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Exam

• On next Monday (Feb 20) during the class time


• 80 minutes


• Format:


• True/False questions with reasons


• Short answer questions


• Problems (gradient derivation etc.)



From week 3

• Paper presentation sign-up started today


• Start from Feb 20:


• Reading summary


• Paper presentation


• Class notes & participation


• Project proposal will be due on Feb 24 (1/2 page)


• Title


• Proposed problem 


• Proposed methodology (optional)



Convolutional Neural Network
Neural Networks

• Fully connected networks  doesn't work well for computer vision applications⇒



Convolutional Neural Network
Convolution Layer

• Fully connected layers have too many parameters


•  poor performance


• Example: VGG first layer


• Input: 


• Output: 


• Number of parameters if we use fully connected net:


• 483 billion


• Convolution layer leads to:


• Local connectivity


• Parameter sharing

⇒

224 × 224 × 3

224 × 224 × 64

(224 × 224 × 3) × (224 × 224 × 64) =



Convolutional Neural Network
Convolution

• The convolution of an image  with a kernel  is  computed as


•

x k

(x * k)ij = ∑
pq

xi+p,j+qkp,q



Convolutional Neural Network
Convolution



Convolutional Neural Network
Convolution



Convolutional Neural Network
Convolution



Convolutional Neural Network
Convolution



Convolutional Neural Network
Convolution



Convolutional Neural Network
Convolution

• Element-wise activation function after convolution


•  detector of a feature at any position in the image⇒



Convolutional Neural Network
Learned Kernels

• Example kernels learned by AlexNet


• Number of parameters:


• Example:  image,  kernels, kernel size 


•   = 10K parameters

200 × 200 100 10 × 10

⇒ 10 × 10 × 100



Convolutional Neural Network
Padding

• Use zero padding to allow going over the boundary


• Easier to control the size of output layer



Convolutional Neural Network
Strides

• Stride: The amount of movement between applications of the filter to the 
input image


• Stride : no stride(1,1)



Convolutional Neural Network
Pooling

• It’s common to insert a pooling layer in-between successive convolutional layers


• Reduce the size of presentation, down-sampling


• Example: Max pooling



Convolutional Neural Network
Pooling

• By pooling, we gain robustness to the exact spatial location of features



Convolutional Neural Network
Example: LeNet5

• Input:  images (MNIST)


• Convolution 1: 6 filters, stride 1


• Output: 6  maps


• Pooling 1:  max pooling, stride 2


• Output: 6  maps


• Convolution 2: 16  filters, stride 1


• Output: 16  maps


• Pooling 2:  max pooling with stride 2


• Output: 16  maps (total 400 values)


• 3 fully connected layers:  neurons

32 × 32

5 × 5

28 × 28

2 × 2

14 × 14

5 × 5

10 × 10

2 × 2

5 × 5

120 ⇒ 84 ⇒ 10



Convolutional Neural Network
Training

• Training:


• Apply SGD to minimize in-sample training error


• Backpropagation can be extended to convolutional layer and pooling layer 
to compute gradient!


• Millions of parameters  easy to overfit⇒



Convolutional Neural Network
Revisit Alexnet

• Dropout: 0.5 (in FC layers)


• A lot of data augmentation


• Momentum SGD with batch size 128, momentum factor 0.9


• L2 weight decay (L2 regularization) 


• Learning rate: 0.01, decreased by 10 every time when reaching a stable 
validation accuracy



Convolutional Neural Network
Dropout

• One of the most effective regularization for deep neural networks



Convolutional Neural Network
Dropout(training)

• Dropout in the training phase:


• For each batch, turn off each 
neuron (including inputs) with a 
probability 


• Zero out the removed nodes/edges 
and do backpropogation

1 − α



Convolutional Neural Network
Dropout(test)

• The model is different from the full model:


• Each neuron computes


• 


• Where B is Bernoulli variable that takes 1 with probability 


• The expected output of the neuron:


• 


• Use the expected output at test time  multiply all the weights by 

x(l)
i = Bσ(∑

j

W(l)
ij x(l−1)

j + b(l)
i )

α

E[x(l)
i ] = ασ(∑

j

W(l)
ij x(l−1)

j + b(l)
i )

⇒ α



Convolutional Neural Network
Batch Normalization

• Initially proposed to reduce co-variate shift


•



• : the mean for channel , and  standard deviation. 


•  and : two learnable parameters

Ob,c,x,y ← γ
Ib,c,x,y − μc

σ2
c + ϵ

+ β ∀b, c, x, y,

μc = 1
|B |

∑b,x,y Ib,c,x,y c σc

γ β



Convolutional Neural Network
Batch Normalization

• Couldn’t reduce covariate 
shift (Ilyas et al 2018)


• Allow larger learning rate


• Constraint the gradient 
norm 



Convolutional Neural Network
Other normalization



Convolutional Neural Network
Residual Networks

• Very deep convnets do not train well —vanishing gradient problem



Convolutional Neural Network
Residual Networks

• Key idea: introduce ``pass through'' into each layer


• Thus, only residual needs to be learned



Convolutional Neural Network
Residual Networks



Representation for sentence/document
Bag of word

• A classical way to represent NLP data


• Each sentence (or document) is 
represented by a -dimensional vector 

, where  is number of occurrences 
of word 


• number of features = number of 
potential words (very large)

d
x xi

i



Representation for sentence/document
Feature generation for documents

• Bag of -gram features ( ):


• 10,000 words   
potential features

n n = 2

⇒ 100002



Representation for sentence/document
Bag of word + linear model

• Example: text classification (e.g., sentiment prediction, review score 
prediction)


• Linear model:  (e.g., by linear SVM/logistic regression)


• : the ``contribution'' of each word

y ≈ sign(wTx)

wi



Representation for sentence/document
Bag of word + Fully connected network

• 


• The first layer  is a  by  matrix: 


• Each column  is a  dimensional representation of -th word （word embedding )


•  is a linear combination of these vectors


•  is also called the word embedding matrix


• Final prediction can be viewed as an  layer network on  (average of word 
embeddings)


• Not capturing the sequential information

f(x) = WLσ(WL−1⋯σ(W0x))

W0 d1 d

wi d1 i

W0x = x1w1 + x2w2 + ⋯ + xdwd

W0

L − 1 W0x



Recurrent Neural Network
Time series/Sequence data

• Input: 


• Each  is the feature at time step 


• Each  can be a -dimensional vector


• Output: 


• Each  is the output at step 


• Multi-class output or Regression output: 


•

{x1, x2, ⋯, xT}

xt t

xt d

{y1, y2, ⋯, yT}

yt t

yt ∈ {1,2,⋯, L}  or  yt ∈ ℝ



Recurrent Neural Network
Example: Time Series Prediction

• Climate Data:


• : temperature at time 


• : temperature (or temperature 
change) at time 


• Stock Price: Predicting stock price 

xt t

yt
t + 1



Recurrent Neural Network
Example: Language Modeling



Recurrent Neural Network
Example: Language Modeling

• : one-hot encoding to represent the 
word at step  


• : the next word 


•

xt
t ([0,…,0,1,0,…,0])

yt

yt ∈ {1,⋯, V} V: Vocabulary size 



Recurrent Neural Network
Example: POS Tagging

• Part of Speech Tagging: 


•  Labeling words with their Part-
Of-Speech (Noun, Verb, 
Adjective, …)


• : a vector to represent the 
word at step 


• : label of word 

xt
t

yt t



Recurrent Neural Network
Example: POS Tagging

• : -th input 


• : hidden state at time  (``memory’' of the network)


• 


• : transition matrix, : word embedding matrix,  usually set to be 0


• Predicted output at time : 


•

xt t

st t

st = f(Uxt + Wst−1)

W U s0

t

ot = arg max
i

(Vst)i



Recurrent Neural Network
Recurrent Neural Network (RNN)

• Training: Find  to minimize empirical loss: 


• Loss of a sequence: 


• 


• (  is a function of )


• Loss on the whole dataset:


• Average loss over all sequences


• Solved by SGD/Adam

U, W, V

T

∑
t=1

loss(Vst, yt)

st U, W, V



Recurrent Neural Network
RNN: Text Classification

• Not necessary to output at each step


• Text Classification: 


• 


• Output only at the final step


• Model: add a fully connected network 
to the final embedding 

sentence  →  category 



Recurrent Neural Network
Problems of Classical RNN

• Hard to capture long-term dependencies


• Hard to solve (vanishing gradient problem)


• Solution: 


• LSTM (Long Short Term Memory networks)


• GRU (Gated Recurrent Unit)


• …



Recurrent Neural Network
LSTM

• RNN:


• LSTM:



Recurrent Neural Network
Neural Machine Translation (NMT)

• Out the translated sentence from an input 
sentence


• Training data: a set of input-output pairs 
(supervised setting)


• Encoder-decoder approach: 


• Encoder: Use (RNN/LSTM) to encode 
the input sentence input a latent vector


• Decoder: Use (RNN/LSTM) to generate 
a sentence based on the latent vector



Recurrent Neural Network
Neural Machine Translation



Recurrent Neural Network
Attention in NMT

• Usually, each output word is only related to a subset of input words (e.g., for 
machine translation)


• Let  be the current decoder latent state,   be the latent sate for 
each input word


• Compute the weight of each state by


• 


• Compute the context vector by 

u v1, …, vn

p = Softmax(uTv1, …, uTvn)

Vp = p1v1 + … + pnvn



Recurrent Neural Network
Attention in NMT



Transformer
Transformer

• An architecture that replies entirely on attention without using CNN/RNN


• Proposed in ``Attention Is All You Need'' (Vaswani et al., 2017)


• Initially used for neural machine translation



Transformer
Encoder and Decoder

• Self attention layer: the main architecture used in Transformer


• Decoder: will have another attention layer to help it focuses on relevant parts 
of input sentences.



Transformer
Encoder

• Each word has a corresponding ``latent 
vector'' (initially the word embedding for 
each word)


• Each layer of encoder: 


• Receive a list of vectors as input


• Passing these vectors to a self-attention 
layer


• Then passing them into a feed-foward 
layer 


• Output a list of vectors



Transformer
Self-attention layer

• Main idea: The actual meaning of each word may be related to other words in the sentence


• The actual meaning (latent vector) of each word is a weighted (attention) combination of other words (latent 
vectors) in the sentences



Transformer
Self-attention layer

• Input latent vectors: 


• Self-attention parameters: 
 (weights for query, key, 

value)


• For each word , compute 


• Query vector:  


• Key vector: 


• Value vector: 

x1, …, xn

WQ, WK, WV

i

qi = xiWQ

ki = xiWK

vi = xiWV



Transformer
Self-attention layer

• For each word , compute the scores to determine how much focus to place on other input words


• The attention score for word  to word : 

i

j i qT
i kj



Transformer
Self-attention layer

• For each word , the output vector


•

i

∑
j

sijvj, si = softmax(qT
i k1, …, qT

i kn)



Transformer
Matrix form

• Q = XWQ, K = XWK, V = XWV, Z = softmax(QKT)V



Transformer
Multiply with weight matrix to reshape

• Gather all the outputs 


• Multiply with a weight matrix to 
reshape


• Then pass to the next fully 
connected layer

Z1, …, Zk



Transformer
Overall architecture



Transformer
Sinusoidal Position Encoding

• The above architecture ignores 
the sequential information


• Add a positional encoding vector 
to each  (according to )xi i



Transformer
Positional Embedding

• Sin/cosine functions with different wavelengths (used in the original Transformer)


• 


• smooth, parameter-free, inductive

The jth dimension of ith tokenpi[ j] = {sin(i ⋅ c
j
d) if j is even

cos(i ⋅ c
j − 1

d ) if j is odd



Transformer
Residual



Transformer
Whole framework



Vision Transformer (ViT)
Vision Transformer (ViT)

• Partition input image into  
patches


• A linear projection to transform each 
patch to feature (no convolution)


• Pass tokens into Transformer

K × K



Vision Transformer (ViT)
Vision Transformer (ViT)

• Patches are non-overlapping in the original ViT


•  image   tokens


• Smaller patch size  more input tokens


• Higher computation (memory) cost, (usually) higher accuracy


• Use 1D (learnable) positional embedding 


• Inference with higher resolution: 


• Keep the same patch size, which leads to longer sequence


• Interpolation for positional embedding

N × N ⇒ (N/K)2

⇒



Vision Transformer (ViT)
ViT Performance

• ViT outperforms CNN with large pretraining



Vision Transformer (ViT)
ViT Performance

• Attention maps of ViT (to input)



Vision Transformer (ViT)
ViT v.s. ResNet

• Can ViT outperform ResNet on 
ImageNet without pretraining?


• Deit (Touvron et al., 2021): 


• Use very strong data 
augmentation


• Use a ResNet teacher and 
distill to ViT



Vision Transformer (ViT)
ViT v.s. ResNet

• ViT tends to converge to sharper regions than ResNet



Vision Transformer (ViT)
``Sharpness'' is related to generalization

• Testing can be viewed as a slightly perturbed training distribution


• Sharp minimum  performance degrades significantly from training to testing⇒



Vision Transformer (ViT)
Sharpness Aware Minimization (SAM)

• Optimize the worst-case loss within a small neighborhood


• 


•  is a small constant (hyper-parameter)


• Use 1-step gradient ascent to approximate inner max:


• 


• Conduct the following update for each iteration:


•

min
w

max
∥δ∥2≤ϵ

L(w + δ)

ϵ

̂δ = arg max
∥δ∥2≤ϵ

L(w) + ∇L(w)Tδ = ϵ
∇L(w)

∥∇L(w)∥

w ← w − α∇L(w + ̂δ)



Vision Transformer (ViT)
Sharpness Aware Minimization (SAM)

• SAM is a natural way to penalize sharpness region (but requires some 
computational overhead)



Unsupervised pertaining for NLP
Motivation

• Many unlabeled NLP data but very few labeled data


• Can we use large amount of unlabeled data to obtain meaningful 
representations of words/sentences?



Unsupervised pertaining for NLP
Learning word embeddings

• Use large (unlabeled) corpus to learn a useful word 
representation


• Learn a vector for each word based on the corpus


• Hopefully the vector represents some semantic 
meaning


• Can be used for many tasks


• Replace the word embedding matrix for DNN models 
for classification/translation


• Two different perspectives but led to similar results:


• Glove (Pennington et al., 2014)


• Word2vec (Mikolov et al., 2013)



Unsupervised pertaining for NLP
Context information

• Given a large text corpus, how to learn low-dimensional features to represent 
a word? 


• For each word , define the ``contexts'' of the word as the words surrounding 
it in an -sized window:


•



• Get a collection of (word, context) pairs, denoted by .

wi
L

wi−L−2, wi−L−1, wi−L, ⋯, wi−1

contexts of wi

, wi, wi+1, ⋯, wi+L

contexts of wi

, wi+L+1, ⋯

D



Unsupervised pertaining for NLP
Examples



Unsupervised pertaining for NLP
Use bag-of-word model

• Idea 1: Use the bag-of-word model 
to ``describe'' each word


• Assume we have context words 
 in the corpus, compute


• 


• For each word , form a 
-dimensional (sparse) vector to 
describe 


•

c1, ⋯, cd

#(w, ci) :=  number of times the pair(w, ci) appears in D

w d

w

#(w, c1), ⋯, #(w, cd),



Unsupervised pertaining for NLP
PMI/PPMI Representation

• Similar to TF-IDF: Need to consider the frequency of each word and each context


• Instead of using co-ocurrent count , we can define pointwise mutual information: 


• 


• : number  of times word  occurred in 


• : number of times context  occurred 


• : number of pairs in 


• Positive PMI (PPMI) usually achieves better performance: 


• 


• : a  by  word feature matrix, each row is  a word and each column is a context

#(w, c)

PMI(w, c) = log(
̂P(w, c)

̂P(w) ̂P(c)
) = log

#(w, c) |D |
#(w)#(c)

,

#(w) = ∑
c

#(w, c) w D

#(c) = ∑
w

#(w, c) c

|D | D

PPMI(w, c) = max(PMI(w, c),0)

MPPMI n d



Unsupervised pertaining for NLP
PPMI Matrix



Unsupervised pertaining for NLP
Generalized Low-rank Embedding

• SVD basis will minimize


• 


• Glove (Pennington et al., 2014)


• Negative sampling (less weights to 0s in )


• Adding bias term: 


• 


• Use  or  as the word embedding matrix 

min
W,V

∥MPPMI − WVT∥2
F

MPPMI

MPPMI ≈ WVT + bweT + ebT
c

W V



Unsupervised pertaining for NLP
Word2vec (Mikolov et al., 2013)

• A neural network model for learning word embeddings


• Main idea:


• Predict the target words based on the neighbors (CBOW)


• Predict neighbors given the target words (Skip-gram)



Unsupervised pertaining for NLP
CBOW (Continuous Bag-of-Word model)

• Predict the target words based on the neighbors



Unsupervised pertaining for NLP
Skip-gram

•  Predict neighbors using target word



Unsupervised pertaining for NLP
More on skip-gram

• Learn the probability : the probability to see  in target word 's neighborhood


• Every word has two embeddings:


•  serves as the role of target


•  serves as the role of context


• Model probability as softmax:


•

P(wt+j |wt) wt+j wt

vi

ui

P(o |c) =
euT

o vc

∑W
w=1 euT

wvc



Unsupervised pertaining for NLP
Results

• The low-dimensional embeddings are (often) meaningful: 



Contextual embedding
Contextual world representation

• The semantic meaning of a word should depend on its context 


• Solution: Train a model to extract contextual representations on text corpus



Contextual embedding
CoVe (McCann et al., 2017)

• Key idea: Train a standard neural 
machine translation model


• Take the encoder directly as 
contextualized word embeddings


• Problems: 


• Translation requires paired (labeled) 
data


• The embeddings are tailored to 
particular translation corpuses



Contextual embedding
Language model pretraining task

• Predict the next word given the 
prefix


• Can be defined on any unlabeled 
document



Contextual embedding
ELMo (Peter et al., 2018)

• Key ideas:


• Train a foward and backward 
LSTM language model on large 
corpus 


• Use the hidden states for each 
token to compute a vector 
representation of each word


• Replace the word embedding by 
Elmo's embedding (with fixed  
Elmo's LSTM weights)



Contextual embedding
ELMo results



Contextual embedding
BERT

• Key idea: replace LSTM by Transformer


• Define the generated pretraining task by masked language model


• Two pretraining tasks


• Finetune both BERT weights and task-dependent model weights for each 
task



Contextual embedding
BERT pretraining loss

• Masked language model: predicting each word by the rest of sentence


• Next sentence prediction: the model receives pairs of sentences as input and learns to predict if the second 
sentence is the subsequent sentence in the original document. 



Contextual embedding
BERT finetuning

• Keep the pretrained 
Transformers


• Replace or append 
a layer for the final 
task


• Train the whole 
model based on the 
task-dependent 
loss



Contextual embedding
BERT results



Graph Convolutional Neural Network
Node classification problem

• Given a graph of  nodes, with adjacency matrix 


• Each node is associated with a -dimensional feature 
vector. 


• : each row corresponds to the feature vector of a 
node


• Observe labels for a subset of nodes: , only  
observe a subset of rows, denoted by 


• Goal: Predict labels for unlabeled nodes (transductive 
setting) or 


•       test nodes (inductive setting) or test graphs (inductive 
setting)

N A ∈ ℝN×N

D

X ∈ ℝN×D

Y ∈ ℝN×L

YS



Graph Convolutional Neural Network
Graph Convolution Layer

• GCN: multiple graph convolution layers


• : normalized version of :


• 


• Graph convolution: 


• Input: features for each node 


• Output: features for each node  after gathering neighborhood information


• Convolution: : Aggregate features from neighbors 


• Convolution + fully-connected layer + nonlinear activation: 


• 


•  is the weights for the linear layer


• : usually ReLU function

̂A A

Ã = A + I, D̃uv = ∑
v

Ãuv, P = D̃−1 ̂A

H(l) ∈ ℝn×D

H(l+1)

PH(l)

H(l+1) = σ(PH(l)W(l)),

W(l)

σ( ⋅ )



Graph Convolutional Neural Network
Graph convolutional network



Graph Convolutional Neural Network
Graph convolutional network

• Initial features 


• For layer 


• 


• Use final layer feature  for classification: 


• 


• Each row of  corresponds to the output score for each label


• Cross-entropy loss for classification

H(0) := X

l = 0,…, L

Z(l+1) = PH(l)W(l), H(l+1) = σ(Z(l+1)),

H(L) ∈ ℝN×K

Loss =
1

|S | ∑
s∈S

loss(ys, Z(L)
s )

Z(L)
s



Graph Convolutional Neural Network
Graph convolutional network

• Model parameters: 


• Can be used to 


• Predict unlabeled nodes in the training set


• Predict testing nodes (not in the training set)


• Predict labels for a new graph


• Also, features extracted by GCN  is usually very useful for other tasks

W(1), ⋯, W(L)

H(L)



Graph Convolutional Neural Network
Graph Attention Networks

• Each edge may not contribute equally


• Using attention mechanism to automatically assign weights to each edge:


• 


•  where  are the features for node  and  at previous layer,  is the GNN weight,  is the additional learnable 
parameter for attention

αi,j =
exp(LeakyReLU(aT[Whi ∣ Whj]))

∑k∈Ni
exp(LeakyReLU(aT[Whi ∣ Whk]))

hi, hj i j W a



Graph Convolutional Neural Network
GNN Pretraining

• Standard GNN pipeline:


• Text features  BERT/Word2vec  GNN


• GIANT-XRT: pretrain the feature extractors (e.g., BERT) based on the graph information. 

⇒ ⇒



Graph Convolutional Neural Network
GIANT-XRT

• Pretraining task: Predicting the Neighbors of each node


• Train BERT encoder to predict each row of adjacency matrix Multilabel classification with huge number of 
labels

⇒

Multi-label

1

2

4

5

3 6

Neighborhood prediction as XMC problem:

Text encoder
: Predictor

= ୧



Graph Convolutional Neural Network
GIANT-XRT

• State-of-the-art eXtreme Multilabel Classification (XMC) usually conducts multi-layer predictions. 


• Example: PECOS, Parabel, …

3
5

8

1
4

7
69

1. Semantic hierarchical node clustering.
Temporary multilabels obtain from the clustering.

Cluster 1

Cluster 1 Cluster 2


