
Minhao Cheng

COMP6211I:
Trustworthy Machine Learning
Lecture 4

Course information

• Exam on next Monday (Feb 20) during the class time

• Remember to sign-up paper presentation sign-up

• Remember to submit project proposal (due on Feb 24) (1/2 page)

• Don’t worry if you couldn’t find teammates

Recurrent Neural Network
Attention in NMT

• Usually, each output word is only related to a subset of input words (e.g., for
machine translation)

• Let be the current decoder latent state, be the latent sate for
each input word

• Compute the weight of each state by

•

• Compute the context vector by

u v1, …, vn

p = Softmax(uTv1, …, uTvn)

Vp = p1v1 + … + pnvn

Recurrent Neural Network
Attention in NMT

Transformer
Transformer

• An architecture that replies entirely on attention without using CNN/RNN

• Proposed in ``Attention Is All You Need'' (Vaswani et al., 2017)

• Initially used for neural machine translation

Transformer
Encoder and Decoder

• Self attention layer: the main architecture used in Transformer

• Decoder: will have another attention layer to help it focuses on relevant parts
of input sentences.

Transformer
Encoder

• Each word has a corresponding ``latent
vector'' (initially the word embedding for
each word)

• Each layer of encoder:

• Receive a list of vectors as input

• Passing these vectors to a self-attention
layer

• Then passing them into a feed-foward
layer

• Output a list of vectors

Transformer
Self-attention layer

• Main idea: The actual meaning of each word may be related to other words in the sentence

• The actual meaning (latent vector) of each word is a weighted (attention) combination of other words (latent
vectors) in the sentences

Transformer
Self-attention layer

• Input latent vectors:

• Self-attention parameters:
 (weights for query, key,

value)

• For each word , compute

• Query vector:

• Key vector:

• Value vector:

x1, …, xn

WQ, WK, WV

i

qi = xiWQ

ki = xiWK

vi = xiWV

Transformer
Self-attention layer

• For each word , compute the scores to determine how much focus to place on other input words

• The attention score for word to word :

i

j i qT
i kj

Transformer
Self-attention layer

• For each word , the output vector

•

i

∑
j

sijvj, si = softmax(qT
i k1, …, qT

i kn)

Transformer
Matrix form

• Q = XWQ, K = XWK, V = XWV, Z = softmax(QKT)V

Transformer
Multiply with weight matrix to reshape

• Gather all the outputs

• Multiply with a weight matrix to
reshape

• Then pass to the next fully
connected layer

Z1, …, Zk

Transformer
Overall architecture

Transformer
Sinusoidal Position Encoding

• The above architecture ignores
the sequential information

• Add a positional encoding vector
to each (according to)xi i

Transformer
Positional Embedding

• Sin/cosine functions with different wavelengths (used in the original Transformer)

•

• smooth, parameter-free, inductive

The jth dimension of ith tokenpi[j] = {sin(i ⋅ c
j
d) if j is even

cos(i ⋅ c
j − 1

d) if j is odd

Transformer
Residual

Transformer
Whole framework

Vision Transformer (ViT)
Vision Transformer (ViT)

• Partition input image into
patches

• A linear projection to transform each
patch to feature (no convolution)

• Pass tokens into Transformer

K × K

Vision Transformer (ViT)
Vision Transformer (ViT)

• Patches are non-overlapping in the original ViT

• image tokens

• Smaller patch size more input tokens

• Higher computation (memory) cost, (usually) higher accuracy

• Use 1D (learnable) positional embedding

• Inference with higher resolution:

• Keep the same patch size, which leads to longer sequence

• Interpolation for positional embedding

N × N ⇒ (N/K)2

⇒

Vision Transformer (ViT)
ViT Performance

• ViT outperforms CNN with large pretraining

Vision Transformer (ViT)
ViT Performance

• Attention maps of ViT (to input)

Vision Transformer (ViT)
ViT v.s. ResNet

• Can ViT outperform ResNet on
ImageNet without pretraining?

• Deit (Touvron et al., 2021):

• Use very strong data
augmentation

• Use a ResNet teacher and
distill to ViT

Vision Transformer (ViT)
ViT v.s. ResNet

• ViT tends to converge to sharper regions than ResNet

Vision Transformer (ViT)
``Sharpness'' is related to generalization

• Testing can be viewed as a slightly perturbed training distribution

• Sharp minimum performance degrades significantly from training to testing⇒

Vision Transformer (ViT)
Sharpness Aware Minimization (SAM)

• Optimize the worst-case loss within a small neighborhood

•

• is a small constant (hyper-parameter)

• Use 1-step gradient ascent to approximate inner max:

•

• Conduct the following update for each iteration:

•

min
w

max
∥δ∥2≤ϵ

L(w + δ)

ϵ

̂δ = arg max
∥δ∥2≤ϵ

L(w) + ∇L(w)Tδ = ϵ
∇L(w)

∥∇L(w)∥

w ← w − α∇L(w + ̂δ)

Vision Transformer (ViT)
Sharpness Aware Minimization (SAM)

• SAM is a natural way to penalize sharpness region (but requires some
computational overhead)

Unsupervised pertaining for NLP
Motivation

• Many unlabeled NLP data but very few labeled data

• Can we use large amount of unlabeled data to obtain meaningful
representations of words/sentences?

Unsupervised pertaining for NLP
Learning word embeddings

• Use large (unlabeled) corpus to learn a useful word
representation

• Learn a vector for each word based on the corpus

• Hopefully the vector represents some semantic
meaning

• Can be used for many tasks

• Replace the word embedding matrix for DNN models
for classification/translation

• Two different perspectives but led to similar results:

• Glove (Pennington et al., 2014)

• Word2vec (Mikolov et al., 2013)

Unsupervised pertaining for NLP
Context information

• Given a large text corpus, how to learn low-dimensional features to represent
a word?

• For each word , define the ``contexts'' of the word as the words surrounding
it in an -sized window:

•

• Get a collection of (word, context) pairs, denoted by .

wi
L

wi−L−2, wi−L−1, wi−L, ⋯, wi−1

contexts of wi

, wi, wi+1, ⋯, wi+L

contexts of wi

, wi+L+1, ⋯

D

Unsupervised pertaining for NLP
Examples

Unsupervised pertaining for NLP
Use bag-of-word model

• Idea 1: Use the bag-of-word model
to ``describe'' each word

• Assume we have context words
 in the corpus, compute

•

• For each word , form a
-dimensional (sparse) vector to
describe

•

c1, ⋯, cd

#(w, ci) := number of times the pair(w, ci) appears in D

w d

w

#(w, c1), ⋯, #(w, cd),

Unsupervised pertaining for NLP
PMI/PPMI Representation

• Similar to TF-IDF: Need to consider the frequency of each word and each context

• Instead of using co-ocurrent count , we can define pointwise mutual information:

•

• : number of times word occurred in

• : number of times context occurred

• : number of pairs in

• Positive PMI (PPMI) usually achieves better performance:

•

• : a by word feature matrix, each row is a word and each column is a context

#(w, c)

PMI(w, c) = log(
̂P(w, c)

̂P(w) ̂P(c)
) = log

#(w, c) |D |
#(w)#(c)

,

#(w) = ∑
c

#(w, c) w D

#(c) = ∑
w

#(w, c) c

|D | D

PPMI(w, c) = max(PMI(w, c),0)

MPPMI n d

Unsupervised pertaining for NLP
PPMI Matrix

Unsupervised pertaining for NLP
Generalized Low-rank Embedding

• SVD basis will minimize

•

• Glove (Pennington et al., 2014)

• Negative sampling (less weights to 0s in)

• Adding bias term:

•

• Use or as the word embedding matrix

min
W,V

∥MPPMI − WVT∥2
F

MPPMI

MPPMI ≈ WVT + bweT + ebT
c

W V

Unsupervised pertaining for NLP
Word2vec (Mikolov et al., 2013)

• A neural network model for learning word embeddings

• Main idea:

• Predict the target words based on the neighbors (CBOW)

• Predict neighbors given the target words (Skip-gram)

Unsupervised pertaining for NLP
CBOW (Continuous Bag-of-Word model)

• Predict the target words based on the neighbors

Unsupervised pertaining for NLP
Skip-gram

• Predict neighbors using target word

Unsupervised pertaining for NLP
More on skip-gram

• Learn the probability : the probability to see in target word 's neighborhood

• Every word has two embeddings:

• serves as the role of target

• serves as the role of context

• Model probability as softmax:

•

P(wt+j |wt) wt+j wt

vi

ui

P(o |c) =
euT

o vc

∑W
w=1 euT

wvc

Unsupervised pertaining for NLP
Results

• The low-dimensional embeddings are (often) meaningful:

Contextual embedding
Contextual world representation

• The semantic meaning of a word should depend on its context

• Solution: Train a model to extract contextual representations on text corpus

Contextual embedding
CoVe (McCann et al., 2017)

• Key idea: Train a standard neural
machine translation model

• Take the encoder directly as
contextualized word embeddings

• Problems:

• Translation requires paired (labeled)
data

• The embeddings are tailored to
particular translation corpuses

Contextual embedding
Language model pretraining task

• Predict the next word given the
prefix

• Can be defined on any unlabeled
document

Contextual embedding
ELMo (Peter et al., 2018)

• Key ideas:

• Train a foward and backward
LSTM language model on large
corpus

• Use the hidden states for each
token to compute a vector
representation of each word

• Replace the word embedding by
Elmo's embedding (with fixed
Elmo's LSTM weights)

Contextual embedding
ELMo results

Contextual embedding
BERT

• Key idea: replace LSTM by Transformer

• Define the generated pretraining task by masked language model

• Two pretraining tasks

• Finetune both BERT weights and task-dependent model weights for each
task

Contextual embedding
BERT pretraining loss

• Masked language model: predicting each word by the rest of sentence

• Next sentence prediction: the model receives pairs of sentences as input and learns to predict if the second
sentence is the subsequent sentence in the original document.

Contextual embedding
BERT finetuning

• Keep the pretrained
Transformers

• Replace or append
a layer for the final
task

• Train the whole
model based on the
task-dependent
loss

Contextual embedding
BERT results

Graph Convolutional Neural Network
Node classification problem

• Given a graph of nodes, with adjacency matrix

• Each node is associated with a -dimensional feature
vector.

• : each row corresponds to the feature vector of a
node

• Observe labels for a subset of nodes: , only
observe a subset of rows, denoted by

• Goal: Predict labels for unlabeled nodes (transductive
setting) or

• test nodes (inductive setting) or test graphs (inductive
setting)

N A ∈ ℝN×N

D

X ∈ ℝN×D

Y ∈ ℝN×L

YS

Graph Convolutional Neural Network
Graph Convolution Layer

• GCN: multiple graph convolution layers

• : normalized version of :

•

• Graph convolution:

• Input: features for each node

• Output: features for each node after gathering neighborhood information

• Convolution: : Aggregate features from neighbors

• Convolution + fully-connected layer + nonlinear activation:

•

• is the weights for the linear layer

• : usually ReLU function

̂A A

Ã = A + I, D̃uv = ∑
v

Ãuv, P = D̃−1 ̂A

H(l) ∈ ℝn×D

H(l+1)

PH(l)

H(l+1) = σ(PH(l)W(l)),

W(l)

σ(⋅)

Graph Convolutional Neural Network
Graph convolutional network

Graph Convolutional Neural Network
Graph convolutional network

• Initial features

• For layer

•

• Use final layer feature for classification:

•

• Each row of corresponds to the output score for each label

• Cross-entropy loss for classification

H(0) := X

l = 0,…, L

Z(l+1) = PH(l)W(l), H(l+1) = σ(Z(l+1)),

H(L) ∈ ℝN×K

Loss =
1

|S | ∑
s∈S

loss(ys, Z(L)
s)

Z(L)
s

Graph Convolutional Neural Network
Graph convolutional network

• Model parameters:

• Can be used to

• Predict unlabeled nodes in the training set

• Predict testing nodes (not in the training set)

• Predict labels for a new graph

• Also, features extracted by GCN is usually very useful for other tasks

W(1), ⋯, W(L)

H(L)

Graph Convolutional Neural Network
Graph Attention Networks

• Each edge may not contribute equally

• Using attention mechanism to automatically assign weights to each edge:

•

• where are the features for node and at previous layer, is the GNN weight, is the additional learnable
parameter for attention

αi,j =
exp(LeakyReLU(aT[Whi ∣ Whj]))

∑k∈Ni
exp(LeakyReLU(aT[Whi ∣ Whk]))

hi, hj i j W a

Graph Convolutional Neural Network
GNN Pretraining

• Standard GNN pipeline:

• Text features BERT/Word2vec GNN

• GIANT-XRT: pretrain the feature extractors (e.g., BERT) based on the graph information.

⇒ ⇒

