Minhao Cheng

COMP6211I: Trustworthy Machine Learning Lecture 2

Theory of Generalization Formal definition

- Assume training and test data are both sampled from *D*
- The ideal function (for generating labels) is $f: f(x) \rightarrow y$
- Training error: Sample $x_1, ..., x_N$ from D and

$$
E_{tr}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(x_n), f(x_n))
$$

- h is determined by x_1, \ldots, x_n
- Test error: Sample $x_1, ..., x_N$ from D and

$$
E_{te}(h) = \frac{1}{M} \sum_{m=1}^{M} e(h(x_m), f(x_m))
$$

• h is independent to x_1, \ldots, x_n

Theory of Generalization Formal definition

- Assume training and test data are both sampled from *D*
- The ideal function (for generating labels) is $f : f(x) \rightarrow y$
- Training error: Sample $x_1, ..., x_N$ from D and

$$
E_{tr}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(x_n), f(x_n))
$$

- h is determined by $x_1, ..., x_n$
- Test error: Sample $x_1, ..., x_M$ from D and

$$
E_{te}(h) = \frac{1}{M} \sum_{m=1}^{M} e(h(x_m), f(x_m))
$$

- h is independent to $x_1, ..., x_n$
- Generalization error = Test error = Expected performance on D :
	- $E(h) = \mathbb{E}_{x \sim D}[e(h(x), f(x))] = E_{te}(h)$

Theory of Generalization The 2 questions of learning

- $E(h) \approx 0$ is achieved through:
	- $E(h) \approx E_{tr}(h)$ and $E_{tr}(h) \approx 0$

Theory of Generalization The 2 questions of learning

- $E(h) \approx 0$ is achieved through:
	- $E(h) \approx E_{tr}(h)$ and $E_{tr}(h) \approx 0$
- Learning is split into 2 questions:
	- Can we make sure that $E(h) \approx E_{tr}(h)$?
		- Generalization
	- Can we make $E_{tr}(h)$ small?
		- Optimization

Theory of Generalization Connection to Learning

- Given a function *h*
- If we randomly draw $x_1, ..., x_n$ (independent to h):
	- $E(h) = \mathbb{E}_{x \sim D}[h(x) \neq f(x)] \Leftrightarrow \mu$ (generalization error, unknown)

- Based on Hoeffding's inequality:
	- $p[| \nu \mu | > \epsilon] \leq 2e^{-2\epsilon^2 N}$
- " $\mu = \nu$ " Is probably approximately correct (PAC)
- However, this can only "verify" the error of a hypothesis:
	- h and x_1, \ldots, x_N must be independent

$$
\frac{1}{N} \sum_{n=1}^{N} [h(x_n) \neq y_n] \Leftrightarrow \nu \text{ (error on sampled data, known)}
$$

Theory of Generalization A simple solution

- For each particular h ,
	- $P[|E_{tr}(h) E(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$
- - $P[|E_{tr}(h_1) E(h_1)| > \epsilon]$ or ... or $P[|E_{tr}(h_{|\mathcal{H}|}) E(h_{|\mathcal{H}|})| > \epsilon]$

$$
\sum_{m=1}^{\mathcal{H}} P[|E_{tr}(h_m) - E(h_m)|] \le 2 |\mathcal{H}| e^{-2\epsilon^2 N}
$$

• Because of union bound inequality *P*(

• If we have a hypothesis set $\mathscr H,$ we want to derive the bound for $P[\sup_{h\in\mathscr H}|E_{tr}(h)-E(h)|>\epsilon]$

$$
\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} P(A_i)
$$

Theory of generalization When is learning successful?

- When our learning algorithm $\mathscr A$ picks the hypothesis g :
	- •
• $P[\text{SUP}_{h \in \mathcal{H}} | E_{tr}(h) - E(h) | > \epsilon] \leq 2 |\mathcal{H}| e^{-2\epsilon^2 N}$
- If $|\mathcal{H}|$ is small and N is large enough:
	- If $\mathscr A$ finds $E_{tr}(g) \approx 0 \Rightarrow E(g) \approx 0$ (Learning is successful!)

Theory of Generalization Feasibility of Learning

- $P[|E_{tr}(g) - E(g)| > \epsilon] \leq 2 |\mathcal{H}| e^{-2\epsilon^2 N}$
	- Two questions:
		- 1. Can we make sure $E(g) \approx E_{tr}(g)$?
		- 2. Can we make sure $E_{tr}(g) \approx 0$?
- | \mathcal{H} | : complexity of model
	- Small $|\mathcal{H}|$: 1 holds, but 2 may not hold (too few choices) (under-fitting)
	- Large $|\mathcal{H}|$: 1 doesn't hold, but 2 may hold (over-fitting)

Regularization The polynomial model

• $\mathscr{H}_{\mathcal{Q}}$: polynomials of order $\mathcal Q$

$$
\mathcal{H}_Q = \{ \sum_{q=0}^Q w_q L_q(x) \}
$$

- Linear regression in the $\mathscr X$ space with
	- $z = [1, L_1(x), ..., L_Q(x)]$

Regularization Unconstrained solution

- Input $(x_1, y_1), ..., (x_N, y_N) \rightarrow (z_1, y_1), ..., (z_N, y_N)$
- Linear regression:

- Minimize: 1 \overline{N} ^(*Zw* – *y*) *^T*(*Zw* − *y*)
- Solution $w_{tr} = (Z^T Z)^{-1} Z^T y$

$$
\text{Minimize: } E_{\text{tr}}(w) = \frac{1}{N} \sum_{n=1}^{N} (w^T z_n)
$$

Regularization Constraining the weights

• Hard constraint: ${\mathscr H}_2$ is constrained version of ${\mathscr H}_{10}$ (with $w_q=0$ for $q>2$)

Regularization Constraining the weights

Soft-order constraint:

•
•

• Hard constraint: ${\mathscr H}_2$ is constrained version of ${\mathscr H}_{10}$ (with $w_q=0$ for $q>2$)

Regularization Constraining the weights

Soft-order constraint:

•
•

$$
\text{Minimize } \frac{1}{N}(Zw - y)^{T}(Zw - y) \text{ s.t.}
$$

• Solution w_{reg} instead of w_{tr}

• Hard constraint: ${\mathscr H}_2$ is constrained version of ${\mathscr H}_{10}$ (with $w_q=0$ for $q>2$)

 $W^T W \leq C$

The problem given soft-order constraint:

smaller hypothesis space

• Constrained version:

- Optimal when
	- $\nabla E_{tr}(w_{reg}) \propto -w_{reg}$
	- Why? If $-\nabla E_{\mathsf{tr}}(w_{\mathsf{reg}})$ and w are not parallel, can decrease $E_{\mathsf{tr}}(w)$ without violating the constraint

$$
\lim_{w} E_{\text{tr}}(w) = \frac{1}{N} (Zw - y)^{T} (Zw - y)
$$

• s.t.
$$
w^T w \leq C
$$

- Optimal when
	- $\nabla E_{tr}(w_{reg}) \propto -w_{reg}$

• Constrained version:

• Assume $\nabla E_{\text{tr}}(w_{\text{reg}}) = -2$ *λ N*

$$
\lim_{w} E_{\mathsf{tr}}(w) = \frac{1}{N} (Zw - y)^{T} (Zw - y) \quad \text{s.t.} \quad w^{T} w \leq C
$$

$$
w_{\text{reg}} \Rightarrow \nabla E_{\text{tr}}(w_{\text{reg}}) + 2\frac{\lambda}{N} w_{\text{reg}} = 0
$$

- Optimal when
	- $\nabla E_{tr}(w_{reg}) \propto -w_{reg}$

• Constrained version:

$$
\lim_{w} E_{\text{tr}}(w) = \frac{1}{N} (Zw - y)^{T} (Zw - y) \quad \text{s.t.}
$$

Assume
$$
\nabla E_{\text{tr}}(w_{\text{reg}}) = -2\frac{\lambda}{N}w_{\text{reg}} \Rightarrow \nabla E_{\text{tr}}(w_{\text{reg}}) + 2\frac{\lambda}{N}w_{\text{reg}} = 0
$$

• W_{reg} is also the solution of unconstrained problem

. min
$$
E_{tr}(w) + \frac{\lambda}{N} w^T w
$$
 (Ridge regression!)

t. $w^T w \leq C$

- Optimal when
	- $\nabla E_{tr}(w_{reg}) \propto -w_{reg}$

• Constrained version:

$$
\lim_{w} E_{\text{tr}}(w) = \frac{1}{N} (Zw - y)^{T} (Zw - y) \quad \text{s.t.}
$$

Assume
$$
\nabla E_{\text{tr}}(w_{\text{reg}}) = -2\frac{\lambda}{N}w_{\text{reg}} \Rightarrow \nabla E_{\text{tr}}(w_{\text{reg}}) + 2\frac{\lambda}{N}w_{\text{reg}} = 0
$$

• W_{reg} is also the solution of unconstrained problem

. min
$$
E_{tr}(w) + \frac{\lambda}{N} w^T w
$$
 (Ridge regression!)

t. $w^T w \leq C$

$$
C \uparrow \lambda \downarrow
$$

Regularization Ridge regression solution

$$
\min_{w} E_{reg}(w) = \frac{1}{N} \bigg((Zw - y)^T (Zw - y) + \lambda w^T w \bigg)
$$

• $\nabla E_{reg}(w) = 0 \Rightarrow Z^T Z(w - y) + \lambda w = 0$

Regularization Ridge regression solution

$$
\min_{w} E_{reg}(w) = \frac{1}{N} \bigg((Zw - y)^T (Zw - y) + \lambda w^T w \bigg)
$$

•
$$
\nabla E_{reg}(w) = 0 \Rightarrow Z^T Z(w - y) + \lambda w = 0
$$

• So, $w_{reg} = (Z^T Z + \lambda I)^{-1} Z^T y$ (with regularization) as opposed to (without regularization) $w_{\mathsf{tr}} = (\bar{Z}^T Z)^{-1} Z^T y$

Regularization The result

$$
\lim_{w} E_{\mathsf{tr}}(w) + \frac{\lambda}{N} w^T w
$$

Regularization Equivalent to "weight decay"

• Consider the general case

$$
\lim_{w} E_{\text{tr}}(w) + \frac{\lambda}{N} w^T w
$$

Regularization Equivalent to "weight decay"

• Consider the general case

• Gradient descent:

•
•

$$
\lim_{w} E_{\mathsf{tr}}(w) + \frac{\lambda}{N} w^T w
$$

$$
w_{t+1} = w_t - \eta (\nabla E_{\mathsf{tr}}(w_t) + 2\frac{\lambda}{N}w_t)
$$

= $w_t (1 - 2\eta \frac{\lambda}{N}) - \eta \nabla E_{\mathsf{tr}}(w_t)$

weight decay

Regularization Variations of weight decay

• Calling the regularizer $\Omega = \Omega(h)$, we minimize

$$
E_{reg}(h) = E_{tr}(h) + \frac{\lambda}{N} \Omega(h)
$$

• In general, $\Omega(h)$ can be any measurement for the "size" of h

Regularization L2 vs L1 regularizer

• L1-regularizer: $\Omega(w) = ||w||_1 = \sum |w_q|$ *q*

• Usually leads to a sparse solution (only few w_q will be nonzero)

Neural network Another way to introduce nonlinearity

• How to generate this nonlinear hypothesis?

• Combining multiple linear hyperplanes to construct nonlinear hypothesis

Neural Network Definition

- \bullet Input layer: d neurons (input features)
- Neurons from layer 1 to L: Linear combination of previous layers + activation function
	- $\theta(w^T x)$, θ : activation function
- Final layer: one neuron \Rightarrow prediction by $sign(h(x))$

Neural network Activation Function

Neural Network Activation: Formal Definitions

Weight:
$$
w_{ij}^{(l)}
$$

$$
\begin{cases} 1 \le l \le L & : \text{layers} \\ 0 \le i \le d^{(l-1)}: \text{ inputs} \\ 1 \le j \le d^{(l)} : \text{outputs} \end{cases}
$$
 bias: $b_j^{(l)}$: added to the j-th neuron in the l-th layer

 \bullet

-
- outs
- 1 tputs
-

Neural Network Formal Definitions

•
•

- Weight: *w*(*l*) *ij* $1 \leq l \leq L$: layers 0 ≤ *i* ≤ *d*(*l*−1) : inputs $1 \leq j \leq d^{(l)}$: outputs
- j-th neuron in the I-the layer: bias: $b_i^{(l)}$ $j_j^{(l)}$: added to the j-th neuron in the I-th layer

$$
\mathbf{x}_{j}^{(l)} = \theta(\mathbf{s}_{j}^{(l)}) = \theta(\sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} x_{i}^{(l-1)} -
$$

 $b_i^{(l-1)} + b_j^{(l)}$

Neural Network Formal Definitions

• j-th neuron in the l-the layer:

• Output:

 \bullet

Weight:
$$
w_{ij}^{(l)}
$$
 $\begin{cases} 1 \le l \le L & \text{: layers} \\ 0 \le i \le d^{(l-1)}: \text{ inputs} \\ 1 \le j \le d^{(l)} : \text{ outputs} \end{cases}$

bias: $b_j^{(l)}$: added to the j-th neuron in the I-th layer

$$
\mathbf{v}_j^{(l)} = \theta(\mathbf{s}_j^{(l)}) = \theta\left(\sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} x_i^{(l-1)} + b_j^{(l)}\right)
$$

$$
\bullet \ \ h(x) = x_1^{(L)}
$$

features for one data point

 $\mathbf{x} = [x_1, x_2, x_3]$

 $x_1^{(1)} = \theta(\sum_{i=1}^3$

$$
{=1}^{\mathbf{(1)}}\mathbf{w}{i1}^{(1)}\mathbf{x}_{i}^{(0)})
$$

 $x_2^{(1)} = \theta(\sum_{i=1}^3 w_{i2}^{(1)} x_i^{(0)})$

 $x_2^{(2)} = \theta(\sum_{i=1}^3 w_{i2}^{(2)} x_i^{(1)})$

 $= \cdots = \theta(W_4\theta(W_3\theta(W_2\theta(W_1\mathbf{x}))))$

• With the bias term: $h(x) = \theta(W_4\theta(W_3\theta(W_2\theta(W_1x + b_1) + b_2) + b_3) + b_4)$

$$
h(\mathbf{x}) = x_1^{(4)} = \theta(W_4 \mathbf{x}^{(3)}) = \theta(W_4 \theta(W_3 \mathbf{x}^{(2)}))
$$

= ... = $\theta(W_4 \theta(W_3 \theta(W_2 \theta(W_1 \mathbf{x}))))$

 $h(x)$

Neural Network Capacity of neural networks

- Universal approximation theorem (Horink, 1991):
	- "A neural network with single hidden layer can approximate any continuous function arbitrarily well, given enough hidden units"
- True for commonly used activations (ReLU, sigmoid, ...)

Neural Network Universal approximation for step activation

• How to approximate an arbitrary function by single-layer NN with step function as activation:

2 hidden units to form a "rectangle"

(figure from https://medium.com/analytics-vidhya)

any function can be approximated by rectangles

Neural Network Training

- Weights $W = \{W_1, ..., W_L\}$ and bias $\{b_1, ..., b_L\}$ determine $h(x)$
- Learning the weights: solve ERM with SGD
- Loss on example (x_n, y_n) is
	- $e(h(x_n), y_n) = e(W)$

Neural Network Training

- Weights $W = \{W_1, ..., W_L\}$ and bias $\{b_1, ..., b_L\}$ determine $h(x)$
- Learning the weights: solve ERM with SGD
- Loss on example (x_n, y_n) is

• To implement SGD, we need the gradient

$$
\bullet \ \ e(h(x_n), y_n) = e(W)
$$

$$
\bullet \quad \nabla e(W) : \{\frac{\partial e(W)}{\partial w_{ij}^{\langle l \rangle}}\} \text{ for all } i, j, l \text{ (fo)}
$$

or simplicity we ignore bias in the derivations)

Neural Network

Computing Gradient [∂]*e*(*W*) $\partial w^{(l)}_{ij}$

• Use chain rule:

Neural Network

Computing Gradient [∂]*e*(*W*) $\partial w^{(l)}_{ij}$

• Define
$$
\delta_j^{(l)} := \frac{\partial e(W)}{\partial s_j^{(l)}}
$$

•

• Compute by layer-by-layer:

$$
\delta_i^{(l-1)} = \frac{\partial e(W)}{\partial s_i^{(l-1)}}
$$

=
$$
\sum_{j=1}^d \frac{\partial e(W)}{\partial s_j^{(l)}} \times \frac{\partial s_j^{(l)}}{\partial x_i^{(l-1)}} \times \frac{\partial x_i^{(l-1)}}{\partial s_i^{l-1}}
$$

=
$$
\sum_{j=1}^d \delta_j^{(l)} \times w_{ij}^{(l)} \times \theta'(s_i^{(l-1)}),
$$

where
$$
\theta'(s) = 1 - \theta^2(s) \text{ for tan}
$$

$$
\delta_i^{(l-1)} = (1 - (x_i^{(l-1)})^2) \sum_{j=1}^d w_{ij}^{(l)} \delta_j^{(l)}
$$

Neural Network Final layer

• (Assume square loss)

• So,

 \bullet

•
$$
e(W) = (x_1^{(L)} - y_n)^2
$$

(L) $q(u)$

$$
\bullet \ \ x_1^{(L)} = \theta(s_1^{(L)})
$$

$$
\delta_1^{(L)} = \frac{\partial e(W)}{\partial s_1^{(L)}}
$$

=
$$
\frac{\partial e(W)}{\partial x_1^{(L)}} \times \frac{\partial x_1^{(L)}}{\partial s_1^{(L)}}
$$

=
$$
2(x_1^{(L)} - y_n) \times \theta'(s_1^{(L)})
$$

 $\delta_1^{(4)} = 2(x_1^{(4)} - y_n) \times (1 - (x_1^{(4)})^2)$

 $\delta_1^{(3)} = (1 - (x_1^{(3)})^2) \times \delta_1^{(4)} \times w_{11}^{(4)}$

$$
\delta_2^{(3)} = (1 - (x_2^{(3)})^2) \times \delta_1^{(4)} \times w_{21}^{(4)}
$$

 $\delta_3^{(3)} = (1 - (x_3^{(3)})^2) \times \delta_1^{(4)} \times w_{31}^{(4)}$

 $\delta_1^{(2)} = (1 - (x_1^{(2)})^2) \sum_{j=1}^3 \delta_j^{(3)} w_{1j}^{(3)}$

 $\delta_2^{(2)} = (1 - (x_2^{(2)})^2) \sum_{j=1}^3 \delta_j^{(3)} w_{2j}^{(3)}$

SGD for neural networks

- Initialize all weights $w_{ij}^{(1)}$ at random
- For iter $= 0, 1, 2, \cdots$
	- Forward: Compute all $x_j^{(l)}$ from input to output
	- Backward: Compute all $\delta_j^{(l)}$ from output to input
	- Update all the weights $w_{ij}' \leftarrow w_{ij}^{(1)} \eta x_i^{(1-1)} \delta_j^{(1)}$

- Just an automatic way to apply chain rule to compute gradient
- function, we can use AD to compute any of their compositions
- Implemented in most deep learning packages (e.g., pytorch, tensorflow)

• Auto-differentiation (AD) --- as long as we define derivative for each basic

- Just an automatic way to apply chain rule to compute gradient
- Auto-differentiation (AD) --- as long as we define derivative for each basic function, we can use AD to compute any of their compositions
- Implemented in most deep learning packages (e.g., pytorch, tensorflow)
- Auto-differentiation needs to store all the intermediate nodes of each sample
	- \Rightarrow Memory cost > number of neurons \times batch size
	- ⇒ This poses a constraint on the batch size

Neural Network Multiclass Classification

- \bullet *K* classes: *K* neurons in the final layer
- Output of each f_i is the score of class *i i*
	- Taking arg max $f_i(x)$ as the prediction *i i* (*x*)

features for one data point $\mathbf{x} = [x_1, x_2, x_3]$

 x_1

 x_2

 X_2

max

Neural Network Multiclass loss

• Softmax function: transform output to probability:

• Cross-entropy loss:

•
$$
[f_1, \cdots, f_K] \rightarrow [p_i, \cdots, p_K]
$$

Where
$$
p_i = \frac{e^{f_i}}{\sum_{j=1}^{K} e^{f_j}}
$$

$$
L = -\sum_{i=1}^{K} y_i \log(p_i)
$$

• Where y_i is the *i*-th label

Convolutional Neural Network Neural Networks

 $h(\mathbf{x}) = x_1^{(4)} = \theta(W_4 \mathbf{x}^{(3)}) = \theta(W_4 \theta(W_3 \mathbf{x}^{(2)}))$ $= \cdots = \theta(W_4 \theta(W_3 \theta(W_2 \theta(W_1 x))))$

• Fully connected networks \Rightarrow doesn't work well for computer vision applications

- Fully connected layers have too many parameters
	- ⇒ poor performance
- Example: VGG first layer
	- Input: $224 \times 224 \times 3$
	- Output: $224 \times 224 \times 64$
	- Number of parameters if we use fully connected net:
		- $(224 \times 224 \times 3) \times (224 \times 224 \times 64) = 483$ billion
	- Convolution layer leads to:
		- Local connectivity
		- Parameter sharing

• The convolution of an image x with a kernel k is computed as

$$
\bullet \quad (x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{p,q}
$$

$1*1+0.5*0.2+0.25*0.2+0*0=1.15$

$0.5*1 + 20*0.2 + 0*0.2 + 0*0 = 4.5$

$0.25 * 1 + 0 * 0.2 + 0 * 0.2 + 0 * 0 = 0.25$

$0*1+0*0.2+0*0.2+20*0=0$

 $x * k_{ij}$, where $W_{ij} = \tilde{W}_{ij}$

 $x_i * \kappa_{ij}$

- Element-wise activation function after convolution
	- \Rightarrow detector of a feature at any position in the image

Convolutional Neural Network Learned Kernels

- Number of parameters:
	- Example: 200×200 image, 100 kernels, kernel size 10×10
	- \Rightarrow 10 \times 10 \times 100 = 10K parameters

• Example kernels learned by AlexNet

Convolutional Neural Network Padding

- Use zero padding to allow going over the boundary
	- Easier to control the size of output layer

Convolutional Neural Network Strides

• Stride: The amount of movement between applications of the filter to the

- input image
- Stride (1,1): no stride

Convolutional Neural Network Pooling

- It's common to insert a pooling layer in-between successive convolutional layers
- Reduce the size of presentation, down-sampling
- Example: Max pooling

Single depth slice

max pool with 2x2 filters and stride 2

Convolutional Neural Network Pooling

• By pooling, we gain robustness to the exact spatial location of features

Convolutional Neural Network Example: LeNet5

- Input: 32×32 images (MNIST)
- Convolution 1: 6.5×5 filters, stride 1
	- Output: 628×28 maps
- Pooling 1: 2×2 max pooling, stride 2
	- Output: 6 14×14 maps
- Convolution 2: 16 5×5 filters, stride 1
	- Output: 16 10×10 maps
- Pooling 2: 2×2 max pooling with stride 2
	- Output: 16 5×5 maps (total 400 values)
- 3 fully connected layers: $120 \Rightarrow 84 \Rightarrow 10$ neurons

Convolutional Neural Network Training

- Training:
	- Apply SGD to minimize in-sample training error
	- Backpropagation can be extended to convolutional layer and pooling layer to compute gradient!
	- Millions of parameters \Rightarrow easy to overfit

Convolutional Neural Network Revisit Alexnet

- Dropout: 0.5 (in FC layers)
- A lot of data augmentation
- Momentum SGD with batch size 128, momentum factor 0.9
- L2 weight decay (L2 regularization)
- Learning rate: 0.01, decreased by 10 every time when reaching a stable validation accuracy

Convolutional Neural Network Dropout

• One of the most effective regularization for deep neural networks

Table 4: Error rates on CIFAR-10 and CIFAR-100.

Srivastava et al, "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", 2014.

Convolutional Neural Network Dropout(training)

- Dropout in the **training** phase:
	- For each batch, turn off each neuron (including inputs) with a probability 1 − *α*
	- Zero out the removed nodes/edges and do backpropogation

Full network

1st batch

2nd batch

......

Convolutional Neural Network Dropout(test)

- The model is different from the full model:
- Each neuron computes

- Where B is Bernoulli variable that takes 1 with probability *α*
- The expected output of the neuron:

$$
\int_{i}^{(l)} E_{i} \delta(\sum_{j} W_{ij}^{(l)} x_{j}^{(l-1)} + b_{i}^{(l)})
$$

$$
\sum_{j} E[x_i^{(l)}] = \alpha \sigma \left(\sum_{j} W_{ij}^{(l)} x_j^{(l-1)} + b_i^{(l)} \right)
$$

• Use the expected output at test time \Rightarrow multiply all the weights by α

Convolutional Neural Network Batch Normalization

• Initially proposed to reduce co-variate shift

$$
O_{b,c,x,y} \leftarrow \gamma \frac{I_{b,c,x,y} - \mu_c}{\sqrt{\sigma_c^2 + \epsilon}} + \beta \ \forall b, c
$$

- $\mu_c = \frac{1}{|B|} \sum_{b,x,y} I_{b,c,x,y}$: the mean for channel *c*, and σ_c standard deviation. 1 $\frac{1}{|B|} \sum_{b,x,y} I_{b,c,x,y}$: the mean for channel c , and σ_c
- *γ* and $β$: two learnable parameters

+ *β* ∀*b*, *c*, *x*, *y*,

Convolutional Neural Network Batch Normalization

- Couldn't reduce covariate shift (Ilyas et al 2018)
- Allow larger learning rate
	- Constraint the gradient norm

Convolutional Neural Network Other normalization

Convolutional Neural Network Residual Networks

• Very deep convnets do not train well —vanishing gradient problem

Convolutional Neural Network Residual Networks

• Key idea: introduce ``pass through'' into each layer

• Thus, only residual needs to be learned

Convolutional Neural Network Residual Networks

Table 4. Error rates $(\%)$ of single-model results on the ImageNet validation set (except \dagger reported on the test set).

Representation for sentence/document Bag of word

- A classical way to represent NLP data
- Each sentence (or document) is represented by a d -dimensional vector \mathbf{x} , where x_i is number of occurrences of word *i*
- number of features = number of potential words (very large)

Representation for sentence/document Feature generation for documents

- Bag of *n*-gram features $(n = 2)$:
	- \cdot 10,000 words \Rightarrow 10000² potential features

The International Conference on Machine Learning is the leading international academic conference in machine learning,

Representation for sentence/document Bag of word + linear model

- Example: text classification (e.g., sentiment prediction, review score prediction)
- Linear model: $y \approx \text{sign}(w^T x)$ (e.g., by linear SVM/logistic regression)
- w_i : the "contribution" of each word

Representation for sentence/document Bag of word + Fully connected network

- $f(x) = W_L \sigma(W_{L-1} \cdots \sigma(W_0 x))$
- The first layer W_0 is a d_1 by d matrix:
	- Each column w_i is a d_1 dimensional representation of *i*-th word (word embedding)
	- $W_0 x = x_1 w_1 + x_2 w_2 + \dots + x_d w_d$ is a linear combination of these vectors
	- W_0 is also called the word embedding matrix
	- Final prediction can be viewed as an $L-1$ layer network on W_0x (average of word embeddings)
- Not capturing the sequential information

Recurrent Neural Network Time series/Sequence data

- Input: $\{x_1, x_2, \cdots, x_T\}$
	- Each x_t is the feature at time step t
	- Each x_t can be a d -dimensional vector
- Output: $\{y_1, y_2, \dots, y_T\}$
	- Each y_t is the output at step t
	- Multi-class output or Regression output:
		- $y_t \in \{1, 2, \dots, L\}$ or $y_t \in \mathbb{R}$

Recurrent Neural Network Example: Time Series Prediction

- Climate Data:
	- x_t : temperature at time t
	- y_t : temperature (or temperature change) at time $t+1$
- Stock Price: Predicting stock price

Recurrent Neural Network Example: Language Modeling

The

cat is ?

Recurrent Neural Network Example: Language Modeling

The

- x_t : one-hot encoding to represent the word at step *t* ([0,…,0,1,0,…,0])
- y_t : the next word
	- $y_t \in \{1, \dots, V\}$ V: Vocabulary size

Recurrent Neural Network Example: POS Tagging

- Part of Speech Tagging:
	- Labeling words with their Part-Of-Speech (Noun, Verb, Adjective, …)
	- x_t : a vector to represent the word at step *t*
	- y_t : label of word t

Recurrent Neural Network Example: POS Tagging

- x_t : *t*-th input
- s_t : hidden state at time t ("memory" of the network)
	- $s_t = f(Ux_t + Ws_{t-1})$
	- W: transition matrix, U : word embedding matrix, s_0 usually set to be 0
- Predicted output at time t:

$$
o_t = \arg \max_i (V s_t)_i
$$

Recurrent Neural Network Recurrent Neural Network (RNN)

- Training: Find U, W, V to minimize empirical loss:
- Loss of a sequence:

- (s_t is a function of U, W, V)
- Loss on the whole dataset:
	- Average loss over all sequences
- Solved by SGD/Adam

$$
\sum_{t=1}^{T} \text{loss}(V_{S_t}, y_t)
$$

Recurrent Neural Network RNN: Text Classification

- Not necessary to output at each step
- Text Classification:
	- sentence → category
	- Output only at the final step
- Model: add a fully connected network to the final embedding

Recurrent Neural Network Problems of Classical RNN

- Hard to capture long-term dependencies
- Hard to solve (vanishing gradient problem)
- Solution:
	- LSTM (Long Short Term Memory networks)
	- GRU (Gated Recurrent Unit)
	- •
•

…

Recurrent Neural Network LSTM

• RNN:

• LSTM:

Recurrent Neural Network Neural Machine Translation (NMT)

- Out the translated sentence from an input sentence
- Training data: a set of input-output pairs (supervised setting)
- Encoder-decoder approach:
	- Encoder: Use (RNN/LSTM) to encode the input sentence input a latent vector
	- Decoder: Use (RNN/LSTM) to generate a sentence based on the latent vector

Recurrent Neural Network Neural Machine Translation

Recurrent Neural Network Attention in NMT

- Usually, each output word is only related to a subset of input words (e.g., for machine translation)
- Let u be the current decoder latent state, $v_1, ..., v_n$ be the latent sate for each input word
- Compute the weight of each state by

•
$$
p = \text{Softmax}(u^T v_1, ..., u^T v_n)
$$

• Compute the context vector by $Vp = p_1v_1 + ... + p_nv_n$

Recurrent Neural Network Attention in NMT

