COMP6211I:
Trustworthy Machine Learning

Lecture 3

Minhao Cheng



Exam

* On next Monday (Feb 20) during the class time

80 minutes

 Format:
* True/False questions with reasons
e Short answer questions

* Problems (gradient derivation etc.)



From week 3

* Paper presentation sign-up started today
e Start from Feb 20:
 Reading summary
* Paper presentation
* Class notes & participation
* Project proposal will be due on Feb 24 (1/2 page)
» Title
* Proposed problem

* Proposed methodology (optional)



Convolutional Neural Network

Neural Networks
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* Fully connected networks = doesn't work well for computer vision applications



Convolutional Neural Network

Convolution Layer

* Fully connected layers have too many parameters

e = poor performance

 Example: VGG first layer
e Input: 224 X 224 X 3

« Output: 224 x 224 X 64

 Number of parameters if we use fully connected net:

o (224 X 224 X 3) X (224 X 224 X 64) = 483 billion

* Convolution layer leads to:
* Local connectivity

* Parameter sharing



Convolutional Neural Network

Convolution

» The convolution of an image x with a kernel k is computed as

C@FR= ) X ik
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Convolutional Neural Network

Convolution

1*1+0.5%0.2 + 0.25%0.2 + 0*0 = 1.15
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Convolutional Neural Network

Convolution

0.5*1 + 20%0.2 + 0*0.2+ 0*0=4.5
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Convolutional Neural Network

Convolution

0.25*1 + 0*%0.2 + 0*0.2 + 0*0 =0.25
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Convolutional Neural Network

Convolution

0*1+0*0.2 +0*0.2+20*0=0
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Convolutional Neural Network

Convolution

~

L X kij, where Wij — Wij

128 128

128 128




Convolutional Neural Network

Convolution

e Element-wise activation function after convolution

= detector of a feature at any position in the image

~

T * k;;, where W;; = W,

Sigm(0.02 Lg * /C@' -4)



Convolutional Neural Network

Learned Kernels

e Example kernels learned by AlexNet

* Number of parameters:

« Example: 200 x 200 image, 100 kernels, kernel size 10 X 10

« > 10X 10 x 100 = 10K parameters



Convolutional Neural Network
Padding

* Use zero padding to allow going over the boundary

» Easier to control the size of output layer




Convolutional Neural Network
Strides

e Stride: The amount of movement between applications of the filter to the
iInput Image

o Stride (1,1): no stride




Convolutional Neural Network

Pooling

* |[t’'s common to insert a pooling layer in-between successive convolutional layers
 Reduce the size of presentation, down-sampling

 Example: Max pooling

224x224x64 _ _
21264 | | Single depth slice
" 111 1]2]4
max pool with 2x2 filters
e /7 | 8 and stride 2 6 | 8
l I 3 | 2 3 =
1 | 2 ESEES
ez downsampling 3 .
112 >
224 Yy



Convolutional Neural Network

Pooling

By pooling, we gain robustness to the exact spatial location of features




Convolutional Neural Network
Example: LeNet5

e Input: 32 X 32 images (MNIST)

. _ . . : C3: . maps 16@10x10
Convolution 1: 6 5 X Sfilters, stride 1 C1: foshure maps S4: f. maps 15@5,5

INPUT
ot 6@26x28

C5 '3YG‘ FG layer OUT PUT

CONN

l Full oonr\ed»on I Gaussuan connection:
 Output: 16 10 X 10 maps Coasolicss Subsampling Cmv i iiln plmg R i

« Output: 6 28 X 28 maps
« Pooling 1: 2 X 2 max pooling, stride 2

e QOutput: 6 14 X 14 maps

« Convolution 2: 16 5 X 5 filters, stride 1 N

» Pooling 2: 2 X 2 max pooling with stride 2
« QOutput: 16 5 X 5 maps (total 400 values)

3 fully connected layers: 120 = 84 = 10 neurons



Convolutional Neural Network

Training

e [raining:
* Apply SGD to minimize in-sample training error

 Backpropagation can be extended to convolutional layer and pooling layer
to compute gradient!

 Millions of parameters = easy to overfit



Convolutional Neural Network

Revisit Alexnet

* Dropout: 0.5 (in FC layers)

* A lot of data augmentation

 Momentum SGD with batch size 128, momentum factor 0.9
» |2 weight decay (L2 regularization)

* | earning rate: 0.01, decreased by 10 every time when reaching a stable
validation accuracy



Convolutional Neural Network
Dropout

* One of the most effective regularization for deep neural networks

2.5F

Method CIFAR-10 CIFAR-100 2old

Conv Net + max pooling (hand tuned) 15.60 43.48 g
Conv Net + stochastic pooling (Zeiler and Fergus, 2013) 15.13 42.51 5
Conv Net + max pooling (Snoek et al., 2012) 14.98 - §_ Ll
Conv Net 4+ max pooling + dropout fully connected layers 14.32 41.26 s ¥
Conv Net + max pooling + dropout in all layers 12.61 37.20

Conv Net + maxout (Goodfellow et al., 2013) 11.68 38.57

1.0t

Table 4: Error rates on CIFAR-10 and CIFAR-100.

0 200000 400000 600000 800000 1000000
Number of weight updates

Srivastava et al, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, 2014.



Convolutional Neural Network

Dropout(training)

Full network

 Dropout in the training phase:

e For each batch, turn off each .
neuron (including inputs) with a
probability 1 — o Q )
 Zero out the removed nodes/edges / Q Q/ \O """
and do backpropogation O Q O Q \<>

1st batch 2nd batch



Convolutional Neural Network
Dropout(test)

e The model is different from the full model:

 Each neuron computes

X = B"(Z W=D 4 pl0)

 Where B is Bernoulli variable that takes 1 with probability

* The expected output of the neuron:

Elx?] = aof Z W=D 4 pl0)

* Use the expected output at test time = multiply all the weights by o



Convolutional Neural Network

Batch Normalization

* |nitially proposed to reduce co-variate shift

Iy =M
'L 9 ,)’ C
Ob,c,x,y N }/ + ﬂ Vba C9 xa ya
\/ot+ €
« U, = ﬁ by Iy ¢ .+ the mean for channel ¢, and o, standard deviation.

» yand f: two learnable parameters



Convolutional Neural Network

Batch Normalization

100 -

O
%)

O
o

e Couldn’t reduce covariate
shift (llyas et al 2018)

co
U

train accuracy

— Ir=0.003 (with BN)
Ir=0.1 (with BN)

» Allow larger learning rate i

— Ir=0.0001 (w/o BN)

— Ir=0.003 (with BN)
Ir=0.1 (with BN)

— Ir=0.0001 (with BN)

— Ir=0.0001 (w/o BN)

= 0 20 40 60 80 100 0 20 40 60 80 100
. " % of training % of training
» Constraint the gradient . -
n O rm 24000 -
2400 -
18000 -
1800
b/ 2D
c e
§ 1200 § 120007
— 6000 -
0 004 —0.02 0.00 0.02 0.04 = D 0 2

gradient magnitude gradient magnitude



Convolutional Neural Network

Other normalization

Batch Normalization Layer Normalization
batch Same for all
Batch Norm Layer Norm Instance Norm ate training examples batch
—— mean std —
1([3][[6 3 3 1!l 13!l 6
P \\ 2(12(]|2 L |2 0 21l1 21| 2
3 NN 3 =1 3 N TN . 0[|l1][|5] _ (3 3 olll1!l]s
] N £ = " . B L= = '
T [ T = N allef[1] [a] |3 niGiE
1 ™\ I =
o O] N N 5112 1|3 13 2 51 2(l|3
= L NN = = ]
NG TN NER 1//0]|1 1 1 1|l o] 1
! | N N | = >
\ \' \ \ - . -
C\ C\ | mean |2 |3 |3 Same for all
; N : sd [2][2][2 feature dimensions




Convolutional Neural Network

Residual Networks

* \Very deep convnets do not train well —vanishing gradient problem

o
=)
1

S6-layer

20-layer

S6-layer

20-layer

test error (%)

training error (%)

e
e
[a—

l2 . 3 < é 6 0 i é . 3 4
iter. (1le4) iter. (1le4)



Convolutional Neural Network

Residual Networks

e Key idea: introduce pass through'' into each layer

X lt
weight layer \

f(x) l relu .

weight layer / identity
F(x) +x (,% -

E—

. lll

* Thus, only residual needs to be learned



Convolutional Neural Network _: =

e
Residual Networks T AL
-
i
===_
method top-1err.  top-5 err. . ‘4 ,' :Zit:n: =
VGG [41] (ILSVRC’14) : 8 43 e e e
GoogLeNet [44] ILSVRC’14) - 7.89 e — —
VGG [41] (v5) 24 .4 7.1 J ::::?E.:::i :
PReLU-net [13] 21.59 5.71 R - —
BN-inception [16] 21.99 5.81 == N
ResNet-34 B 21.84 5.71 =
ResNet-34 C 21.53 5.60 S
ResNet-50 20.74 5.5 ==
ResNet-101 19.87 4.60 = 4 Cemm
ResNet-152 19.38 4.49 =
Table 4. Error rates (%) of single-model results on the ImageNet 2 e [' % : "

validation set (except | reported on the test set). ——



Bag of word

* A classical way to represent NLP data

 Each sentence (or document) is

represented by a d-dimensional vector

X, where X; is number of occurrences
of word 1

e number of features = number of
potential words (very large)

Representation for sentence/document

(international)

The Internatioire
on Maekd

ONTEIreReLE

(conference)

o | earning i
_”

leading internationg

(machine)

academic conferBre

(train)

machiie learning,

(learning)

(leading)

y

(totoro)

O |, N TOIN|ININ



Feature generation for documents

Representation for sentence/document

« Bag of n-gram features (n = 2):

. 10,000 words = 100002

potential features

(international)

(conference)

(machine)

(train)

(learning)

(leading)

(international academic)

(totoro)

O kL, IN|JTOININ|IN

(international conference) 1
(machine learning) 2
(leading international) 1
(totoro tiger) 0

(tiger woods) 0

1

1

(international academic)




Representation for sentence/document

Bag of word + linear model

 Example: text classification (e.g., sentiment prediction, review score
prediction)

e Linear model: y X sign(wa) (e.g., by linear SVM/logistic regression)

« w;: the contribution' of each word



Representation for sentence/document

Bag of word + Fully connected network

e f(x) = W,o(W;_;---0(Wyx))

» The first layer W, is a d; by d matrix:
 Each column w; is a d; dimensional representation of i-th word (word embedding )
e Wox =xw; +x,w,+ -+ +x,w,is a linear combination of these vectors
« W, is also called the word embedding matrix

» Final prediction can be viewed as an L — 1 layer network on Wx (average of word
embeddings)

* Not capturing the sequential information



Recurrent Neural Network

Time series/Sequence data

e Input: {x{,X,, ***, X7}

» Each x, is the feature at time step ¢

» Each x, can be a d-dimensional vector
» Output: Yy, ¥, -+, V)

» Each y, is the output at step ¢

* Multi-class output or Regression output:

e y, € {1,2,--,L} or y €l



Recurrent Neural Network

Example: Time Series Prediction

e Climate Data;:

« X,. temperature at time ¢

e y.: temperature (or temperature -
change) at time 7 + 1

» Stock Price: Predicting stock price

1e+05

2e;05
1:nrow(data)

3e

+05

4e+05



Recurrent Neural Network

Example: Language Modeling

The cat IS ?



Recurrent Neural Network

Example: Language Modeling

The cat IS ?

* X,. one-hot encoding to represent the
word at step 7 (|0,...,0,1,0,...,0])

» y.: the next word

. v, € {l1,--,V} V:Vocabulary size




Recurrent Neural Network
Example: POS Tagging

* Part of Speech Tagging:

 Labeling words with their Part- @ @ @ ° @ »
Of-Speech (Noun, Verb,
Adjective, ...)
s cashes  on

 X,. avector to represent the
word at step ¢

 y.: label of word ?



Recurrent Neural Network
Example: POS Tagging

O

O Ot—l Ot 01+1
i I

S
SO:} > %% Ot—l Ot Ot+1
T Unfold T W T W T W
U U U U
X i g o Xt

« X, I-th input
« 5, hidden state at time 7 ("memory’' of the network)

e 5, =f(Ux,+ Ws,_,)

« W: transition matrix, U: word embedding matrix, s, usually set to be 0
* Predicted output at time f:

. o, = argmax(Vs,),
i



Recurrent Neural Network
Recurrent Neural Network (RNN)

* Training: Find U, W, V to minimize empirical loss:

* | oss of a sequence:

T
) Z loss(Vs,, y,)
=1

* (s,is a function of U, W, V)

e Loss on the whole dataset:
* Average loss over all sequences

* Solved by SGD/Adam



RNN: Text Classification

 Not necessary to output at each step

 Text Classification:

Recurrent Neural Network

o000

e sentence — category
* Qutput only at the final step

 Model: add a fully connected network
to the final embedding

|

The

@000 v

)

1)

X, 4

cat

@000 v

[. ~ QJ v

/)J[oooohy

X, ‘

@eee

[0000}

X4

eating

O

Output probability
for binary classification

Sentence embedding



Recurrent Neural Network

Problems of Classical RNN

 Hard to capture long-term dependencies
 Hard to solve (vanishing gradient problem)
* Solution:
e LSTM (Long Short Term Memory networks)
 GRU (Gated Recurrent Unit)



Recurrent Neural Network

LSTM
S S
+ RNN: : ) o i
o Nompps i Ko B
\I J :| y \| y
&) %) &)
. LSTM: & ®) &)
SN R R
A o |[0 t%‘ ﬂ? A
&) %) &)

Pointwise Vector
eration Transfer Concatenate Copy



Neural Machine Translation (NMT)

* Out the translated sentence from an input
sentence

* Training data: a set of input-output pairs
(supervised setting)

 Encoder-decoder approach:

 Encoder: Use (RNN/LSTM) to encode
the input sentence input a latent vector

* Decoder: Use (RNN/LSTM) to generate
a sentence based on the latent vector

Recurrent Neural Network

Awesome
Y1

sauce
Y>

ol [o 0
ol w |o
— > >
O -> @ N
> ® 0 0
X1 X, X3
0000 (ecoe| (0000

Echt

dicke

(e000| >

o000




Recurrent Neural Network

Neural Machine Translation

f= (La, croissance, €conomique, s'est, ralentie, ces, dernieres, années, .)

e = (Economic, growth, has, slowed, down, in, recent, years, .)

I9p023(]



Recurrent Neural Network
Attention iIn NMT

* Usually, each output word is only related to a subset of input words (e.g., for
machine translation)

» Let u be the current decoder latent state, vy, ..., v, be the latent sate for
each input word

 Compute the weight of each state by
« D = Softmax(uTvl, Cees uTvn)

« Compute the context vectorby Vp =p v, + ... + p,v,



Recurrent Neural Network
Attention iIn NMT

addition

ddddddd
hidden state

000 —»5 . —»5 —»5
| | | |

s OCTDO OCTDO OCT)O OCTDO

I T T T



Transformer

Transformer

* An architecture that replies entirely on attention without using CNN/RNN

* Proposed in "Attention Is All You Need'' (Vaswani et al., 2017)

 |nitially used for neural machine translation | am a student
A

7 N
ENCODER DECODER

. W

4 4 ’ Y
ENCODER DECODER

. Y

4 4 * Y
ENCODER DECODER

. J

{ 4 4 N
ENCODER DECODER

. J

a * * N
ENCODER DECODER

. J

~ i B _
ENCODER DECODER

- i

\_ @ _J




Transformer

Encoder and Decoder

o Self attention layer: the main architecture used in Transformer

 Decoder: will have another attention layer to help it focuses on relevant parts

Feed Forward

Feed Forward Encoder-Decoder Attention

of input sentences.

Self-Attention Self-Attention



Transformer

Encoder

* Each word has a corresponding latent
vector' (initially the word embedding for
each word)

 Each layer of encoder:
* Recelve a list of vectors as input

* Passing these vectors to a self-attention
layer

* Then passing them into a feed-foward
layer

* Qutput a list of vectors

Self-Attention




Transformer

Self-attention layer

 Main idea: The actual meaning of each word may be related to other words in the sentence

* The actual meaning (latent vector) of each word is a weighted (attention) combination of other words (latent
vectors) in the sentences

Layer: S § | Attention: Input - Input —

The_ The_
animal_ animal_
didn_ didn_
t_ t_
Cross_ Cross_
the_ the_
street_ street_
because because
it_ it_
was_ was_
too_ too_
tire tire

d d



Transformer

Self-attention layer

 Input latent vectors: Xy, ..., x,

o Self-attention parameters:
We, WK WV (weights for query, key,
value)

* For each word 1, compute
- Query vector: g; = x;W¥
» Key vector: k; = xiWK

 Value vector: v; = xl-WV

Input

Embedding

Queries

Keys

Values




Transformer

Self-attention layer

« For each word i1, compute the scores to determine how much focus to place on other input words

 The attention score for word j to word i: ql.Tkj

Input

Embedding

Queries

Keys

Values

Score °




Transformer

Self-attention layer

* For each word 1, the output vector

)

J

S;iVin

s; = softmax(q; ky, ..., q

'k

1 N

)

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (

Softmax

Softmax
X

Sum

dy

)




Transformer

Matrix form

. O =XWY K=XWX V=XW"Y, Z=softmax(QK")V

softmax(




Transformer

Multiply with weight matrix to reshape

o Gather a” the OUtpUtS Zl, e o o0 Zk 1) Concatenate all the attention heads 2) Multiply with a weight

matrix that was trained
jointly with the model

 Multiply with a weight matrix to ‘
reshape

¢ Then pass tO the neXt fu I Iy ?)The Irleshult Woulq behthed matrix that cdap;yrfs info;mati;)n
connected layer |

T



Transformer

Overall architecture

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
X Wo®
Qo
T
—J_.
W;0
* In all encoders other than #0, | 01

we don't need embedding. T

We start directly with the output ]

of the encoder right below this one

Q-




Transformer

Sinusoidal Position Encoding

* The above architecture ignores
the sequential information

* Add a positional encoding vector
to each x; (according to 1)

ENCODER #1

' ' C DECODER #1

( ENCODER #0 ' ' ( DECODER #0
EMBEDDING
WITH TIME

SIGNAL

POSITIONAL
ENCODING

EMBEDDINGS

INPUT

L[ 1]
NN

NN

L L[]
NN

L[]




Transformer
Positional Embedding

* Sin/cosine functions with different wavelengths (used in the original Transformer)

L | | , sin( - CJE) if j is even
_ The jth dimension of ith tokenp,| j] =

.o J=1
cos(i-c 7 )ifjis odd

 smooth, parameter-free, inductive




Transformer

Residual

> Add & Normalize

ENCODER #1

‘------

POSITIONAL
ENCODING

X1 X2
Thinking Machines




Transformer

Whole framework

lllllllllllllllllllllllllllllllllllllllll

- |
I 2
= || Feed Forward Feed Forward : v,
% ' SRRL (TPF > DECODER #2
a :
S t .
& : Re Add & Normalize )
'Ej : Feed Forward Feed Forward
S = [ S vyyy py——— R oy ————
i
: QO . Add & Normalize
: ., |
i; : Feed Forward Feed Forward Ii® Encoder-Decoder Attention
= T Y PPy REPCIIIIT IITTTTLTTTTITTTITrTY
O .
o\, , > Add & Normalize
i | ; : S
: E Self-Attention

"
‘~ --------------------------- ) ‘~ ---------------------------
POSITIONAL
ENCODING

X1 X2

Thinking Machines



Vision Transformer (ViT)

Vision Transformer (ViT)

Vision Transformer (ViT) 0 Transfornier Encoder
» Partition input image into K X K Class o RO
Eall Head b
patches L | i

N\

N orm

Transformer Encoder

* A linear projection to transform each

patch to feature (no convolution) Pag;;eggggn; 08 é‘ @15 @fg

* Extra learnable
[class] embedding

Multi-Head
Attention

1 3

|
Con )
|

(U

Linear Projection of Flattened Patches

i
S AT il WY = |

e Pass tokens into Transformer

Embedded
Patches




Vision Transformer (ViT)

Vision Transformer (ViT)

 Patches are non-overlapping in the original ViT
. N x N image = (N/K)* tokens

 Smaller patch size = more input tokens

* Higher computation (memory) cost, (usually) higher accuracy
 Use 1D (learnable) positional embedding
* |Inference with higher resolution:

 Keep the same patch size, which leads to longer sequence

* |nterpolation for positional embedding



Vision Transformer (ViT)

ViT Performance

* VIiT outperforms CNN with large pretraining

\O
-

ImageNet Topl Accuracy [%]
~ o0
N -

70 -

o0
N
R B

BiT ViT-L/32

ViT-B/32 ViT-L/16

ViT-B/16 ViT-H/14
ImagleNet Imagel\llet-z 1k JFT-300M

Pre-training dataset



Vision Transformer (ViT)

ViT Performance

e Attention maps of VIT (to input)




Vision Transformer (ViT)
ViT v.s. ResNet

86
e Can ViT outperform ResNet on

ImageNet without pretraining? R
e Deit (Touvron et al., 2021): 82
* Use very strong data ESO

augmentation &
« Use a ResNet teacher and ”
distill to VIiT N

oDeiT-B21384

\.
\.

T4 DeiT-B™
B7 2
\.
\.
*« N
S “o DeiT-S2
EfficientNet '\'*.\
ViT N,
\.
—&—- Ours N
| —e— Ours? N,
»
Bl
ViT-B
ViT-L BO

50 100 200 500 1000 2500
images/s




Vision Transformer (ViT)
ViT v.s. ResNet

* VIT tends to converge to sharper regions than ResNet

\8u7 —7 78(0
7 ‘6§ H7.5 ( 763 F7.5
‘4-% 5.0 e — '4-'(% 5.0
*2’: .2}:
2.5 2.5
——— | /1!?00 H0.0 \AU /1 oO io.o
£ /0.5 & 0.5
~1.0 oo ~1.0 ;«"‘/6.0
-0.5 —05
0.0 -0.5 0.0 /=0.5
0.5 0.5 A
1.0 ~1.0 10 -1.0
(a) ResNet (b) ViT
Leading eigenvalue of Leading eigenvalue of

Hessian: 179.8 Hessian: 738.8



Vision Transformer (ViT)

“Sharpness' is related to generalization

* Jesting can be viewed as a slightly perturbed training distribution

e Sharp minimum = performance degrades significantly from training to testing

Training Function

T ' Testing Function

Flat Minimum Sharp Minimum

Figure from (Keskar et al., 2017)



Vision Transformer (ViT)

Sharpness Aware Minimization (SAM)

* Optimize the worst-case loss within a small neighborhood

min max L(w + o)
wo ||6l,<e

* ¢ is a small constant (hyper-parameter)

 Use 1-step gradient ascent to approximate inner max:

n - V L(w)
o =arg max L(w)+ VL(w)' 0 =€
l5ll,<e |V Lw)|

 Conduct the following update for each iteration:

. w<—w—aVL(w+(§)



Vision Transformer (ViT)

Sharpness Aware Minimization (SAM)

« SAM is a natural way to penalize sharpness region (but requires some
computational overhead)

Training Furiction

' Testing Function

Flat Minimum Sﬁarp Minimum




Unsupervised pertaining for NLP

Motivation

 Many unlabeled NLP data but very few labeled data

 Can we use large amount of unlabeled data to obtain meaningful
representations of words/sentences?



Unsupervised pertaining for NLP

Learning word embeddings

* Use large (unlabeled) corpus to learn a useful word
representation

* | earn a vector for each word based on the corpus

 Hopefully the vector represents some semantic
meaning

* Can be used for many tasks

* Replace the word embedding matrix for DNN models
for classification/translation

» Two different perspectives but led to similar results:
* Glove (Pennington et al., 2014)
 Word2vec (Mikolov et al., 2013)

-
v

travel

" relative

=



Unsupervised pertaining for NLP

Context information

* (Given a large text corpus, how to learn low-dimensional features to represent
a word?

» For each word w;, define the “contexts'' of the word as the words surrounding
it in an L-sized window:

Wi I Z’Wi I 1’Wi—L’ -..,Wi_l,Wi,Wi_l_l’ ---,Wl._I_L,WiILIl, coe

- 4

contexts of w,

- 4

contexts of w,

» Get a collection of (word, context) pairs, denoted by D.



Unsupervised pertaining for NLP

Examples

Training
Samples

Source Text

-quick brown |[fox jumps over the lazy dog. = (the, quick)
(the, brown)

The-brown fox|jumps over the lazy dog. == (quick, the)
(quick, brown)

(quick, fox)

The quick-fox jumps|over the lazy dog. = (brown, the)
(brown, quick)

(brown, fox)
(brown, jumps)

jumps|over|the lazy dog. = (fox, quick)
(fox, brown)
(fox, jJumps)
(fox, over)

The| quick|brown JE¢




Unsupervised pertaining for NLP

Use bag-of-word model

* |dea 1: Use the bag-of-word model
to "describe'' each word

 Assume we have context words o ‘ ‘
Ci, =+, C4in the corpus, compute e
_ . | ‘ | d-dimensional
* #(w,c;) ;= number of times the pair(w, ¢;) appears in D (brown) w, #w, c) E?t'}jbrfovwerﬁor
 For each word w, form a d o W
-dimensional (sparse) vector to
describe w

e #(w,cy), -+, #(w, c)),



Unsupervised pertaining for NLP
PMI/PPMI Representation

e Similar to TF-IDF: Need to consider the frequency of each word and each context

» Instead of using co-ocurrent count #(w, ¢), we can define pointwise mutual information:

P(w, ¢) #(w, )| D|
PMI(w, =3 | — - =3 | ,
) (. €) = log( P(W)P(C)) 08 #(w)H#(c)

_H#Hw) = Z #(w, ¢): number of times word w occurred in D

C

 #(o) = Z #(w, ¢): number of times context ¢ occurred

w
e |D|: number of pairs in D
e Positive PMI (PPMI) usually achieves better performance:
« PPMI(w, ¢) = max(PMI(w, ¢),0)

. MPPMI. a n by d word feature matrix, each row is a word and each column is a context



Unsupervised pertaining for NLP

PPMI Matrix

(the) w;

(brown) w;

(fox)

W

n

(quick) (fox) (jump)
C, C; C,
PPMI(w;, c))

d-dimensional
feature vector

for “brown”



Unsupervised pertaining for NLP

Generalized Low-rank Embedding

« SVD basis will minimize

min HMPPMI — WVTHIZD
W,V

* Glove (Pennington et al., 2014)

» Negative sampling (less weights to 0s in M)

 Adding bias term:
e MPPMU s WVT 4+ b T + eb!

« Use W or V as the word embedding matrix



Unsupervised pertaining for NLP
Word2vec (Mikolov et al., 2013)

* A neural network model for learning word embeddings
* Main idea:
* Predict the target words based on the neighbors (CBOW)

* Predict neighbors given the target words (Skip-gram)

contextword
contextword t3rget word

-

| like natural |language processing

|| like natural language |processing

| like| naturallanguage processing

| like natural |language processing




Unsupervised pertaining for NLP
CBOW (Continuous Bag-of-Word model)

* Predict the target words based on the neighbors

INPUT PROJECTION OUTPUT
w(t-2)
w(t-1)
: > wt)
w(t+1)

w(t+2)



Unsupervised pertaining for NLP
Skip-gram

* Predict neighbors using target word

INPUT PROJECTION OUTPUT

4 w(t-2)

.4 w(t-1)
w(t) . -

A T

< w(t+2)



Unsupervised pertaining for NLP

More on skip-gram

 Learn the probability P(WH_J- | w,): the probability to see w,,; in target word w,'s neighborhood

 Every word has two embeddings:

 V:serves as the role of target

* U; serves as the role of context

* Model probability as softmax:

T

Uy Ve

.P(o\c)=



Unsupervised pertaining for NLP

Results

* The low-dimensional embeddings are (often) meaningful:

IIIII \Madrid
GGGGGG —_— Ro
lked B
O ® Turkey \
aaaaaa
‘ i W
s O O o e
k g T~ = Mg MoOoSsCOoW
“*. 1k g . aaaaaa
queen e Japan
— O
Vietnam Hanoi
swimming¢.., ¢ China =-—— Beiji

Male-Female Verb tense Country-Capital



Contextual embedding

Contextual world representation

 The semantic meaning of a word should depend on its context

(0.9, -0.2, 1.6, ..] [-1.9, -0.4, 0.1, ..]

T T

open a bank account on the river bank

e Solution: Train a model to extract contextual representations on text corpus

(eooe)
(e0oe)
(eooe)
(eooe)
(eoee)
(e0oe)

Contextualized word embeddings

the movie  was terribly  exciting !



Contextual embedding
CoVe (McCann et al., 2017)

 Key idea: Train a standard neural
machine translation model

* [ake the encoder directly as
contextualized word embeddings

e Problems:

e Translation requires paired (labeled)
data

 The embeddings are tailored to
particular translation corpuses



Contextual embedding

Language model pretraining task

0.1% Aardvark

* Predict the next word given the el p—
prefix O% ”Z.\/ZZ‘/\/Q
" OUTDUt FFNN + Softmax
* (Can be defined on any unlabeled Layer
document .
Layer #2 T T
oy i o | [ | .‘.‘ L1 FEI_I
Layer #1 w w w

Embedding [T T 11 T 1] (T T 1]



Contextual embedding
ELMo (Peter et al., 2018)

 Key ideas:

Forward Language Model Backward Language Model

 Train a foward and backward

LSTM language model on large [STM - : .

copus % e R,
* Use the hidden states for each LSTM Pl 0P ol P o

token to compute a vector = bl w v v

representation of each word VPPV - - - - -
* Replace the word embedding by

Elmo's embedding (with fixed

Elmo's LSTM weights)



Contextual embedding
ELMo results

INCREASE
TASK PREVIOUS SOTA OUR LLMO + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liuet al. (2017) 844 || 81.1 85.8 4.7 1 24.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7 + 0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 3.2/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 +£0.19 || 90.15 9222 +£0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 51.4 54.7 £ 0.5 3.3/6.8%



Contextual embedding
BERT

 Key idea: replace LSTM by Transformer
* Define the generated pretraining task by masked language model
* [wo pretraining tasks

* Finetune both BERT weights and task-dependent model weights for each
task



Contextual embedding
BERT pretraining loss

 Masked language model: predicting each word by the rest of sentence

* Next sentence prediction: the model receives pairs of sentences as input and learns to predict if the second
sentence is the subseqguent sentence in the original document.

Embedding[ W J [ bk ] [ ks ] = [ W’s J
“;:;,?:;[ T T T T T

Classification Layer: Fully-connected layer + GELU + Norm

T T T T T
Lo J [e ) [Lo J Lo J [0 |

T T T T T

Transformer encoder

Embedding T T T T T
[ )L ] J ]




Contextual embedding

BERT finetuning

 Keep the pretrained
Transformers

 Replace or append
a layer for the final
task

 [rain the whole
model based on the
task-dependent
loss

Pre-trained

Task-specific

Extract }» Transforrﬁ ‘

Softmax

Classification Start Text
Entailment Start Premise Delim | Hypothesis | Extract | — Transformer > Linear
Start Text 1 Delim Text 2 Extract | > Transformer
Similarity Linear
Start Text 2 Delim Text 1 Extract | > Transformer
Start Context Delim Answer 1 Extract | Transformer (=~ Linear
Multiple Choice | Start Context Delim Answer 2 | Extract | > Transformer > Linear
Start Context Delim Answer N | Extract | [+ Transformer > Linear

el

™~

Special start token

Special delimiter token

Special end token




Contextual embedding

BERT results
System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERT | ArGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1




Graph Convolutional Neural Network

Node classification problem

+ Given a graph of N nodes, with adjacency matrix A € RV

. Eggtlgpode is associated with a D-dimensional feature citation network

e X € RMD- aach row corresponds to the feature vector of a < / \E\ \
node E\ <H/\

- Observe labels for a subset of nodes: Y € RV*E, only / E/ \
observe a subset of rows, denoted by ¥ ”H/\

* Goal: Predict labels for unlabeled nodes (transductive Target node
setting) or

. test nodes (inductive setting) or test graphs (inductive

setting)



Graph Convolutional Neural Network

Graph Convolution Layer

e GCN: multiple graph convolution layers

Va\

e A: normalized version of A:

~ Va\

A=A+1, D,=)Y A, P=DA
Vv

* Graph convolution:
- Input: features for each node H € R™P?

+1)

* Qutput: features for each node HY"D after gathering neighborhood information

. Convolution: PH": Aggregate features from neighbors

e Convolution + fully-connected layer + nonlinear activation:
« HUFD — G(PH(Z)W(Z)),
. W is the weights for the linear layer

e o( - ): usually ReLU function



Graph Convolutional Neural Network

Graph convolutional network

new representation: z

0 02 - 08 09
08 03 0.6 01 0.2]a()
-—) 02 0 | e
0 05 0 01 0
0.3

0.2 - 0 0
Look at each node’s

neighbor nodes in graph learnable weighted matrix: W



Graph Convolutional Neural Network

Graph convolutional network

e Initial features HY = X
e Forlayer[=0,...,L
. 7D = pgOWO, gD = 5z0+Dy

 Use final layer feature HD e RY*K tor classification:

|
Loss = g Zloss(ys, ZH)

sES

» Each row of ZS(L) corresponds to the output score for each label

* Cross-entropy loss for classification



Graph Convolutional Neural Network

Graph convolutional network

. Model parameters: WD, ... WD)
 Can be usedto
* Predict unlabeled nodes in the training set
* Predict testing nodes (not in the training set)

* Predict labels for a new graph

» Also, features extracted by GCN H (L) is usually very useful for other tasks



Graph Convolutional Neural Network
Graph Attention Networks

 Each edge may not contribute equally
* Using attention mechanism to automatically assign weights to each edge:
exp(LeakyReLU(a'[Wh; | Wh]))
.« i Y ey XP(LeakyReLU(aT[Wh; | Wh])

« where /1, hj are the features for node 1 and J at previous layer, W is the GNN weight, a is the additional learnable
parameter for attention




Graph Convolutional Neural Network
GNN Pretraining

o Standard GNN pipeline:

e Text features = BERT/Word2vec = GNN

 GIANT-XRT: pretrain the feature extractors (e.g., BERT) based on the graph information.

Standard GNN . _ | A . A: Ytrn
. \ 4

pipeline: No fine-tuning | Optional I
Node i: x | mx (or 33.:: ML Output
: BERT ain l : SLLGNN r
Title + Abstract P methods)
Graph information included
not included
GIANT: A A, Yo

Node i: I_’ SSL fine -tuned GhiNS

Title + Abstract language model XGIANT {orother ML
methods

Graph information included

Output




Graph Convolutional Neural Network
GIANT-XRT

* Pretraining task: Predicting the Neighbors of each node

* Train BERT encoder to predict each row of adjacency matrix = Multilabel classification with huge number of
labels

Neighborhood prediction as XMC problem:

=
=

Multi-label
yZ € {Oll}n

-0 = O 00
S OOk

OO O RO

0

f(@(T))
— O:Text encoder —>y.=A.
f: Predictor

3



Graph Convolutional Neural Network
GIANT-XRT

« State-of-the-art eXtreme Multilabel Classification (XMC) usually conducts multi-layer predictions.

 Example: PECOS, Parabel, ...

Cluster 1 A

32 | wee -y

1. Semantic hierarchical node clustering.
Temporary multilabels obtain from the clustering.




