (PPMI) usually achieves better performance:
« PPMI(w, ¢) = max(PMI(w, ¢),0)

. MPPMI. a n by d word feature matrix, each row is a word and each column is a context

Unsupervised pertaining for NLP

PPMI Matrix

(the) w;

(brown) w;

(fox)

W

n

(quick) (fox) (jump)
C, C; C,
PPMI(w;, c))

d-dimensional
feature vector

for “brown”

Unsupervised pertaining for NLP

Generalized Low-rank Embedding

« SVD basis will minimize

min HMPPMI — WVTHIZD
W,V

* Glove (Pennington et al., 2014)

» Negative sampling (less weights to 0s in M)

 Adding bias term:
e MPPMU s WVT 4+ b T + eb!

« Use W or V as the word embedding matrix

Unsupervised pertaining for NLP
Word2vec (Mikolov et al., 2013)

* A neural network model for learning word embeddings
* Main idea:
* Predict the target words based on the neighbors (CBOW)

* Predict neighbors given the target words (Skip-gram)

contextword
contextword t3rget word

-

| like natural |language processing

|| like natural language |processing

| like| naturallanguage processing

| like natural |language processing

Unsupervised pertaining for NLP
CBOW (Continuous Bag-of-Word model)

* Predict the target words based on the neighbors

INPUT PROJECTION OUTPUT
w(t-2)
w(t-1)
: > wt)
w(t+1)

w(t+2)

Unsupervised pertaining for NLP
Skip-gram

* Predict neighbors using target word

INPUT PROJECTION OUTPUT

4 w(t-2)

.4 w(t-1)
w(t) . -

A T

< w(t+2)

Unsupervised pertaining for NLP

More on skip-gram

 Learn the probability P(WH_J- | w,): the probability to see w,,; in target word w,'s neighborhood

 Every word has two embeddings:

 V:serves as the role of target

* U; serves as the role of context

* Model probability as softmax:

T

Uy Ve

.P(o\c)=

Unsupervised pertaining for NLP

Results

* The low-dimensional embeddings are (often) meaningful:

IIIII \Madrid
GGGGGG —_— Ro
lked B
O ® Turkey \
aaaaaa
‘ i W
s O O o e
k g T~ = Mg MoOoSsCOoW
“*. 1k g . aaaaaa
queen e Japan
— O
Vietnam Hanoi
swimming¢.., ¢ China =-—— Beiji

Male-Female Verb tense Country-Capital

Contextual embedding

Contextual world representation

 The semantic meaning of a word should depend on its context

(0.9, -0.2, 1.6, ..] [-1.9, -0.4, 0.1, ..]

T T

open a bank account on the river bank

e Solution: Train a model to extract contextual representations on text corpus

(eooe)
(e0oe)
(eooe)
(eooe)
(eoee)
(e0oe)

Contextualized word embeddings

the movie was terribly exciting !

Contextual embedding
CoVe (McCann et al., 2017)

 Key idea: Train a standard neural
machine translation model

* [ake the encoder directly as
contextualized word embeddings

e Problems:

e Translation requires paired (labeled)
data

 The embeddings are tailored to
particular translation corpuses

Contextual embedding

Language model pretraining task

0.1% Aardvark

* Predict the next word given the el p—
prefix O% ”Z.\/ZZ‘/\/Q
" OUTDUt FFNN + Softmax
* (Can be defined on any unlabeled Layer
document .
Layer #2 T T
oy i o | [| .‘.‘ L1 FEI_I
Layer #1 w w w

Embedding [T T 11 T 1] (T T 1]

Contextual embedding
ELMo (Peter et al., 2018)

 Key ideas:

Forward Language Model Backward Language Model

 Train a foward and backward

LSTM language model on large [STM - : .

copus % e R,
* Use the hidden states for each LSTM Pl 0P ol P o

token to compute a vector = bl w v v

representation of each word VPPV - - - - -
* Replace the word embedding by

Elmo's embedding (with fixed

Elmo's LSTM weights)

Contextual embedding
ELMo results

INCREASE
TASK PREVIOUS SOTA OUR LLMO + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liuet al. (2017) 844 || 81.1 85.8 4.7 1 24.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7 + 0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 3.2/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 +£0.19 || 90.15 9222 +£0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 51.4 54.7 £ 0.5 3.3/6.8%

Contextual embedding
BERT

 Key idea: replace LSTM by Transformer
* Define the generated pretraining task by masked language model
* [wo pretraining tasks

* Finetune both BERT weights and task-dependent model weights for each
task

Contextual embedding
BERT pretraining loss

 Masked language model: predicting each word by the rest of sentence

* Next sentence prediction: the model receives pairs of sentences as input and learns to predict if the second
sentence is the subseqguent sentence in the original document.

Embedding[W J [bk] [ks] = [W’s J
“;:;,?:;[T T T T T

Classification Layer: Fully-connected layer + GELU + Norm

T T T T T
Lo J [e) [Lo J Lo J [0 |

T T T T T

Transformer encoder

Embedding T T T T T
[)L] J]

Contextual embedding

BERT finetuning

 Keep the pretrained
Transformers

 Replace or append
a layer for the final
task

 [rain the whole
model based on the
task-dependent
loss

Pre-trained

Task-specific

Extract }» Transforrﬁ ‘

Softmax

Classification Start Text
Entailment Start Premise Delim | Hypothesis | Extract | — Transformer > Linear
Start Text 1 Delim Text 2 Extract | > Transformer
Similarity Linear
Start Text 2 Delim Text 1 Extract | > Transformer
Start Context Delim Answer 1 Extract | Transformer (=~ Linear
Multiple Choice | Start Context Delim Answer 2 | Extract | > Transformer > Linear
Start Context Delim Answer N | Extract | [+ Transformer > Linear

el

™~

Special start token

Special delimiter token

Special end token

Contextual embedding

BERT results
System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERT | ArGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Graph Convolutional Neural Network

Node classification problem

+ Given a graph of N nodes, with adjacency matrix A € RV

. Eggtlgpode is associated with a D-dimensional feature citation network

e X € RMD- aach row corresponds to the feature vector of a < / \E\ \
node E\ <H/\

- Observe labels for a subset of nodes: Y € RV*E, only / E/ \
observe a subset of rows, denoted by ¥ ”H/\

* Goal: Predict labels for unlabeled nodes (transductive Target node
setting) or

. test nodes (inductive setting) or test graphs (inductive

setting)

Graph Convolutional Neural Network

Graph Convolution Layer

e GCN: multiple graph convolution layers

Va\

e A: normalized version of A:

~ Va\

A=A+1, D,=)Y A, P=DA
Vv

* Graph convolution:
- Input: features for each node H € R™P?

+1)

* Qutput: features for each node HY"D after gathering neighborhood information

. Convolution: PH": Aggregate features from neighbors

e Convolution + fully-connected layer + nonlinear activation:
« HUFD — G(PH(Z)W(Z)),
. W is the weights for the linear layer

e o(-): usually ReLU function

Graph Convolutional Neural Network

Graph convolutional network

new representation: z

0 02 - 08 09
08 03 0.6 01 0.2]a()
-—) 02 0 | e
0 05 0 01 0
0.3

0.2 - 0 0
Look at each node’s

neighbor nodes in graph learnable weighted matrix: W

Graph Convolutional Neural Network

Graph convolutional network

e Initial features HY = X
e Forlayer[=0,...,L
. 7D = pgOWO, gD = 5z0+Dy

 Use final layer feature HD e RY*K tor classification:

|
Loss = g Zloss(ys, ZH)

sES

» Each row of ZS(L) corresponds to the output score for each label

* Cross-entropy loss for classification

Graph Convolutional Neural Network

Graph convolutional network

. Model parameters: WD, ... WD)
 Can be usedto
* Predict unlabeled nodes in the training set
* Predict testing nodes (not in the training set)

* Predict labels for a new graph

» Also, features extracted by GCN H (L) is usually very useful for other tasks

Graph Convolutional Neural Network
Graph Attention Networks

 Each edge may not contribute equally
* Using attention mechanism to automatically assign weights to each edge:
exp(LeakyReLU(a'[Wh; | Wh]))
.« i Y ey XP(LeakyReLU(aT[Wh; | Wh])

« where /1, hj are the features for node 1 and J at previous layer, W is the GNN weight, a is the additional learnable
parameter for attention

Graph Convolutional Neural Network
GNN Pretraining

o Standard GNN pipeline:

e Text features = BERT/Word2vec = GNN

 GIANT-XRT: pretrain the feature extractors (e.g., BERT) based on the graph information.

Standard GNN . _ | A . A: Ytrn
. \ 4

pipeline: No fine-tuning | Optional I
Node i: x | mx (or 33.:: ML Output
: BERT ain l : SLLGNN r
Title + Abstract P methods)
Graph information included
not included
GIANT: A A, Yo

Node i: I_’ SSL fine -tuned GhiNS

Title + Abstract language model XGIANT {orother ML
methods

Graph information included

Output

