Minhao Cheng

COMP6211I: Trustworthy Machine Learning Lecture 3

Exam

- On next Monday (Feb 20) during the class time
- 80 minutes
- Format:
	- True/False questions with reasons
	- Short answer questions
	- Problems (gradient derivation etc.)

From week 3

- Paper presentation sign-up started today
- Start from Feb 20:
	- Reading summary
	- Paper presentation
	- Class notes & participation
- Project proposal will be due on Feb 24 (1/2 page)
	- Title
	- Proposed problem
	- Proposed methodology (optional)

Convolutional Neural Network Neural Networks

 $h(\mathbf{x}) = x_1^{(4)} = \theta(W_4 \mathbf{x}^{(3)}) = \theta(W_4 \theta(W_3 \mathbf{x}^{(2)}))$ $= \cdots = \theta(W_4 \theta(W_3 \theta(W_2 \theta(W_1 x))))$

• Fully connected networks \Rightarrow doesn't work well for computer vision applications

- Fully connected layers have too many parameters
	- ⇒ poor performance
- Example: VGG first layer
	- Input: $224 \times 224 \times 3$
	- Output: $224 \times 224 \times 64$
	- Number of parameters if we use fully connected net:
		- $(224 \times 224 \times 3) \times (224 \times 224 \times 64) = 483$ billion
	- Convolution layer leads to:
		- Local connectivity
		- Parameter sharing

• The convolution of an image x with a kernel k is computed as

$$
\bullet \quad (x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{p,q}
$$

$1*1+0.5*0.2+0.25*0.2+0*0=1.15$

$0.5*1 + 20*0.2 + 0*0.2 + 0*0 = 4.5$

$0.25 * 1 + 0 * 0.2 + 0 * 0.2 + 0 * 0 = 0.25$

$0*1+0*0.2+0*0.2+20*0=0$

 $x * k_{ij}$, where $W_{ij} = \tilde{W}_{ij}$

 $x_i * \kappa_{ij}$

- Element-wise activation function after convolution
	- \Rightarrow detector of a feature at any position in the image

Convolutional Neural Network Learned Kernels

- Number of parameters:
	- Example: 200×200 image, 100 kernels, kernel size 10×10
	- \Rightarrow 10 \times 10 \times 100 = 10K parameters

• Example kernels learned by AlexNet

Convolutional Neural Network Padding

- Use zero padding to allow going over the boundary
	- Easier to control the size of output layer

Convolutional Neural Network Strides

• Stride: The amount of movement between applications of the filter to the

- input image
- Stride (1,1): no stride

Convolutional Neural Network Pooling

- It's common to insert a pooling layer in-between successive convolutional layers
- Reduce the size of presentation, down-sampling
- Example: Max pooling

Single depth slice

max pool with 2x2 filters and stride 2

Convolutional Neural Network Pooling

• By pooling, we gain robustness to the exact spatial location of features

Convolutional Neural Network Example: LeNet5

- Input: 32×32 images (MNIST)
- Convolution 1: 6.5×5 filters, stride 1
	- Output: 628×28 maps
- Pooling 1: 2×2 max pooling, stride 2
	- Output: 6 14×14 maps
- Convolution 2: 16 5×5 filters, stride 1
	- Output: 16 10×10 maps
- Pooling 2: 2×2 max pooling with stride 2
	- Output: 16 5×5 maps (total 400 values)
- 3 fully connected layers: $120 \Rightarrow 84 \Rightarrow 10$ neurons

Convolutional Neural Network Training

- Training:
	- Apply SGD to minimize in-sample training error
	- Backpropagation can be extended to convolutional layer and pooling layer to compute gradient!
	- Millions of parameters \Rightarrow easy to overfit

Convolutional Neural Network Revisit Alexnet

- Dropout: 0.5 (in FC layers)
- A lot of data augmentation
- Momentum SGD with batch size 128, momentum factor 0.9
- L2 weight decay (L2 regularization)
- Learning rate: 0.01, decreased by 10 every time when reaching a stable validation accuracy

Convolutional Neural Network Dropout

• One of the most effective regularization for deep neural networks

Table 4: Error rates on CIFAR-10 and CIFAR-100.

Srivastava et al, "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", 2014.

Convolutional Neural Network Dropout(training)

- Dropout in the **training** phase:
	- For each batch, turn off each neuron (including inputs) with a probability 1 − *α*
	- Zero out the removed nodes/edges and do backpropogation

Full network

1st batch

2nd batch

......

Convolutional Neural Network Dropout(test)

- The model is different from the full model:
- Each neuron computes

- Where B is Bernoulli variable that takes 1 with probability *α*
- The expected output of the neuron:

$$
\int_{i}^{(l)} = B\sigma\left(\sum_{j} W_{ij}^{(l)} x_j^{(l-1)} + b_i^{(l)}\right)
$$

$$
\sum_{j} E[x_i^{(l)}] = \alpha \sigma \left(\sum_{j} W_{ij}^{(l)} x_j^{(l-1)} + b_i^{(l)} \right)
$$

• Use the expected output at test time \Rightarrow multiply all the weights by α

Convolutional Neural Network Batch Normalization

• Initially proposed to reduce co-variate shift

$$
O_{b,c,x,y} \leftarrow \gamma \frac{I_{b,c,x,y} - \mu_c}{\sqrt{\sigma_c^2 + \epsilon}} + \beta \ \forall b, c
$$

- $\mu_c = \frac{1}{|B|} \sum_{b,x,y} I_{b,c,x,y}$: the mean for channel *c*, and σ_c standard deviation. 1 $\frac{1}{|B|} \sum_{b,x,y} I_{b,c,x,y}$: the mean for channel c , and σ_c
- *γ* and $β$: two learnable parameters

+ *β* ∀*b*, *c*, *x*, *y*,

Convolutional Neural Network Batch Normalization

- Couldn't reduce covariate shift (Ilyas et al 2018)
- Allow larger learning rate
	- Constraint the gradient norm

Convolutional Neural Network Other normalization

Convolutional Neural Network Residual Networks

• Very deep convnets do not train well —vanishing gradient problem

Convolutional Neural Network Residual Networks

• Key idea: introduce ``pass through'' into each layer

• Thus, only residual needs to be learned

Convolutional Neural Network Residual Networks

Table 4. Error rates $(\%)$ of single-model results on the ImageNet validation set (except \dagger reported on the test set).

Representation for sentence/document Bag of word

- A classical way to represent NLP data
- Each sentence (or document) is represented by a d -dimensional vector \mathbf{x} , where x_i is number of occurrences of word *i*
- number of features = number of potential words (very large)

Representation for sentence/document Feature generation for documents

- Bag of *n*-gram features $(n = 2)$:
	- \cdot 10,000 words \Rightarrow 10000² potential features

The International Conference on Machine Learning is the leading international academic conference in machine learning,

Representation for sentence/document Bag of word + linear model

- Example: text classification (e.g., sentiment prediction, review score prediction)
- Linear model: $y \approx \text{sign}(w^T x)$ (e.g., by linear SVM/logistic regression)
- w_i : the "contribution" of each word

Representation for sentence/document Bag of word + Fully connected network

- $f(x) = W_L \sigma(W_{L-1} \cdots \sigma(W_0 x))$
- The first layer W_0 is a d_1 by d matrix:
	- Each column w_i is a d_1 dimensional representation of *i*-th word (word embedding)
	- $W_0 x = x_1 w_1 + x_2 w_2 + \dots + x_d w_d$ is a linear combination of these vectors
	- W_0 is also called the word embedding matrix
	- Final prediction can be viewed as an $L-1$ layer network on W_0x (average of word embeddings)
- Not capturing the sequential information

Recurrent Neural Network Time series/Sequence data

- Input: $\{x_1, x_2, \cdots, x_T\}$
	- Each x_t is the feature at time step t
	- Each x_t can be a d -dimensional vector
- Output: $\{y_1, y_2, \dots, y_T\}$
	- Each y_t is the output at step t
	- Multi-class output or Regression output:
		- $y_t \in \{1, 2, \dots, L\}$ or $y_t \in \mathbb{R}$

Recurrent Neural Network Example: Time Series Prediction

- Climate Data:
	- x_t : temperature at time t
	- y_t : temperature (or temperature change) at time $t+1$
- Stock Price: Predicting stock price

Recurrent Neural Network Example: Language Modeling

The

cat is ?
Recurrent Neural Network Example: Language Modeling

The

- x_t : one-hot encoding to represent the word at step *t* ([0,…,0,1,0,…,0])
- y_t : the next word
	- $y_t \in \{1, \dots, V\}$ V: Vocabulary size

Recurrent Neural Network Example: POS Tagging

- Part of Speech Tagging:
	- Labeling words with their Part-Of-Speech (Noun, Verb, Adjective, …)
	- x_t : a vector to represent the word at step *t*
	- y_t : label of word t

Recurrent Neural Network Example: POS Tagging

- x_t : *t*-th input
- s_t : hidden state at time t ("memory" of the network)
	- $s_t = f(Ux_t + Ws_{t-1})$
	- W: transition matrix, U : word embedding matrix, s_0 usually set to be 0
- Predicted output at time t:

$$
o_t = \arg \max_i (V s_t)_i
$$

Recurrent Neural Network Recurrent Neural Network (RNN)

- Training: Find U, W, V to minimize empirical loss:
- Loss of a sequence:

- (s_t is a function of U, W, V)
- Loss on the whole dataset:
	- Average loss over all sequences
- Solved by SGD/Adam

$$
\sum_{t=1}^{T} \text{loss}(V_{S_t}, y_t)
$$

Recurrent Neural Network RNN: Text Classification

- Not necessary to output at each step
- Text Classification:
	- sentence → category
	- Output only at the final step
- Model: add a fully connected network to the final embedding

Recurrent Neural Network Problems of Classical RNN

- Hard to capture long-term dependencies
- Hard to solve (vanishing gradient problem)
- Solution:
	- LSTM (Long Short Term Memory networks)
	- GRU (Gated Recurrent Unit)
	- •
•

…

Recurrent Neural Network LSTM

• RNN:

• LSTM:

Recurrent Neural Network Neural Machine Translation (NMT)

- Out the translated sentence from an input sentence
- Training data: a set of input-output pairs (supervised setting)
- Encoder-decoder approach:
	- Encoder: Use (RNN/LSTM) to encode the input sentence input a latent vector
	- Decoder: Use (RNN/LSTM) to generate a sentence based on the latent vector

Recurrent Neural Network Neural Machine Translation

Recurrent Neural Network Attention in NMT

- Usually, each output word is only related to a subset of input words (e.g., for machine translation)
- Let u be the current decoder latent state, $v_1, ..., v_n$ be the latent sate for each input word
- Compute the weight of each state by

•
$$
p = \text{Softmax}(u^T v_1, ..., u^T v_n)
$$

• Compute the context vector by $Vp = p_1v_1 + ... + p_nv_n$

Recurrent Neural Network Attention in NMT

Transformer Transformer

- An architecture that replies entirely on attention without using CNN/RNN
- Proposed in ``Attention Is All You Need'' (Vaswani et al., 2017)
- Initially used for neural machine translation

Transformer Encoder and Decoder

- Self attention layer: the main architecture used in Transformer
- of input sentences.

• Decoder: will have another attention layer to help it focuses on relevant parts

Transformer Encoder

- Each word has a corresponding ``latent vector'' (initially the word embedding for each word)
- Each layer of encoder:
	- Receive a list of vectors as input
	- Passing these vectors to a self-attention layer
	- Then passing them into a feed-foward layer
	- Output a list of vectors

- Main idea: The actual meaning of each word may be related to other words in the sentence
- The actual meaning (latent vector) of each word is a weighted (attention) combination of other words (latent vectors) in the sentences

 \div The_ animal_ didn_ $\overline{}$ t_ cross_ the street_ because_ it was_ $\text{too}_$ tire d_{-}

- Input latent vectors: $x_1, ..., x_n$
- Self-attention parameters: W^Q , W^K , W^V (weights for query, key, value)
- For each word *i*, compute
	- Query vector: $q_i = x_i$ *W^Q*
	- Key vector: $k_i = x_i$ W^K
	- Value vector: $v_i = x_i$ W^V

- - The attention score for word j to word i : $q_i^T k_j$

$\bullet\,$ For each word i , compute the scores to determine how much focus to place on other input words

 \bullet For each word i , the output vector

$$
\sum_{j} s_{ij} v_j, \quad s_i = \text{softmax}(q_i^T k_1, \dots, q_i^T k_n)
$$

Transformer Matrix form

• $Q = XW^Q$, $K = XW^K$, $V = XW^V$, $Z = \text{softmax}(QK^T)V$

Transformer Multiply with weight matrix to reshape

- Gather all the outputs $Z_1, ..., Z_k$
- Multiply with a weight matrix to reshape
- Then pass to the next fully connected layer

1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

X

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

 \equiv

WO

Transformer Overall architecture

Transformer Sinusoidal Position Encoding

- The above architecture ignores the sequential information
- Add a positional encoding vector to each x_i (according to i)

Transformer Positional Embedding

• The jth dimension of ith token $p_i[j] = \left\{$

• Sin/cosine functions with different wavelengths (used in the original Transformer)

• smooth, parameter-free, inductive

- *j* is even
- if j is odd

$$
= \begin{cases} \sin(i \cdot c^{\frac{j}{d}}) \text{ if} \\ \cos(i \cdot c^{\frac{j-1}{d}}) \end{cases}
$$

Transformer Residual

Transformer Whole framework

Vision Transformer (ViT) Vision Transformer (ViT)

- Partition input image into *K* × *K*patches
- A linear projection to transform each patch to feature (no convolution)
- Pass tokens into Transformer

Vision Transformer (ViT) Vision Transformer (ViT)

- Patches are non-overlapping in the original ViT
- $N \times N$ image $\Rightarrow (N/K)^2$ tokens 2
- Smaller patch size \Rightarrow more input tokens
	- Higher computation (memory) cost, (usually) higher accuracy
- Use 1D (learnable) positional embedding
- Inference with higher resolution:
	- Keep the same patch size, which leads to longer sequence
	- Interpolation for positional embedding

Vision Transformer (ViT) ViT Performance

• ViT outperforms CNN with large pretraining

Vision Transformer (ViT) ViT Performance

• Attention maps of ViT (to input)

Vision Transformer (ViT) ViT v.s. ResNet

- Can ViT outperform ResNet on ImageNet without pretraining?
- Deit (Touvron et al., 2021):
	- Use very strong data augmentation
	- Use a ResNet teacher and distill to ViT

Vision Transformer (ViT) ViT v.s. ResNet

• ViT tends to converge to sharper regions than ResNet

(a) ResNet

Leading eigenvalue of Hessian: 179.8

ViT (b)

Leading eigenvalue of Hessian: 738.8

Vision Transformer (ViT) ``Sharpness'' is related to generalization

- Testing can be viewed as a slightly perturbed training distribution
- Sharp minimum \Rightarrow performance degrades significantly from training to testing

Figure from (Keskar et al., 2017)

Vision Transformer (ViT) Sharpness Aware Minimization (SAM)

- Optimize the worst-case loss within a small neighborhood
	- min *w* max ∥*δ*∥2≤*ϵ* $L(w + \delta)$
	- ϵ is a small constant (hyper-parameter)
- Use 1-step gradient ascent to approximate inner max:

$$
\hat{\delta} = \arg \max_{\|\delta\|_2 \le \epsilon} L(w) + \nabla L(w)^T \delta = \epsilon \frac{\nabla}{\|\nabla \delta\|^2}
$$

Conduct the following update for each iteration:

•
$$
w \leftarrow w - \alpha \nabla L(w + \hat{\delta})
$$

∇*L*(*w*)

∥∇*L*(*w*)∥

Vision Transformer (ViT) Sharpness Aware Minimization (SAM)

• SAM is a natural way to penalize sharpness region (but requires some computational overhead)

Unsupervised pertaining for NLP Motivation

- Many unlabeled NLP data but very few labeled data
- Can we use large amount of unlabeled data to obtain meaningful representations of words/sentences?

Unsupervised pertaining for NLP Learning word embeddings

- Use large (unlabeled) corpus to learn a useful word representation
	- Learn a vector for each word based on the corpus
	- Hopefully the vector represents some semantic meaning
	- Can be used for many tasks
		- Replace the word embedding matrix for DNN models for classification/translation
	- Two different perspectives but led to similar results:
		- Glove (Pennington et al., 2014)
		- Word2vec (Mikolov et al., 2013)

Unsupervised pertaining for NLP Context information

- Given a large text corpus, how to learn low-dimensional features to represent a word?
- For each word w_i , define the "contexts" of the word as the words surrounding it in an L-sized window:

$$
W_{i-L-2}, W_{i-L-1}, W_{i-L}, \cdots, W_{i-1}, W_{i-1}
$$

contexts of *wi* contexts of *wi*

• Get a collection of (word, context) pairs, denoted by D .

- , $W_i, W_{i+1}, \dots, W_{i+L}, W_{i+L+1}, \dots$
	-

Unsupervised pertaining for NLP Examples

Unsupervised pertaining for NLP Use bag-of-word model

- Idea 1: Use the bag-of-word model to ``describe'' each word
- Assume we have context words c_1, \cdots, c_d in the corpus, compute
	- $\#(w, c_i) :=$ number of times the pair (w, c_i) appears in D
- For each word w , form a d -dimensional (sparse) vector to describe *w*

$$
\bullet \ \#(w, c_1), \cdots, \#(w, c_d),
$$

Unsupervised pertaining for NLP PMI/PPMI Representation

- Similar to TF-IDF: Need to consider the frequency of each word and each context
- Instead of using co-ocurrent count $#(w, c)$, we can define pointwise mutual information:

$$
\text{PMI}(w, c) = \log(\frac{\hat{P}(w, c)}{\hat{P}(w)\hat{P}(c)}) = \log \frac{\#(w, c) |D|}{\#(w)\#(c)},
$$

•
$$
f(w) = \sum_{c} f(w, c)
$$
: number of times word w occurred in D

• $#(c) = \sum #(w, c)$: number of times context c occurred *w*

- $|D|$: number of pairs in D
- Positive PMI (PPMI) usually achieves better performance:
	- PPMI $(w, c) = \max(\text{PMI}(w, c), 0)$
- M^{PPMI} : a *n* by d word feature matrix, each row is a word and each column is a context

Unsupervised pertaining for NLP PPMI Matrix

Unsupervised pertaining for NLP Generalized Low-rank Embedding

• SVD basis will minimize

- Glove (Pennington et al., 2014)
	- Negative sampling (less weights to 0s in M^{PPMI})
	- Adding bias term:

•
• M ^{PPMI} $\approx W V^T + b_w^T e^T + e b_c^T$

• Use W or V as the word embedding matrix

$$
\bullet \quad \min_{W,V} \|M^{\text{PPMI}} - WV^T\|_F^2
$$

Unsupervised pertaining for NLP Word2vec (Mikolov et al., 2013)

- A neural network model for learning word embeddings
- Main idea:
	- Predict the target words based on the neighbors (CBOW)
	- Predict neighbors given the target words (Skip-gram)

ord

age processing

age |processing

ge processing

age processing

Unsupervised pertaining for NLP CBOW (Continuous Bag-of-Word model)

• Predict the target words based on the neighbors

Unsupervised pertaining for NLP Skip-gram

• Predict neighbors using target word

Unsupervised pertaining for NLP More on skip-gram

-
- Every word has two embeddings:
	- v_i serves as the role of target
	- u_i serves as the role of context
- Model probability as softmax:

$$
P(o|c) = \frac{e^{u_o^T v_c}}{\sum_{w=1}^W e^{u_w^T v_c}}
$$

• Learn the probability $P(w_{t+j} | w_t)$: the probability to see w_{t+j} in target word w_t 's neighborhood

Unsupervised pertaining for NLP Results

• The low-dimensional embeddings are (often) meaningful:

Male-Female

Verb tense

Country-Capital

Contextual embedding Contextual world representation

• The semantic meaning of a word should depend on its context

open a bank account

 $[0.9, -0.2, 1.6, ...]$ $[-1.9, -0.4, 0.1, ...]$ on the river bank

• Solution: Train a model to extract contextual representations on text corpus

Contextual embedding CoVe (McCann et al., 2017)

- Key idea: Train a standard neural machine translation model
- Take the encoder directly as contextualized word embeddings
- Problems:
	- Translation requires paired (labeled) data
	- The embeddings are tailored to particular translation corpuses

Contextual embedding Language model pretraining task

- Predict the next word given the prefix
- Can be defined on any unlabeled document

Contextual embedding ELMo (Peter et al., 2018)

- Key ideas:
	- Train a foward and backward LSTM language model on large corpus
	- Use the hidden states for each token to compute a vector representation of each word
- **LSTM** Layer #2
- **LSTM** Layer #1
-
- Replace the word embedding by Elmo's embedding (with fixed Elmo's LSTM weights)

Contextual embedding ELMo results

Contextual embedding BERT

- Key idea: replace LSTM by Transformer
- Define the generated pretraining task by masked language model
- Two pretraining tasks
- Finetune both BERT weights and task-dependent model weights for each task

Contextual embedding BERT pretraining loss

- Masked language model: predicting each word by the rest of sentence
- sentence is the subsequent sentence in the original document.

• Next sentence prediction: the model receives pairs of sentences as input and learns to predict if the second

Contextual embedding BERT finetuning

- Keep the pretrained **Transformers**
- Replace or append a layer for the final task
- Train the whole model based on the task-dependent loss

Contextual embedding BERT results

Graph Convolutional Neural Network Node classification problem

- Given a graph of N nodes, with adjacency matrix $A \in \mathbb{R}^{N \times N}$
- Each node is associated with a D -dimensional feature vector.
- $X \in \mathbb{R}^{N \times D}$: each row corresponds to the feature vector of a node
- Observe labels for a subset of nodes: $Y \in \mathbb{R}^{N \times L}$, only observe a subset of rows, denoted by $Y_S^{\vphantom{\dagger}}$
- Goal: Predict labels for unlabeled nodes (transductive setting) or
- test nodes (inductive setting) or test graphs (inductive setting)

Graph Convolutional Neural Network Graph Convolution Layer

- GCN: multiple graph convolution layers
- A : normalized version of A :

- Graph convolution:
	- Input: features for each node $H^{(l)} \in \mathbb{R}^{n \times D}$
	- Output: features for each node $H^{(l+1)}$ after gathering neighborhood information
	- Convolution: $PH^(l)$: Aggregate features from neighbors
	- Convolution + fully-connected layer + nonlinear activation:
		- $H^{(l+1)} = \sigma(PH^{(l)}W^{(l)}),$
		- $W^{(l)}$ is the weights for the linear layer
		- $σ(·)$: usually ReLU function

$$
\tilde{A} = A + I, \quad \tilde{D}_{uv} = \sum_{v} \tilde{A}_{uv}, \quad P = \tilde{D}^{-1} \hat{A}
$$

Graph Convolutional Neural Network Graph convolutional network

Graph Convolutional Neural Network Graph convolutional network

- Initial features $H^{(0)} := X$
- For layer $l = 0, ..., L$
	- $Z^{(l+1)} = PH^{(l)}W^{(l)}, \quad H^{(l+1)} = \sigma(Z^{(l+1)}),$
- Use final layer feature $H^{(L)} \in \mathbb{R}^{N \times K}$ for classification:

- Each row of $Z_{\scriptscriptstyle S}^{(L)}$ corresponds to the output score for each label
- Cross-entropy loss for classification

$$
\text{Loss} = \frac{1}{|S|} \sum_{s \in S} \text{loss}(y_s, Z_s^{(L)})
$$

Graph Convolutional Neural Network Graph convolutional network

- Model parameters: $W^{(1)}, \cdots, W^{(L)}$
- Can be used to
	- Predict unlabeled nodes in the training set
	- Predict testing nodes (not in the training set)
	- Predict labels for a new graph
- Also, features extracted by GCN $H^{(L)}$ is usually very useful for other tasks

Graph Convolutional Neural Network Graph Attention Networks

- Each edge may not contribute equally
- Using attention mechanism to automatically assign weights to each edge:

• where h_i, h_j are the features for node i and j at previous layer, W is the GNN weight, a is the additional learnable parameter for attention

$$
\alpha_{i,j} = \frac{a_{i,j}}{\sum_{k \in N_i} \exp(\text{LeakyReLU}(a^T[Wh_i \mid Wh_k]))}
$$

$$
\exp(\text{LeakyReLU}(a^T[Wh_i \mid Wh_j]))
$$

Graph Convolutional Neural Network GNN Pretraining

- Standard GNN pipeline:
	- Text features \Rightarrow BERT/Word2vec \Rightarrow GNN
- GIANT-XRT: pretrain the feature extractors (e.g., BERT) based on the graph information.

Graph Convolutional Neural Network GIANT-XRT

- Pretraining task: Predicting the Neighbors of each node
- Train BERT encoder to predict each row of adjacency matrix \Rightarrow Multilabel classification with huge number of labels

Neighborhood prediction as XMC problem:

Graph Convolutional Neural Network GIANT-XRT

- State-of-the-art eXtreme Multilabel Classification (XMC) usually conducts multi-layer predictions.
- Example: PECOS, Parabel, …

