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Theory of Generalization
Formal definition

• Assume training and test data are both sampled from 


• The ideal function (for generating labels) is 


• Training error: Sample  from  and 


• 


• h is determined by 


• Test error: Sample  from  and 


• 


• h is independent to 
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Theory of Generalization
Formal definition

• Assume training and test data are both sampled from 


• The ideal function (for generating labels) is 


• Training error: Sample  from  and 


• 


• h is determined by 


• Test error: Sample  from  and 


• 


• h is independent to 


• Generalization error = Test error = Expected performance on :


•

D

f : f(x) → y

x1, …, xN D

Etr(h) =
1
N

N

∑
n=1

e(h(xn), f(xn))

x1, …, xn

x1, …, xM D

Ete(h) =
1
M

M

∑
m=1

e(h(xm), f(xm))

x1, …, xn

D

E(h) = 𝔼x∼D[e(h(x), f(x))] = Ete(h)



Theory of Generalization
The 2 questions of learning

•  is achieved through:


•  and 

E(h) ≈ 0

E(h) ≈ Etr(h) Etr(h) ≈ 0



Theory of Generalization
The 2 questions of learning

•  is achieved through:


•  and 


• Learning is split into 2 questions:


• Can we make sure that ?


• Generalization


• Can we make  small?


• Optimization

E(h) ≈ 0

E(h) ≈ Etr(h) Etr(h) ≈ 0

E(h) ≈ Etr(h)

Etr(h)



Theory of Generalization
Connection to Learning

• Given a function 


• If we randomly draw  (independent to ):


•  (generalization error, unknown)


•  (error on sampled data, known)


• Based on Hoeffding’s inequality:


• 


• “ ” Is probably approximately correct (PAC)


• However, this can only “verify” the error of a hypothesis:


•  and  must be independent

h

x1, …, xn h

E(h) = 𝔼x∼D[h(x) ≠ f(x)] ⇔ μ

1
N

N

∑
n=1

[h(xn) ≠ yn] ⇔ ν

p[ |ν − μ | > ϵ] ≤ 2e−2ϵ2N

μ = ν

h x1, …, xN



Theory of Generalization
A simple solution

• For each particular ,


• 


• If we have a hypothesis set ,we want to derive the bound for 


•  or … or 


• 


• Because of union bound inequality 

h

P[ |Etr(h) − E(h) | > ϵ] ≤ 2e−2ϵ2N

ℋ P[suph∈ℋ |Etr(h) − E(h) | > ϵ]

P[ |Etr(h1) − E(h1) | > ϵ] P[ |Etr(h|ℋ|) − E(h|ℋ|) | > ϵ]

≤
ℋ

∑
m=1

P[ |Etr(hm) − E(hm) | ] ≤ 2 |ℋ |e−2ϵ2N

P(
∞

⋃
i=1

Ai) ≤
∞

∑
i=1

P(Ai)



Theory of generalization
When is learning successful?

• When our learning algorithm  picks the hypothesis :


• 


• If  is small and N is large enough:


• If  finds    (Learning is successful!)

𝒜 g

P[SUPh∈ℋ |Etr(h) − E(h) | > ϵ] ≤ 2 |ℋ |e−2ϵ2N

|ℋ |

𝒜 Etr(g) ≈ 0 ⇒ E(g) ≈ 0



Theory of Generalization
Feasibility of Learning

• 


• Two questions:


• 1. Can we make sure ?


• 2. Can we make sure ?


• : complexity of model


• Small : 1 holds, but 2 may not hold (too few choices) (under-fitting)


• Large : 1 doesn’t hold, but 2 may hold (over-fitting)

P[ |Etr(g) − E(g) | > ϵ] ≤ 2 |ℋ |e−2ϵ2N

E(g) ≈ Etr(g)

Etr(g) ≈ 0

|ℋ |

|ℋ |

|ℋ |



Regularization
The polynomial model

• : polynomials of order 


• 


• Linear regression in the space with


•

ℋQ Q

ℋQ = {
Q

∑
q=0

wqLq(x)}

𝒵

z = [1,L1(x), …, LQ(x)]



Regularization
Unconstrained solution

• Input 


• Linear regression:


• Minimize: 


• Minimize: 


• Solution 

(x1, y1), …, (xN, yN) → (z1, y1), …, (zN, yN)

Etr(w) =
1
N

N

∑
n=1

(wTzn − yn)2

1
N

(Zw − y)T(Zw − y)

wtr = (ZTZ)−1ZTy



Regularization
Constraining the weights

• Hard constraint:  is constrained version of  (with  for )ℋ2 ℋ10 wq = 0 q > 2



Regularization
Constraining the weights

• Hard constraint:  is constrained version of  (with  for )


• Soft-order constraint: 

ℋ2 ℋ10 wq = 0 q > 2
Q

∑
q=0

w2
q ≤ C



Regularization
Constraining the weights

• Hard constraint:  is constrained version of  (with  for )


• Soft-order constraint: 


• The problem given soft-order constraint:


•
Minimize  s.t. 


• Solution  instead of 

ℋ2 ℋ10 wq = 0 q > 2
Q

∑
q=0

w2
q ≤ C

1
N

(Zw − y)T(Zw − y) wTw ≤ C
smaller hypothesis space

wreg wtr



Regularization
Equivalent to the unconstrained version

• Constrained version:


•   


• s.t. 


• Optimal when


• 


• Why? If  and  are not parallel, can decrease  without violating the 
constraint

min
w

Etr(w) =
1
N

(Zw − y)T(Zw − y)

wTw ≤ C

∇Etr(wreg) ∝ − wreg

−∇Etr(wreg) w Etr(w)



Regularization
Equivalent to the unconstrained version

• Constrained version:


•      s.t.  


• Optimal when


• 


• Assume   

min
w

Etr(w) =
1
N

(Zw − y)T(Zw − y) wTw ≤ C

∇Etr(wreg) ∝ − wreg

∇Etr(wreg) = − 2
λ
N

wreg ⇒ ∇Etr(wreg) + 2
λ
N

wreg = 0



Regularization
Equivalent to the unconstrained version

• Constrained version:


•      s.t.  


• Optimal when


• 


• Assume   


•  is also the solution of unconstrained problem


•   (Ridge regression!)

min
w

Etr(w) =
1
N

(Zw − y)T(Zw − y) wTw ≤ C

∇Etr(wreg) ∝ − wreg

∇Etr(wreg) = − 2
λ
N

wreg ⇒ ∇Etr(wreg) + 2
λ
N

wreg = 0

wreg

min
w

Etr(w) +
λ
N

wTw



Regularization
Equivalent to the unconstrained version

• Constrained version:


•      s.t.  


• Optimal when


• 


• Assume   


•  is also the solution of unconstrained problem


•   (Ridge regression!)  

min
w

Etr(w) =
1
N

(Zw − y)T(Zw − y) wTw ≤ C

∇Etr(wreg) ∝ − wreg

∇Etr(wreg) = − 2
λ
N

wreg ⇒ ∇Etr(wreg) + 2
λ
N

wreg = 0

wreg

min
w

Etr(w) +
λ
N

wTw



Regularization
Ridge regression solution

• 


•   

min
w

Ereg(w) =
1
N ((Zw − y)T(Zw − y) + λwTw)

∇Ereg(w) = 0 ⇒ ZTZ(w − y) + λw = 0



Regularization
Ridge regression solution

• 


•   


• So,  (with regularization) as opposed to 
 (without regularization)

min
w

Ereg(w) =
1
N ((Zw − y)T(Zw − y) + λwTw)

∇Ereg(w) = 0 ⇒ ZTZ(w − y) + λw = 0

wreg = (ZTZ + λI)−1ZTy
wtr = (ZTZ)−1ZTy



Regularization
The result

• min
w

Etr(w) +
λ
N

wTw



Regularization
Equivalent to “weight decay”

• Consider the general case


• min
w

Etr(w) +
λ
N

wTw



Regularization
Equivalent to “weight decay”

• Consider the general case


• 


• Gradient descent:


•

min
w

Etr(w) +
λ
N

wTw

wt+1 = wt − η(∇Etr(wt) + 2
λ
N

wt)

= wt (1 − 2η
λ
N

)

weight decay

− η∇Etr(wt)



Regularization
Variations of weight decay

• Calling the regularizer , we minimize


• 


• In general,  can be any measurement for the “size” of 

Ω = Ω(h)

Ereg(h) = Etr(h) +
λ
N

Ω(h)

Ω(h) h



Regularization
L2 vs L1 regularizer

• L1-regularizer: 


• Usually leads to a sparse solution (only few  will be nonzero)

Ω(w) = ∥w∥1 = ∑
q

|wq |

wq



Neural network
Another way to introduce nonlinearity

• How to generate this nonlinear hypothesis?


• Combining multiple linear hyperplanes to 
construct nonlinear hypothesis



Neural Network
Definition

• Input layer:  neurons (input features)


• Neurons from layer  to : Linear 
combination of previous layers + 
activation function


• 


• Final layer: one neuron  prediction 
by 

d

1 L

θ(wTx), θ : activation function

⇒
sign(h(x))



Neural network
Activation Function



Neural Network
Activation: Formal Definitions

•

Weight: w(l)
ij

1 ≤ l ≤ L : layers

0 ≤ i ≤ d(l−1): inputs

1 ≤ j ≤ d(l) : outputs

bias: b(l)
j : added to the j-th neuron in the l-th layer



Neural Network
Formal Definitions

•



•   j-th neuron in the l-the layer:


•

Weight: w(l)
ij

1 ≤ l ≤ L : layers

0 ≤ i ≤ d(l−1): inputs

1 ≤ j ≤ d(l) : outputs

bias: b(l)
j : added to the j-th neuron in the l-th layer

x(l)
j = θ(s(l)

j ) = θ(
d(l−1)

∑
i=0

w(l)
ij x(l−1)

i + b(l)
j )



Neural Network
Formal Definitions

•



•   j-th neuron in the l-the layer:


• 


• Output:


•

Weight: w(l)
ij

1 ≤ l ≤ L : layers

0 ≤ i ≤ d(l−1): inputs

1 ≤ j ≤ d(l) : outputs

bias: b(l)
j : added to the j-th neuron in the l-th layer

x(l)
j = θ(s(l)

j ) = θ(
d(l−1)

∑
i=0

w(l)
ij x(l−1)

i + b(l)
j )

h(x) = x(L)
1



Neural Network
Forward propagation



Neural Network
Forward propagation



Neural Network
Forward propagation



Neural Network
Forward propagation



Neural Network
Forward propagation



Neural Network
Forward propagation



Neural Network
Forward propagation



Neural Network
Forward propagation



Neural Network
Forward propagation



Neural Network
Forward propagation



Neural Network
Forward propagation

• With the bias term: 
h(x) = θ(W4θ(W3θ(W2θ(W1x + b1) + b2) + b3) + b4)



Neural Network
Capacity of neural networks

• Universal approximation theorem (Horink, 1991):


• “A neural network with single hidden layer can approximate any continuous 
function arbitrarily well, given enough hidden units”


• True for commonly used activations (ReLU, sigmoid, …)



Neural Network
Universal approximation for step activation

• How to approximate an arbitrary function by single-layer NN with step 
function as activation:



Neural Network
Training

• Weights  and bias  determine 


• Learning the weights: solve ERM with SGD


• Loss on example  is 


•

W = {W1, …, WL} {b1, ⋯, bL} h(x)

(xn, yn)

e(h(xn), yn) = e(W)



Neural Network
Training

• Weights  and bias  determine 


• Learning the weights: solve ERM with SGD


• Loss on example  is 


• 


• To implement SGD, we need the gradient


•  (for simplicity we ignore bias in the derivations)

W = {W1, …, WL} {b1, ⋯, bL} h(x)

(xn, yn)

e(h(xn), yn) = e(W)

∇e(W) : {
∂e(W)
∂w(

ijl)
} for all i, j, l



Neural Network
Computing Gradient ∂e(W)

∂w(l)
ij

• Use chain rule: 


• 


• 


• We have 

∂e(W)
∂w(l)

ij
=

∂e(W)
∂s(l)

j
×

∂s(l)
j

∂w(l)
ij

s(l)
j =

d

∑
i=1

x(l−1)
i w(l)

ij

∂s(l)
j

∂w(l)
ij

= x(l−1)
i



Neural Network
Computing Gradient ∂e(W)

∂w(l)
ij

• Define 


• Compute by layer-by-layer:


•




• where  for tan 


•

δ(l)
j :=

∂e(W )
∂s(l)

j

δ(l−1)
i =

∂e(W )
∂s(l−1)

i

=
d

∑
j=1

∂e(W )
∂s(l)

j
×

∂s(l)
j

∂x(l−1)
i

×
∂x(l−1)

i

∂sl−1
i

=
d

∑
j=1

δ(l)
j × w(l)

ij × θ′￼(s(l−1)
i ),

θ′￼(s) = 1 − θ2(s)

δ(l−1)
i = (1 − (x(l−1)

i )2)
d

∑
j=1

w(l)
ij δ(l)

j



Neural Network
Final layer

• (Assume square loss)


• 


• 


• So,


•

e(W) = (x(L)
1 − yn)2

x(L)
1 = θ(s(L)

1 )

δ(L)
1 =

∂e(W)
∂s(L)

1

=
∂e(W)
∂x(L)

1
×

∂x(L)
1

∂s(L)
1

= 2(x(L)
1 − yn) × θ′￼(s(L)

1 )



Neural Network
Backward propagation



Neural Network
Backward propagation



Neural Network
Backward propagation



Neural Network
Backward propagation



Neural Network
Backward propagation



Neural Network
Backward propagation



Neural Network
Backward propagation



Neural Network
Backpropagation



Neural Network
Backpropagation

• Just an automatic way to apply chain rule to compute gradient


• Auto-differentiation (AD) --- as long as we define derivative for each basic 
function,  we can use AD to compute any of their compositions


• Implemented in most deep learning packages (e.g., pytorch, tensorflow)



Neural Network
Backpropagation

• Just an automatic way to apply chain rule to compute gradient


• Auto-differentiation (AD) --- as long as we define derivative for each basic 
function,  we can use AD to compute any of their compositions


• Implemented in most deep learning packages (e.g., pytorch, tensorflow)


• Auto-differentiation needs to store all the intermediate nodes of each sample


•  Memory cost > number of neurons  batch size


•  This poses a constraint on the batch size

⇒ ×

⇒



Neural Network
Multiclass Classification

•  classes:  neurons in the 
final layer


• Output of each  is the score 
of class 


• Taking  as the 
prediction

K K

fi
i

arg max
i

fi(x)



Neural Network
Multiclass loss

• Softmax function: transform output to probability:


• 


•
Where 


• Cross-entropy loss: 


• 


• Where  is the -th label

[ f1, ⋯, fK] → [pi, ⋯, pK]

pi =
efi

∑K
j=1 efj

L = −
K

∑
i=1

yi log(pi)

yi i



Convolutional Neural Network
Neural Networks

• Fully connected networks  doesn't work well for computer vision applications⇒



Convolutional Neural Network
Convolution Layer

• Fully connected layers have too many parameters


•  poor performance


• Example: VGG first layer


• Input: 


• Output: 


• Number of parameters if we use fully connected net:


• 483 billion


• Convolution layer leads to:


• Local connectivity


• Parameter sharing

⇒

224 × 224 × 3

224 × 224 × 64

(224 × 224 × 3) × (224 × 224 × 64) =



Convolutional Neural Network
Convolution

• The convolution of an image  with a kernel  is  computed as


•

x k

(x * k)ij = ∑
pq

xi+p,j+qkp,q



Convolutional Neural Network
Convolution



Convolutional Neural Network
Convolution



Convolutional Neural Network
Convolution



Convolutional Neural Network
Convolution



Convolutional Neural Network
Convolution



Convolutional Neural Network
Convolution

• Element-wise activation function after convolution


•  detector of a feature at any position in the image⇒



Convolutional Neural Network
Learned Kernels

• Example kernels learned by AlexNet


• Number of parameters:


• Example:  image,  kernels, kernel size 


•   = 10K parameters

200 × 200 100 10 × 10

⇒ 10 × 10 × 100



Convolutional Neural Network
Padding

• Use zero padding to allow going over the boundary


• Easier to control the size of output layer



Convolutional Neural Network
Strides

• Stride: The amount of movement between applications of the filter to the 
input image


• Stride : no stride(1,1)



Convolutional Neural Network
Pooling

• It’s common to insert a pooling layer in-between successive convolutional layers


• Reduce the size of presentation, down-sampling


• Example: Max pooling



Convolutional Neural Network
Pooling

• By pooling, we gain robustness to the exact spatial location of features



Convolutional Neural Network
Example: LeNet5

• Input:  images (MNIST)


• Convolution 1: 6 filters, stride 1


• Output: 6  maps


• Pooling 1:  max pooling, stride 2


• Output: 6  maps


• Convolution 2: 16  filters, stride 1


• Output: 16  maps


• Pooling 2:  max pooling with stride 2


• Output: 16  maps (total 400 values)


• 3 fully connected layers:  neurons

32 × 32

5 × 5

28 × 28

2 × 2

14 × 14

5 × 5

10 × 10

2 × 2

5 × 5

120 ⇒ 84 ⇒ 10



Convolutional Neural Network
Training

• Training:


• Apply SGD to minimize in-sample training error


• Backpropagation can be extended to convolutional layer and pooling layer 
to compute gradient!


• Millions of parameters  easy to overfit⇒



Convolutional Neural Network
Revisit Alexnet

• Dropout: 0.5 (in FC layers)


• A lot of data augmentation


• Momentum SGD with batch size 128, momentum factor 0.9


• L2 weight decay (L2 regularization) 


• Learning rate: 0.01, decreased by 10 every time when reaching a stable 
validation accuracy



Convolutional Neural Network
Dropout

• One of the most effective regularization for deep neural networks



Convolutional Neural Network
Dropout(training)

• Dropout in the training phase:


• For each batch, turn off each 
neuron (including inputs) with a 
probability 


• Zero out the removed nodes/edges 
and do backpropogation

1 − α



Convolutional Neural Network
Dropout(test)

• The model is different from the full model:


• Each neuron computes


• 


• Where B is Bernoulli variable that takes 1 with probability 


• The expected output of the neuron:


• 


• Use the expected output at test time  multiply all the weights by 

x(l)
i = Bσ(∑

j

W(l)
ij x(l−1)

j + b(l)
i )

α

E[x(l)
i ] = ασ(∑

j

W(l)
ij x(l−1)

j + b(l)
i )

⇒ α



Convolutional Neural Network
Batch Normalization

• Initially proposed to reduce co-variate shift


•



• : the mean for channel , and  standard deviation. 


•  and : two learnable parameters

Ob,c,x,y ← γ
Ib,c,x,y − μc

σ2
c + ϵ

+ β ∀b, c, x, y,

μc = 1
|B |

∑b,x,y Ib,c,x,y c σc

γ β



Convolutional Neural Network
Batch Normalization

• Couldn’t reduce covariate 
shift (Ilyas et al 2018)


• Allow larger learning rate


• Constraint the gradient 
norm 



Convolutional Neural Network
Other normalization



Convolutional Neural Network
Residual Networks

• Very deep convnets do not train well —vanishing gradient problem



Convolutional Neural Network
Residual Networks

• Key idea: introduce ``pass through'' into each layer


• Thus, only residual needs to be learned



Convolutional Neural Network
Residual Networks



Representation for sentence/document
Bag of word

• A classical way to represent NLP data


• Each sentence (or document) is 
represented by a -dimensional vector 

, where  is number of occurrences 
of word 


• number of features = number of 
potential words (very large)

d
x xi

i



Representation for sentence/document
Feature generation for documents

• Bag of -gram features ( ):


• 10,000 words   
potential features

n n = 2

⇒ 100002



Representation for sentence/document
Bag of word + linear model

• Example: text classification (e.g., sentiment prediction, review score 
prediction)


• Linear model:  (e.g., by linear SVM/logistic regression)


• : the ``contribution'' of each word

y ≈ sign(wTx)

wi



Representation for sentence/document
Bag of word + Fully connected network

• 


• The first layer  is a  by  matrix: 


• Each column  is a  dimensional representation of -th word （word embedding )


•  is a linear combination of these vectors


•  is also called the word embedding matrix


• Final prediction can be viewed as an  layer network on  (average of word 
embeddings)


• Not capturing the sequential information

f(x) = WLσ(WL−1⋯σ(W0x))

W0 d1 d

wi d1 i

W0x = x1w1 + x2w2 + ⋯ + xdwd

W0

L − 1 W0x



Recurrent Neural Network
Time series/Sequence data

• Input: 


• Each  is the feature at time step 


• Each  can be a -dimensional vector


• Output: 


• Each  is the output at step 


• Multi-class output or Regression output: 


•

{x1, x2, ⋯, xT}

xt t

xt d

{y1, y2, ⋯, yT}

yt t

yt ∈ {1,2,⋯, L}  or  yt ∈ ℝ



Recurrent Neural Network
Example: Time Series Prediction

• Climate Data:


• : temperature at time 


• : temperature (or temperature 
change) at time 


• Stock Price: Predicting stock price 

xt t

yt
t + 1



Recurrent Neural Network
Example: Language Modeling



Recurrent Neural Network
Example: Language Modeling

• : one-hot encoding to represent the 
word at step  


• : the next word 


•

xt
t ([0,…,0,1,0,…,0])

yt

yt ∈ {1,⋯, V} V: Vocabulary size 



Recurrent Neural Network
Example: POS Tagging

• Part of Speech Tagging: 


•  Labeling words with their Part-
Of-Speech (Noun, Verb, 
Adjective, …)


• : a vector to represent the 
word at step 


• : label of word 

xt
t

yt t



Recurrent Neural Network
Example: POS Tagging

• : -th input 


• : hidden state at time  (``memory’' of the network)


• 


• : transition matrix, : word embedding matrix,  usually set to be 0


• Predicted output at time : 


•

xt t

st t

st = f(Uxt + Wst−1)

W U s0

t

ot = arg max
i

(Vst)i



Recurrent Neural Network
Recurrent Neural Network (RNN)

• Training: Find  to minimize empirical loss: 


• Loss of a sequence: 


• 


• (  is a function of )


• Loss on the whole dataset:


• Average loss over all sequences


• Solved by SGD/Adam

U, W, V

T

∑
t=1

loss(Vst, yt)

st U, W, V



Recurrent Neural Network
RNN: Text Classification

• Not necessary to output at each step


• Text Classification: 


• 


• Output only at the final step


• Model: add a fully connected network 
to the final embedding 

sentence  →  category 



Recurrent Neural Network
Problems of Classical RNN

• Hard to capture long-term dependencies


• Hard to solve (vanishing gradient problem)


• Solution: 


• LSTM (Long Short Term Memory networks)


• GRU (Gated Recurrent Unit)


• …



Recurrent Neural Network
LSTM

• RNN:


• LSTM:



Recurrent Neural Network
Neural Machine Translation (NMT)

• Out the translated sentence from an input 
sentence


• Training data: a set of input-output pairs 
(supervised setting)


• Encoder-decoder approach: 


• Encoder: Use (RNN/LSTM) to encode 
the input sentence input a latent vector


• Decoder: Use (RNN/LSTM) to generate 
a sentence based on the latent vector



Recurrent Neural Network
Neural Machine Translation



Recurrent Neural Network
Attention in NMT

• Usually, each output word is only related to a subset of input words (e.g., for 
machine translation)


• Let  be the current decoder latent state,   be the latent sate for 
each input word


• Compute the weight of each state by


• 


• Compute the context vector by 

u v1, …, vn

p = Softmax(uTv1, …, uTvn)

Vp = p1v1 + … + pnvn



Recurrent Neural Network
Attention in NMT


