
Minhao Cheng

COMP6211I:
Trustworthy Machine Learning
Lecture 2

Theory of Generalization
Formal definition

• Assume training and test data are both sampled from

• The ideal function (for generating labels) is

• Training error: Sample from and

•

• h is determined by

• Test error: Sample from and

•

• h is independent to

D

f : f(x) → y

x1, …, xN D

Etr(h) =
1
N

N

∑
n=1

e(h(xn), f(xn))

x1, …, xn

x1, …, xN D

Ete(h) =
1
M

M

∑
m=1

e(h(xm), f(xm))

x1, …, xn

Theory of Generalization
Formal definition

• Assume training and test data are both sampled from

• The ideal function (for generating labels) is

• Training error: Sample from and

•

• h is determined by

• Test error: Sample from and

•

• h is independent to

• Generalization error = Test error = Expected performance on :

•

D

f : f(x) → y

x1, …, xN D

Etr(h) =
1
N

N

∑
n=1

e(h(xn), f(xn))

x1, …, xn

x1, …, xM D

Ete(h) =
1
M

M

∑
m=1

e(h(xm), f(xm))

x1, …, xn

D

E(h) = 𝔼x∼D[e(h(x), f(x))] = Ete(h)

Theory of Generalization
The 2 questions of learning

• is achieved through:

• and

E(h) ≈ 0

E(h) ≈ Etr(h) Etr(h) ≈ 0

Theory of Generalization
The 2 questions of learning

• is achieved through:

• and

• Learning is split into 2 questions:

• Can we make sure that ?

• Generalization

• Can we make small?

• Optimization

E(h) ≈ 0

E(h) ≈ Etr(h) Etr(h) ≈ 0

E(h) ≈ Etr(h)

Etr(h)

Theory of Generalization
Connection to Learning

• Given a function

• If we randomly draw (independent to):

• (generalization error, unknown)

• (error on sampled data, known)

• Based on Hoeffding’s inequality:

•

• “ ” Is probably approximately correct (PAC)

• However, this can only “verify” the error of a hypothesis:

• and must be independent

h

x1, …, xn h

E(h) = 𝔼x∼D[h(x) ≠ f(x)] ⇔ μ

1
N

N

∑
n=1

[h(xn) ≠ yn] ⇔ ν

p[|ν − μ | > ϵ] ≤ 2e−2ϵ2N

μ = ν

h x1, …, xN

Theory of Generalization
A simple solution

• For each particular ,

•

• If we have a hypothesis set ,we want to derive the bound for

• or … or

•

• Because of union bound inequality

h

P[|Etr(h) − E(h) | > ϵ] ≤ 2e−2ϵ2N

ℋ P[suph∈ℋ |Etr(h) − E(h) | > ϵ]

P[|Etr(h1) − E(h1) | > ϵ] P[|Etr(h|ℋ|) − E(h|ℋ|) | > ϵ]

≤
ℋ

∑
m=1

P[|Etr(hm) − E(hm) |] ≤ 2 |ℋ |e−2ϵ2N

P(
∞

⋃
i=1

Ai) ≤
∞

∑
i=1

P(Ai)

Theory of generalization
When is learning successful?

• When our learning algorithm picks the hypothesis :

•

• If is small and N is large enough:

• If finds (Learning is successful!)

𝒜 g

P[SUPh∈ℋ |Etr(h) − E(h) | > ϵ] ≤ 2 |ℋ |e−2ϵ2N

|ℋ |

𝒜 Etr(g) ≈ 0 ⇒ E(g) ≈ 0

Theory of Generalization
Feasibility of Learning

•

• Two questions:

• 1. Can we make sure ?

• 2. Can we make sure ?

• : complexity of model

• Small : 1 holds, but 2 may not hold (too few choices) (under-fitting)

• Large : 1 doesn’t hold, but 2 may hold (over-fitting)

P[|Etr(g) − E(g) | > ϵ] ≤ 2 |ℋ |e−2ϵ2N

E(g) ≈ Etr(g)

Etr(g) ≈ 0

|ℋ |

|ℋ |

|ℋ |

Regularization
The polynomial model

• : polynomials of order

•

• Linear regression in the space with

•

ℋQ Q

ℋQ = {
Q

∑
q=0

wqLq(x)}

𝒵

z = [1,L1(x), …, LQ(x)]

Regularization
Unconstrained solution

• Input

• Linear regression:

• Minimize:

• Minimize:

• Solution

(x1, y1), …, (xN, yN) → (z1, y1), …, (zN, yN)

Etr(w) =
1
N

N

∑
n=1

(wTzn − yn)2

1
N

(Zw − y)T(Zw − y)

wtr = (ZTZ)−1ZTy

Regularization
Constraining the weights

• Hard constraint: is constrained version of (with for)ℋ2 ℋ10 wq = 0 q > 2

Regularization
Constraining the weights

• Hard constraint: is constrained version of (with for)

• Soft-order constraint:

ℋ2 ℋ10 wq = 0 q > 2
Q

∑
q=0

w2
q ≤ C

Regularization
Constraining the weights

• Hard constraint: is constrained version of (with for)

• Soft-order constraint:

• The problem given soft-order constraint:

•
Minimize s.t.

• Solution instead of

ℋ2 ℋ10 wq = 0 q > 2
Q

∑
q=0

w2
q ≤ C

1
N

(Zw − y)T(Zw − y) wTw ≤ C
smaller hypothesis space

wreg wtr

Regularization
Equivalent to the unconstrained version

• Constrained version:

•

• s.t.

• Optimal when

•

• Why? If and are not parallel, can decrease without violating the
constraint

min
w

Etr(w) =
1
N

(Zw − y)T(Zw − y)

wTw ≤ C

∇Etr(wreg) ∝ − wreg

−∇Etr(wreg) w Etr(w)

Regularization
Equivalent to the unconstrained version

• Constrained version:

• s.t.

• Optimal when

•

• Assume

min
w

Etr(w) =
1
N

(Zw − y)T(Zw − y) wTw ≤ C

∇Etr(wreg) ∝ − wreg

∇Etr(wreg) = − 2
λ
N

wreg ⇒ ∇Etr(wreg) + 2
λ
N

wreg = 0

Regularization
Equivalent to the unconstrained version

• Constrained version:

• s.t.

• Optimal when

•

• Assume

• is also the solution of unconstrained problem

• (Ridge regression!)

min
w

Etr(w) =
1
N

(Zw − y)T(Zw − y) wTw ≤ C

∇Etr(wreg) ∝ − wreg

∇Etr(wreg) = − 2
λ
N

wreg ⇒ ∇Etr(wreg) + 2
λ
N

wreg = 0

wreg

min
w

Etr(w) +
λ
N

wTw

Regularization
Equivalent to the unconstrained version

• Constrained version:

• s.t.

• Optimal when

•

• Assume

• is also the solution of unconstrained problem

• (Ridge regression!)

min
w

Etr(w) =
1
N

(Zw − y)T(Zw − y) wTw ≤ C

∇Etr(wreg) ∝ − wreg

∇Etr(wreg) = − 2
λ
N

wreg ⇒ ∇Etr(wreg) + 2
λ
N

wreg = 0

wreg

min
w

Etr(w) +
λ
N

wTw

Regularization
Ridge regression solution

•

•

min
w

Ereg(w) =
1
N ((Zw − y)T(Zw − y) + λwTw)

∇Ereg(w) = 0 ⇒ ZTZ(w − y) + λw = 0

Regularization
Ridge regression solution

•

•

• So, (with regularization) as opposed to
 (without regularization)

min
w

Ereg(w) =
1
N ((Zw − y)T(Zw − y) + λwTw)

∇Ereg(w) = 0 ⇒ ZTZ(w − y) + λw = 0

wreg = (ZTZ + λI)−1ZTy
wtr = (ZTZ)−1ZTy

Regularization
The result

• min
w

Etr(w) +
λ
N

wTw

Regularization
Equivalent to “weight decay”

• Consider the general case

• min
w

Etr(w) +
λ
N

wTw

Regularization
Equivalent to “weight decay”

• Consider the general case

•

• Gradient descent:

•

min
w

Etr(w) +
λ
N

wTw

wt+1 = wt − η(∇Etr(wt) + 2
λ
N

wt)

= wt (1 − 2η
λ
N

)

weight decay

− η∇Etr(wt)

Regularization
Variations of weight decay

• Calling the regularizer , we minimize

•

• In general, can be any measurement for the “size” of

Ω = Ω(h)

Ereg(h) = Etr(h) +
λ
N

Ω(h)

Ω(h) h

Regularization
L2 vs L1 regularizer

• L1-regularizer:

• Usually leads to a sparse solution (only few will be nonzero)

Ω(w) = ∥w∥1 = ∑
q

|wq |

wq

Neural network
Another way to introduce nonlinearity

• How to generate this nonlinear hypothesis?

• Combining multiple linear hyperplanes to
construct nonlinear hypothesis

Neural Network
Definition

• Input layer: neurons (input features)

• Neurons from layer to : Linear
combination of previous layers +
activation function

•

• Final layer: one neuron prediction
by

d

1 L

θ(wTx), θ : activation function

⇒
sign(h(x))

Neural network
Activation Function

Neural Network
Activation: Formal Definitions

•

Weight: w(l)
ij

1 ≤ l ≤ L : layers

0 ≤ i ≤ d(l−1): inputs

1 ≤ j ≤ d(l) : outputs

bias: b(l)
j : added to the j-th neuron in the l-th layer

Neural Network
Formal Definitions

•

• j-th neuron in the l-the layer:

•

Weight: w(l)
ij

1 ≤ l ≤ L : layers

0 ≤ i ≤ d(l−1): inputs

1 ≤ j ≤ d(l) : outputs

bias: b(l)
j : added to the j-th neuron in the l-th layer

x(l)
j = θ(s(l)

j) = θ(
d(l−1)

∑
i=0

w(l)
ij x(l−1)

i + b(l)
j)

Neural Network
Formal Definitions

•

• j-th neuron in the l-the layer:

•

• Output:

•

Weight: w(l)
ij

1 ≤ l ≤ L : layers

0 ≤ i ≤ d(l−1): inputs

1 ≤ j ≤ d(l) : outputs

bias: b(l)
j : added to the j-th neuron in the l-th layer

x(l)
j = θ(s(l)

j) = θ(
d(l−1)

∑
i=0

w(l)
ij x(l−1)

i + b(l)
j)

h(x) = x(L)
1

Neural Network
Forward propagation

Neural Network
Forward propagation

Neural Network
Forward propagation

Neural Network
Forward propagation

Neural Network
Forward propagation

Neural Network
Forward propagation

Neural Network
Forward propagation

Neural Network
Forward propagation

Neural Network
Forward propagation

Neural Network
Forward propagation

Neural Network
Forward propagation

• With the bias term:
h(x) = θ(W4θ(W3θ(W2θ(W1x + b1) + b2) + b3) + b4)

Neural Network
Capacity of neural networks

• Universal approximation theorem (Horink, 1991):

• “A neural network with single hidden layer can approximate any continuous
function arbitrarily well, given enough hidden units”

• True for commonly used activations (ReLU, sigmoid, …)

Neural Network
Universal approximation for step activation

• How to approximate an arbitrary function by single-layer NN with step
function as activation:

Neural Network
Training

• Weights and bias determine

• Learning the weights: solve ERM with SGD

• Loss on example is

•

W = {W1, …, WL} {b1, ⋯, bL} h(x)

(xn, yn)

e(h(xn), yn) = e(W)

Neural Network
Training

• Weights and bias determine

• Learning the weights: solve ERM with SGD

• Loss on example is

•

• To implement SGD, we need the gradient

• (for simplicity we ignore bias in the derivations)

W = {W1, …, WL} {b1, ⋯, bL} h(x)

(xn, yn)

e(h(xn), yn) = e(W)

∇e(W) : {
∂e(W)
∂w(

ijl)
} for all i, j, l

Neural Network
Computing Gradient ∂e(W)

∂w(l)
ij

• Use chain rule:

•

•

• We have

∂e(W)
∂w(l)

ij
=

∂e(W)
∂s(l)

j
×

∂s(l)
j

∂w(l)
ij

s(l)
j =

d

∑
i=1

x(l−1)
i w(l)

ij

∂s(l)
j

∂w(l)
ij

= x(l−1)
i

Neural Network
Computing Gradient ∂e(W)

∂w(l)
ij

• Define

• Compute by layer-by-layer:

•

• where for tan

•

δ(l)
j :=

∂e(W)
∂s(l)

j

δ(l−1)
i =

∂e(W)
∂s(l−1)

i

=
d

∑
j=1

∂e(W)
∂s(l)

j
×

∂s(l)
j

∂x(l−1)
i

×
∂x(l−1)

i

∂sl−1
i

=
d

∑
j=1

δ(l)
j × w(l)

ij × θ′￼(s(l−1)
i),

θ′￼(s) = 1 − θ2(s)

δ(l−1)
i = (1 − (x(l−1)

i)2)
d

∑
j=1

w(l)
ij δ(l)

j

Neural Network
Final layer

• (Assume square loss)

•

•

• So,

•

e(W) = (x(L)
1 − yn)2

x(L)
1 = θ(s(L)

1)

δ(L)
1 =

∂e(W)
∂s(L)

1

=
∂e(W)
∂x(L)

1
×

∂x(L)
1

∂s(L)
1

= 2(x(L)
1 − yn) × θ′￼(s(L)

1)

Neural Network
Backward propagation

Neural Network
Backward propagation

Neural Network
Backward propagation

Neural Network
Backward propagation

Neural Network
Backward propagation

Neural Network
Backward propagation

Neural Network
Backward propagation

Neural Network
Backpropagation

Neural Network
Backpropagation

• Just an automatic way to apply chain rule to compute gradient

• Auto-differentiation (AD) --- as long as we define derivative for each basic
function, we can use AD to compute any of their compositions

• Implemented in most deep learning packages (e.g., pytorch, tensorflow)

Neural Network
Backpropagation

• Just an automatic way to apply chain rule to compute gradient

• Auto-differentiation (AD) --- as long as we define derivative for each basic
function, we can use AD to compute any of their compositions

• Implemented in most deep learning packages (e.g., pytorch, tensorflow)

• Auto-differentiation needs to store all the intermediate nodes of each sample

• Memory cost > number of neurons batch size

• This poses a constraint on the batch size

⇒ ×

⇒

Neural Network
Multiclass Classification

• classes: neurons in the
final layer

• Output of each is the score
of class

• Taking as the
prediction

K K

fi
i

arg max
i

fi(x)

Neural Network
Multiclass loss

• Softmax function: transform output to probability:

•

•
Where

• Cross-entropy loss:

•

• Where is the -th label

[f1, ⋯, fK] → [pi, ⋯, pK]

pi =
efi

∑K
j=1 efj

L = −
K

∑
i=1

yi log(pi)

yi i

Convolutional Neural Network
Neural Networks

• Fully connected networks doesn't work well for computer vision applications⇒

Convolutional Neural Network
Convolution Layer

• Fully connected layers have too many parameters

• poor performance

• Example: VGG first layer

• Input:

• Output:

• Number of parameters if we use fully connected net:

• 483 billion

• Convolution layer leads to:

• Local connectivity

• Parameter sharing

⇒

224 × 224 × 3

224 × 224 × 64

(224 × 224 × 3) × (224 × 224 × 64) =

Convolutional Neural Network
Convolution

• The convolution of an image with a kernel is computed as

•

x k

(x * k)ij = ∑
pq

xi+p,j+qkp,q

Convolutional Neural Network
Convolution

Convolutional Neural Network
Convolution

Convolutional Neural Network
Convolution

Convolutional Neural Network
Convolution

Convolutional Neural Network
Convolution

Convolutional Neural Network
Convolution

• Element-wise activation function after convolution

• detector of a feature at any position in the image⇒

Convolutional Neural Network
Learned Kernels

• Example kernels learned by AlexNet

• Number of parameters:

• Example: image, kernels, kernel size

• = 10K parameters

200 × 200 100 10 × 10

⇒ 10 × 10 × 100

Convolutional Neural Network
Padding

• Use zero padding to allow going over the boundary

• Easier to control the size of output layer

Convolutional Neural Network
Strides

• Stride: The amount of movement between applications of the filter to the
input image

• Stride : no stride(1,1)

Convolutional Neural Network
Pooling

• It’s common to insert a pooling layer in-between successive convolutional layers

• Reduce the size of presentation, down-sampling

• Example: Max pooling

Convolutional Neural Network
Pooling

• By pooling, we gain robustness to the exact spatial location of features

Convolutional Neural Network
Example: LeNet5

• Input: images (MNIST)

• Convolution 1: 6 filters, stride 1

• Output: 6 maps

• Pooling 1: max pooling, stride 2

• Output: 6 maps

• Convolution 2: 16 filters, stride 1

• Output: 16 maps

• Pooling 2: max pooling with stride 2

• Output: 16 maps (total 400 values)

• 3 fully connected layers: neurons

32 × 32

5 × 5

28 × 28

2 × 2

14 × 14

5 × 5

10 × 10

2 × 2

5 × 5

120 ⇒ 84 ⇒ 10

Convolutional Neural Network
Training

• Training:

• Apply SGD to minimize in-sample training error

• Backpropagation can be extended to convolutional layer and pooling layer
to compute gradient!

• Millions of parameters easy to overfit⇒

Convolutional Neural Network
Revisit Alexnet

• Dropout: 0.5 (in FC layers)

• A lot of data augmentation

• Momentum SGD with batch size 128, momentum factor 0.9

• L2 weight decay (L2 regularization)

• Learning rate: 0.01, decreased by 10 every time when reaching a stable
validation accuracy

Convolutional Neural Network
Dropout

• One of the most effective regularization for deep neural networks

Convolutional Neural Network
Dropout(training)

• Dropout in the training phase:

• For each batch, turn off each
neuron (including inputs) with a
probability

• Zero out the removed nodes/edges
and do backpropogation

1 − α

Convolutional Neural Network
Dropout(test)

• The model is different from the full model:

• Each neuron computes

•

• Where B is Bernoulli variable that takes 1 with probability

• The expected output of the neuron:

•

• Use the expected output at test time multiply all the weights by

x(l)
i = Bσ(∑

j

W(l)
ij x(l−1)

j + b(l)
i)

α

E[x(l)
i] = ασ(∑

j

W(l)
ij x(l−1)

j + b(l)
i)

⇒ α

Convolutional Neural Network
Batch Normalization

• Initially proposed to reduce co-variate shift

•

• : the mean for channel , and standard deviation.

• and : two learnable parameters

Ob,c,x,y ← γ
Ib,c,x,y − μc

σ2
c + ϵ

+ β ∀b, c, x, y,

μc = 1
|B |

∑b,x,y Ib,c,x,y c σc

γ β

Convolutional Neural Network
Batch Normalization

• Couldn’t reduce covariate
shift (Ilyas et al 2018)

• Allow larger learning rate

• Constraint the gradient
norm

Convolutional Neural Network
Other normalization

Convolutional Neural Network
Residual Networks

• Very deep convnets do not train well —vanishing gradient problem

Convolutional Neural Network
Residual Networks

• Key idea: introduce ``pass through'' into each layer

• Thus, only residual needs to be learned

Convolutional Neural Network
Residual Networks

Representation for sentence/document
Bag of word

• A classical way to represent NLP data

• Each sentence (or document) is
represented by a -dimensional vector

, where is number of occurrences
of word

• number of features = number of
potential words (very large)

d
x xi

i

Representation for sentence/document
Feature generation for documents

• Bag of -gram features ():

• 10,000 words
potential features

n n = 2

⇒ 100002

Representation for sentence/document
Bag of word + linear model

• Example: text classification (e.g., sentiment prediction, review score
prediction)

• Linear model: (e.g., by linear SVM/logistic regression)

• : the ``contribution'' of each word

y ≈ sign(wTx)

wi

Representation for sentence/document
Bag of word + Fully connected network

•

• The first layer is a by matrix:

• Each column is a dimensional representation of -th word （word embedding)

• is a linear combination of these vectors

• is also called the word embedding matrix

• Final prediction can be viewed as an layer network on (average of word
embeddings)

• Not capturing the sequential information

f(x) = WLσ(WL−1⋯σ(W0x))

W0 d1 d

wi d1 i

W0x = x1w1 + x2w2 + ⋯ + xdwd

W0

L − 1 W0x

Recurrent Neural Network
Time series/Sequence data

• Input:

• Each is the feature at time step

• Each can be a -dimensional vector

• Output:

• Each is the output at step

• Multi-class output or Regression output:

•

{x1, x2, ⋯, xT}

xt t

xt d

{y1, y2, ⋯, yT}

yt t

yt ∈ {1,2,⋯, L} or yt ∈ ℝ

Recurrent Neural Network
Example: Time Series Prediction

• Climate Data:

• : temperature at time

• : temperature (or temperature
change) at time

• Stock Price: Predicting stock price

xt t

yt
t + 1

Recurrent Neural Network
Example: Language Modeling

Recurrent Neural Network
Example: Language Modeling

• : one-hot encoding to represent the
word at step

• : the next word

•

xt
t ([0,…,0,1,0,…,0])

yt

yt ∈ {1,⋯, V} V: Vocabulary size

Recurrent Neural Network
Example: POS Tagging

• Part of Speech Tagging:

• Labeling words with their Part-
Of-Speech (Noun, Verb,
Adjective, …)

• : a vector to represent the
word at step

• : label of word

xt
t

yt t

Recurrent Neural Network
Example: POS Tagging

• : -th input

• : hidden state at time (``memory’' of the network)

•

• : transition matrix, : word embedding matrix, usually set to be 0

• Predicted output at time :

•

xt t

st t

st = f(Uxt + Wst−1)

W U s0

t

ot = arg max
i

(Vst)i

Recurrent Neural Network
Recurrent Neural Network (RNN)

• Training: Find to minimize empirical loss:

• Loss of a sequence:

•

• (is a function of)

• Loss on the whole dataset:

• Average loss over all sequences

• Solved by SGD/Adam

U, W, V

T

∑
t=1

loss(Vst, yt)

st U, W, V

Recurrent Neural Network
RNN: Text Classification

• Not necessary to output at each step

• Text Classification:

•

• Output only at the final step

• Model: add a fully connected network
to the final embedding

sentence → category

Recurrent Neural Network
Problems of Classical RNN

• Hard to capture long-term dependencies

• Hard to solve (vanishing gradient problem)

• Solution:

• LSTM (Long Short Term Memory networks)

• GRU (Gated Recurrent Unit)

• …

Recurrent Neural Network
LSTM

• RNN:

• LSTM:

Recurrent Neural Network
Neural Machine Translation (NMT)

• Out the translated sentence from an input
sentence

• Training data: a set of input-output pairs
(supervised setting)

• Encoder-decoder approach:

• Encoder: Use (RNN/LSTM) to encode
the input sentence input a latent vector

• Decoder: Use (RNN/LSTM) to generate
a sentence based on the latent vector

Recurrent Neural Network
Neural Machine Translation

Recurrent Neural Network
Attention in NMT

• Usually, each output word is only related to a subset of input words (e.g., for
machine translation)

• Let be the current decoder latent state, be the latent sate for
each input word

• Compute the weight of each state by

•

• Compute the context vector by

u v1, …, vn

p = Softmax(uTv1, …, uTvn)

Vp = p1v1 + … + pnvn

Recurrent Neural Network
Attention in NMT

