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Course information

• Exam on next Monday (Feb 20) during the class time


• Remember to sign-up paper presentation sign-up


• Remember to submit project proposal (due on Feb 24) (1/2 page)


• Don’t worry if you couldn’t find teammates



Recurrent Neural Network
Attention in NMT

• Usually, each output word is only related to a subset of input words (e.g., for 
machine translation)


• Let  be the current decoder latent state,   be the latent sate for 
each input word


• Compute the weight of each state by


• 


• Compute the context vector by 

u v1, …, vn

p = Softmax(uTv1, …, uTvn)

Vp = p1v1 + … + pnvn



Recurrent Neural Network
Attention in NMT



Transformer
Transformer

• An architecture that replies entirely on attention without using CNN/RNN


• Proposed in ``Attention Is All You Need'' (Vaswani et al., 2017)


• Initially used for neural machine translation



Transformer
Encoder and Decoder

• Self attention layer: the main architecture used in Transformer


• Decoder: will have another attention layer to help it focuses on relevant parts 
of input sentences.



Transformer
Encoder

• Each word has a corresponding ``latent 
vector'' (initially the word embedding for 
each word)


• Each layer of encoder: 


• Receive a list of vectors as input


• Passing these vectors to a self-attention 
layer


• Then passing them into a feed-foward 
layer 


• Output a list of vectors



Transformer
Self-attention layer

• Main idea: The actual meaning of each word may be related to other words in the sentence


• The actual meaning (latent vector) of each word is a weighted (attention) combination of other words (latent 
vectors) in the sentences



Transformer
Self-attention layer

• Input latent vectors: 


• Self-attention parameters: 
 (weights for query, key, 

value)


• For each word , compute 


• Query vector:  


• Key vector: 


• Value vector: 

x1, …, xn

WQ, WK, WV

i

qi = xiWQ

ki = xiWK

vi = xiWV



Transformer
Self-attention layer

• For each word , compute the scores to determine how much focus to place on other input words


• The attention score for word  to word : 

i

j i qT
i kj



Transformer
Self-attention layer

• For each word , the output vector


•

i

∑
j

sijvj, si = softmax(qT
i k1, …, qT

i kn)



Transformer
Matrix form

• Q = XWQ, K = XWK, V = XWV, Z = softmax(QKT)V



Transformer
Multiply with weight matrix to reshape

• Gather all the outputs 


• Multiply with a weight matrix to 
reshape


• Then pass to the next fully 
connected layer

Z1, …, Zk



Transformer
Overall architecture



Transformer
Sinusoidal Position Encoding

• The above architecture ignores 
the sequential information


• Add a positional encoding vector 
to each  (according to )xi i



Transformer
Positional Embedding

• Sin/cosine functions with different wavelengths (used in the original Transformer)


• 


• smooth, parameter-free, inductive

The jth dimension of ith tokenpi[ j] = {sin(i ⋅ c
j
d) if j is even

cos(i ⋅ c
j − 1

d ) if j is odd



Transformer
Residual



Transformer
Whole framework



Vision Transformer (ViT)
Vision Transformer (ViT)

• Partition input image into  
patches


• A linear projection to transform each 
patch to feature (no convolution)


• Pass tokens into Transformer

K × K



Vision Transformer (ViT)
Vision Transformer (ViT)

• Patches are non-overlapping in the original ViT


•  image   tokens


• Smaller patch size  more input tokens


• Higher computation (memory) cost, (usually) higher accuracy


• Use 1D (learnable) positional embedding 


• Inference with higher resolution: 


• Keep the same patch size, which leads to longer sequence


• Interpolation for positional embedding

N × N ⇒ (N/K)2

⇒



Vision Transformer (ViT)
ViT Performance

• ViT outperforms CNN with large pretraining



Vision Transformer (ViT)
ViT Performance

• Attention maps of ViT (to input)



Vision Transformer (ViT)
ViT v.s. ResNet

• Can ViT outperform ResNet on 
ImageNet without pretraining?


• Deit (Touvron et al., 2021): 


• Use very strong data 
augmentation


• Use a ResNet teacher and 
distill to ViT



Vision Transformer (ViT)
ViT v.s. ResNet

• ViT tends to converge to sharper regions than ResNet



Vision Transformer (ViT)
``Sharpness'' is related to generalization

• Testing can be viewed as a slightly perturbed training distribution


• Sharp minimum  performance degrades significantly from training to testing⇒



Vision Transformer (ViT)
Sharpness Aware Minimization (SAM)

• Optimize the worst-case loss within a small neighborhood


• 


•  is a small constant (hyper-parameter)


• Use 1-step gradient ascent to approximate inner max:


• 


• Conduct the following update for each iteration:


•

min
w

max
∥δ∥2≤ϵ

L(w + δ)

ϵ

̂δ = arg max
∥δ∥2≤ϵ

L(w) + ∇L(w)Tδ = ϵ
∇L(w)

∥∇L(w)∥

w ← w − α∇L(w + ̂δ)



Vision Transformer (ViT)
Sharpness Aware Minimization (SAM)

• SAM is a natural way to penalize sharpness region (but requires some 
computational overhead)



Unsupervised pertaining for NLP
Motivation

• Many unlabeled NLP data but very few labeled data


• Can we use large amount of unlabeled data to obtain meaningful 
representations of words/sentences?



Unsupervised pertaining for NLP
Learning word embeddings

• Use large (unlabeled) corpus to learn a useful word 
representation


• Learn a vector for each word based on the corpus


• Hopefully the vector represents some semantic 
meaning


• Can be used for many tasks


• Replace the word embedding matrix for DNN models 
for classification/translation


• Two different perspectives but led to similar results:


• Glove (Pennington et al., 2014)


• Word2vec (Mikolov et al., 2013)



Unsupervised pertaining for NLP
Context information

• Given a large text corpus, how to learn low-dimensional features to represent 
a word? 


• For each word , define the ``contexts'' of the word as the words surrounding 
it in an -sized window:


•



• Get a collection of (word, context) pairs, denoted by .

wi
L

wi−L−2, wi−L−1, wi−L, ⋯, wi−1

contexts of wi

, wi, wi+1, ⋯, wi+L

contexts of wi

, wi+L+1, ⋯

D



Unsupervised pertaining for NLP
Examples



Unsupervised pertaining for NLP
Use bag-of-word model

• Idea 1: Use the bag-of-word model 
to ``describe'' each word


• Assume we have context words 
 in the corpus, compute


• 


• For each word , form a 
-dimensional (sparse) vector to 
describe 


•

c1, ⋯, cd

#(w, ci) :=  number of times the pair(w, ci) appears in D

w d

w

#(w, c1), ⋯, #(w, cd),



Unsupervised pertaining for NLP
PMI/PPMI Representation

• Similar to TF-IDF: Need to consider the frequency of each word and each context


• Instead of using co-ocurrent count , we can define pointwise mutual information: 


• 


• : number  of times word  occurred in 


• : number of times context  occurred 


• : number of pairs in 


• Positive PMI (PPMI) usually achieves better performance: 


• 


• : a  by  word feature matrix, each row is  a word and each column is a context

#(w, c)

PMI(w, c) = log(
̂P(w, c)

̂P(w) ̂P(c)
) = log

#(w, c) |D |
#(w)#(c)

,

#(w) = ∑
c

#(w, c) w D

#(c) = ∑
w

#(w, c) c

|D | D

PPMI(w, c) = max(PMI(w, c),0)

MPPMI n d



Unsupervised pertaining for NLP
PPMI Matrix



Unsupervised pertaining for NLP
Generalized Low-rank Embedding

• SVD basis will minimize


• 


• Glove (Pennington et al., 2014)


• Negative sampling (less weights to 0s in )


• Adding bias term: 


• 


• Use  or  as the word embedding matrix 

min
W,V

∥MPPMI − WVT∥2
F

MPPMI

MPPMI ≈ WVT + bweT + ebT
c

W V



Unsupervised pertaining for NLP
Word2vec (Mikolov et al., 2013)

• A neural network model for learning word embeddings


• Main idea:


• Predict the target words based on the neighbors (CBOW)


• Predict neighbors given the target words (Skip-gram)



Unsupervised pertaining for NLP
CBOW (Continuous Bag-of-Word model)

• Predict the target words based on the neighbors



Unsupervised pertaining for NLP
Skip-gram

•  Predict neighbors using target word



Unsupervised pertaining for NLP
More on skip-gram

• Learn the probability : the probability to see  in target word 's neighborhood


• Every word has two embeddings:


•  serves as the role of target


•  serves as the role of context


• Model probability as softmax:


•

P(wt+j |wt) wt+j wt

vi

ui

P(o |c) =
euT

o vc

∑W
w=1 euT

wvc



Unsupervised pertaining for NLP
Results

• The low-dimensional embeddings are (often) meaningful: 



Contextual embedding
Contextual world representation

• The semantic meaning of a word should depend on its context 


• Solution: Train a model to extract contextual representations on text corpus



Contextual embedding
CoVe (McCann et al., 2017)

• Key idea: Train a standard neural 
machine translation model


• Take the encoder directly as 
contextualized word embeddings


• Problems: 


• Translation requires paired (labeled) 
data


• The embeddings are tailored to 
particular translation corpuses



Contextual embedding
Language model pretraining task

• Predict the next word given the 
prefix


• Can be defined on any unlabeled 
document



Contextual embedding
ELMo (Peter et al., 2018)

• Key ideas:


• Train a foward and backward 
LSTM language model on large 
corpus 


• Use the hidden states for each 
token to compute a vector 
representation of each word


• Replace the word embedding by 
Elmo's embedding (with fixed  
Elmo's LSTM weights)



Contextual embedding
ELMo results



Contextual embedding
BERT

• Key idea: replace LSTM by Transformer


• Define the generated pretraining task by masked language model


• Two pretraining tasks


• Finetune both BERT weights and task-dependent model weights for each 
task



Contextual embedding
BERT pretraining loss

• Masked language model: predicting each word by the rest of sentence


• Next sentence prediction: the model receives pairs of sentences as input and learns to predict if the second 
sentence is the subsequent sentence in the original document. 



Contextual embedding
BERT finetuning

• Keep the pretrained 
Transformers


• Replace or append 
a layer for the final 
task


• Train the whole 
model based on the 
task-dependent 
loss



Contextual embedding
BERT results



Graph Convolutional Neural Network
Node classification problem

• Given a graph of  nodes, with adjacency matrix 


• Each node is associated with a -dimensional feature 
vector. 


• : each row corresponds to the feature vector of a 
node


• Observe labels for a subset of nodes: , only  
observe a subset of rows, denoted by 


• Goal: Predict labels for unlabeled nodes (transductive 
setting) or 


•       test nodes (inductive setting) or test graphs (inductive 
setting)

N A ∈ ℝN×N

D

X ∈ ℝN×D

Y ∈ ℝN×L

YS



Graph Convolutional Neural Network
Graph Convolution Layer

• GCN: multiple graph convolution layers


• : normalized version of :


• 


• Graph convolution: 


• Input: features for each node 


• Output: features for each node  after gathering neighborhood information


• Convolution: : Aggregate features from neighbors 


• Convolution + fully-connected layer + nonlinear activation: 


• 


•  is the weights for the linear layer


• : usually ReLU function

̂A A

Ã = A + I, D̃uv = ∑
v

Ãuv, P = D̃−1 ̂A

H(l) ∈ ℝn×D

H(l+1)

PH(l)

H(l+1) = σ(PH(l)W(l)),

W(l)

σ( ⋅ )



Graph Convolutional Neural Network
Graph convolutional network



Graph Convolutional Neural Network
Graph convolutional network

• Initial features 


• For layer 


• 


• Use final layer feature  for classification: 


• 


• Each row of  corresponds to the output score for each label


• Cross-entropy loss for classification

H(0) := X

l = 0,…, L

Z(l+1) = PH(l)W(l), H(l+1) = σ(Z(l+1)),

H(L) ∈ ℝN×K

Loss =
1

|S | ∑
s∈S

loss(ys, Z(L)
s )

Z(L)
s



Graph Convolutional Neural Network
Graph convolutional network

• Model parameters: 


• Can be used to 


• Predict unlabeled nodes in the training set


• Predict testing nodes (not in the training set)


• Predict labels for a new graph


• Also, features extracted by GCN  is usually very useful for other tasks

W(1), ⋯, W(L)

H(L)



Graph Convolutional Neural Network
Graph Attention Networks

• Each edge may not contribute equally


• Using attention mechanism to automatically assign weights to each edge:


• 


•  where  are the features for node  and  at previous layer,  is the GNN weight,  is the additional learnable 
parameter for attention

αi,j =
exp(LeakyReLU(aT[Whi ∣ Whj]))

∑k∈Ni
exp(LeakyReLU(aT[Whi ∣ Whk]))

hi, hj i j W a



Graph Convolutional Neural Network
GNN Pretraining

• Standard GNN pipeline:


• Text features  BERT/Word2vec  GNN


• GIANT-XRT: pretrain the feature extractors (e.g., BERT) based on the graph information. 

⇒ ⇒


