COMP6211I: Trustworthy Machine Learning Lecture 2

Minhao Cheng

Theory of Generalization Formal definition

- Assume training and test data are both sampled from ${\cal D}$
- The ideal function (for generating labels) is $f: f(x) \rightarrow y$
- Training error: Sample x_1, \ldots, x_N from D and

•
$$E_{tr}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(x_n), f(x_n))$$

- h is determined by x_1, \ldots, x_n
- Test error: Sample x_1, \ldots, x_N from D and

•
$$E_{te}(h) = \frac{1}{M} \sum_{m=1}^{M} e(h(x_m), f(x_m))$$

• h is independent to x_1, \ldots, x_n

Theory of Generalization Formal definition

- Assume training and test data are both sampled from ${\cal D}$
- The ideal function (for generating labels) is $f: f(x) \to y$
- Training error: Sample x_1, \ldots, x_N from D and

•
$$E_{tr}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(x_n), f(x_n))$$

- h is determined by x_1, \ldots, x_n
- Test error: Sample x_1, \ldots, x_M from D and

•
$$E_{te}(h) = \frac{1}{M} \sum_{m=1}^{M} e(h(x_m), f(x_m))$$

- h is independent to x_1, \ldots, x_n
- Generalization error = Test error = Expected performance on D:
 - $E(h) = \mathbb{E}_{x \sim D}[e(h(x), f(x))] = E_{te}(h)$

Theory of Generalization The 2 questions of learning

- $E(h) \approx 0$ is achieved through:
 - $E(h) \approx E_{tr}(h)$ and $E_{tr}(h) \approx 0$

Theory of Generalization The 2 questions of learning

- $E(h) \approx 0$ is achieved through:
 - $E(h) \approx E_{tr}(h)$ and $E_{tr}(h) \approx 0$
- Learning is split into 2 questions:
 - Can we make sure that $E(h) \approx E_{tr}(h)$?
 - Generalization
 - Can we make $E_{tr}(h)$ small?
 - Optimization

Theory of Generalization **Connection to Learning**

- Given a function h
- If we randomly draw x_1, \ldots, x_n (independent to h):
 - $E(h) = \mathbb{E}_{x \sim D}[h(x) \neq f(x)] \Leftrightarrow \mu$ (generalization error, unknown)

•
$$\frac{1}{N} \sum_{n=1}^{N} [h(x_n) \neq y_n] \Leftrightarrow \nu$$
 (error on sampled data, know

- Based on Hoeffding's inequality:
 - $p[|\nu \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$
- " $\mu = \nu$ " is probably approximately correct (PAC)
- However, this can only "verify" the error of a hypothesis:
 - h and x_1, \ldots, x_N must be independent

wn)

Theory of Generalization A simple solution

- For each particular h,
 - $P[|E_{tr}(h) E(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$
- - $P[|E_{tr}(h_1) E(h_1)| > \epsilon]$ or ... or $P[|E_{tr}(h_{|\mathcal{H}|}) E(h_{|\mathcal{H}|})| > \epsilon]$
 - $\leq \sum_{n=1}^{\infty} P[|E_{tr}(h_m) E(h_m)|] \leq 2|\mathcal{H}|e^{-2\epsilon^2 N}$ m=1

Because of union bound inequality $P(\mathbf{I})$

l=

• If we have a hypothesis set \mathscr{H} , we want to derive the bound for $P[\sup_{h \in \mathscr{H}} | E_{tr}(h) - E(h) | > \epsilon]$

$$\int_{i=1}^{\infty} A_i \leq \sum_{i=1}^{\infty} P(A_i)$$

Theory of generalization When is learning successful?

- When our learning algorithm \mathscr{A} picks the hypothesis g:
 - $P[SUP_{h\in\mathscr{H}} | E_{tr}(h) E(h) | > \epsilon] \le 2 | \mathscr{H} | e^{-2\epsilon^2 N}$
- If $|\mathcal{H}|$ is small and N is large enough:
 - If \mathscr{A} finds $E_{tr}(g) \approx 0 \Rightarrow E(g) \approx 0$ (Learning is successful!)

Theory of Generalization Feasibility of Learning

- $P[|E_{tr}(g) E(g)| > \epsilon] \le 2|\mathcal{H}|e^{-2\epsilon^2 N}$
 - Two questions:
 - 1. Can we make sure $E(g) \approx E_{tr}(g)$?
 - 2. Can we make sure $E_{tr}(g) \approx 0$?
- $|\mathcal{H}|$: complexity of model
 - Small $|\mathcal{H}|$: 1 holds, but 2 may not hold (too few choices) (under-fitting)
 - Large $|\mathcal{H}|$: 1 doesn't hold, but 2 may hold (over-fitting)

Regularization The polynomial model

• \mathcal{H}_Q : polynomials of order Q

$$\mathcal{H}_Q = \{\sum_{q=0}^Q w_q L_q(x)\}$$

- Linear regression in the $\mathcal{Z} \text{space}$ with
 - $z = [1, L_1(x), \dots, L_Q(x)]$

Regularization **Unconstrained solution**

- Input $(x_1, y_1), \dots, (x_N, y_N) \to (z_1, y_1), \dots, (z_N, y_N)$
- Linear regression:

• Minimize:
$$E_{tr}(w) = \frac{1}{N} \sum_{n=1}^{N} (w^T z_n)$$

- Minimize: $\frac{1}{N}(Zw y)^T(Zw y)$
- Solution $w_{tr} = (Z^T Z)^{-1} Z^T y$

Regularization **Constraining the weights**

• Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10} (with $w_q = 0$ for q > 2)

Regularization **Constraining the weights**

• Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10} (with $w_q = 0$ for q > 2)

Regularization **Constraining the weights**

• Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10} (with $w_q = 0$ for q > 2)

The problem given soft-order constraint:

Minimize
$$\frac{1}{N}(Zw - y)^T(Zw - y)$$
 s.t

• Solution w_{reg} instead of w_{tr}

 $w^T w \leq C$

smaller hypothesis space

Constrained version:

•
$$\min_{w} E_{tr}(w) = \frac{1}{N} (Zw - y)^T (Zw - y)$$

• s.t.
$$w^T w \leq C$$

- Optimal when
 - $\nabla E_{\rm tr}(w_{\rm reg}) \propto w_{\rm reg}$
 - Why? If $-\nabla E_{tr}(w_{reg})$ and w are not paced on the constraint

• Why? If $-\nabla E_{tr}(w_{reg})$ and w are not parallel, can decrease $E_{tr}(w)$ without violating the

• Constrained version:

•
$$\min_{w} E_{tr}(w) = \frac{1}{N} (Zw - y)^T (Zw - y)$$
 s.t. $w^T w \le C$

- Optimal when
 - $\nabla E_{\text{tr}}(w_{\text{reg}}) \propto w_{\text{reg}}$

• Assume $\nabla E_{tr}(w_{reg}) = -2\frac{\lambda}{N}w_{reg}$

$$\Rightarrow \nabla E_{\text{tr}}(w_{\text{reg}}) + 2\frac{\lambda}{N}w_{\text{reg}} = 0$$

• Constrained version:

•
$$\min_{w} E_{tr}(w) = \frac{1}{N} (Zw - y)^T (Zw - y)$$
 s.t

- Optimal when
 - $\nabla E_{tr}(w_{reg}) \propto w_{reg}$

• Assume
$$\nabla E_{\text{tr}}(w_{\text{reg}}) = -2\frac{\lambda}{N}w_{\text{reg}} \Rightarrow \nabla E_{\text{tr}}(w_{\text{reg}}) + 2\frac{\lambda}{N}w_{\text{reg}} = 0$$

• *w*_{reg} is also the solution of unconstrained problem

•
$$\min_{w} E_{tr}(w) + \frac{\lambda}{N} w^T w$$
 (Ridge regression!)

t. $w^T w \leq C$

• Constrained version:

•
$$\min_{w} E_{tr}(w) = \frac{1}{N} (Zw - y)^T (Zw - y)$$
 s.t

- Optimal when
 - $\nabla E_{tr}(w_{reg}) \propto w_{reg}$

• Assume
$$\nabla E_{\text{tr}}(w_{\text{reg}}) = -2\frac{\lambda}{N}w_{\text{reg}} \Rightarrow \nabla E_{\text{tr}}(w_{\text{reg}}) + 2\frac{\lambda}{N}w_{\text{reg}} = 0$$

• *w*_{reg} is also the solution of unconstrained problem

•
$$\min_{w} E_{tr}(w) + \frac{\lambda}{N} w^T w$$
 (Ridge regression!)

t. $w^T w \leq C$

$$C \uparrow \lambda \downarrow$$

Regularization **Ridge regression solution**

$$\min_{w} E_{\mathsf{reg}}(w) = \frac{1}{N} \left((Zw - y)^T (Zw - y) + \lambda w^T w \right)$$

• $\nabla E_{\text{reg}}(w) = 0 \Rightarrow Z^T Z(w - y) + \lambda w = 0$

Regularization **Ridge regression solution**

$$\min_{w} E_{\mathsf{reg}}(w) = \frac{1}{N} \left((Zw - y)^T (Zw - y) + \lambda w^T w \right)$$

•
$$\nabla E_{\mathsf{reg}}(w) = 0 \Rightarrow Z^T Z(w - y) + \lambda$$

• So, $w_{reg} = (Z^T Z + \lambda I)^{-1} Z^T y$ (with regularization) as opposed to $w_{tr} = (\tilde{Z}^T Z)^{-1} Z^T y$ (without regularization)

 $\lambda w = 0$

Regularization The result

•
$$\min_{w} E_{tr}(w) + \frac{\lambda}{N} w^{T} w$$

Regularization Equivalent to "weight decay"

Consider the general case

$$\min_{w} E_{tr}(w) + \frac{\lambda}{N} w^{T} w$$

Regularization Equivalent to "weight decay"

Consider the general case

•
$$\min_{w} E_{tr}(w) + \frac{\lambda}{N} w^{T} w$$

• Gradient descent:

$$w_{t+1} = w_t - \eta (\nabla E_{tr}(w_t) + 2\frac{\lambda}{N}w_t)$$
$$= w_t (1 - 2\eta \frac{\lambda}{N}) - \eta \nabla E_{tr}(w_t)$$

weight decay

Regularization Variations of weight decay

• Calling the regularizer $\Omega = \Omega(h)$, we minimize

•
$$E_{\text{reg}}(h) = E_{\text{tr}}(h) + \frac{\lambda}{N}\Omega(h)$$

• In general, $\Omega(h)$ can be any measurement for the "size" of h

Regularization L2 vs L1 regularizer

L1-regularizer: $\Omega(w) = ||w||_1 = \sum |w_q|$

• Usually leads to a sparse solution (only few w_q will be nonzero)

Neural network Another way to introduce nonlinearity

How to generate this nonlinear hypothesis?

 Combining multiple linear hyperplanes to construct nonlinear hypothesis

Neural Network Definition

- Input layer: *d* neurons (input features)
- Neurons from layer 1 to *L*: Linear combination of previous layers + activation function
 - $\theta(w^T x)$, θ : activation function
- Final layer: one neuron \Rightarrow prediction by sign(h(x))

Neural network **Activation Function**

Neural Network Activation: Formal Definitions

 $\begin{array}{l} \text{Weight: } w_{ij}^{(l)} & \begin{cases} 1 \leq l \leq L & : \text{ layers} \\ 0 \leq i \leq d^{(l-1)}\text{: inputs} \\ 1 \leq j \leq d^{(l)} & : \text{ outputs} \end{cases} \\ \text{bias: } b_j^{(l)} \text{: added to the j-th neuron in the l-th layer} \end{array}$

Neural Network Formal Definitions

- Weight: $w_{ij}^{(l)}$ $\begin{cases} 1 \leq l \leq L & : \text{ layers} \\ 0 \leq i \leq d^{(l-1)} \text{: inputs} \\ 1 \leq j \leq d^{(l)} & : \text{ outputs} \end{cases}$
 - bias: $b_i^{(l)}$: added to the j-th neuron in the l-th layer j-th neuron in the l-the layer:

•
$$x_j^{(l)} = \theta(s_j^{(l)}) = \theta(\sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} x_i^{(l-1)} - \theta(\sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} x_i^{(l-1)})$$

 $+ b_{i}^{(l)}$

Neural Network Formal Definitions

Weight:
$$w_{ij}^{(l)}$$

$$\begin{cases} 1 \leq l \leq L & : \text{ layers} \\ 0 \leq i \leq d^{(l-1)} : \text{ inputs} \\ 1 \leq j \leq d^{(l)} & : \text{ outputs} \end{cases}$$

bias: $b_j^{(l)}$: added to the j-th neuron in the l-th layer

j-th neuron in the I-the layer: •

•
$$x_j^{(l)} = \theta(s_j^{(l)}) = \theta(\sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} x_i^{(l-1)} + b_j^{(l)})$$

Output:

 \bullet

•
$$h(x) = x_1^{(L)}$$

features for one data point

 $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3]$

 $x_1^{(1)} = \theta(\sum_{i=1}^3$

$$=_1 w_{i1}^{(1)} x_i^{(0)}$$

 $x_2^{(1)} = \theta(\sum_{i=1}^3 w_{i2}^{(1)} x_i^{(0)})$

 $x_2^{(2)} = \theta(\sum_{i=1}^3 w_{i2}^{(2)} x_i^{(1)})$

 $= \cdots = \theta(W_4\theta(W_3\theta(W_2\theta(W_1\boldsymbol{x}))))$

• With the bias term: $h(x) = \theta(W_4 \theta(W_3 \theta(W_2 \theta(W_1 x + b_1) + b_2) + b_3) + b_4)$

$$h(\mathbf{x}) = x_1^{(4)} = \theta(W_4 \mathbf{x}^{(3)}) = \theta(W_4 \theta(W_3 \mathbf{x}^{(2)}))$$
$$= \cdots = \theta(W_4 \theta(W_3 \theta(W_2 \theta(W_1 \mathbf{x}))))$$

h(**x**)

Neural Network Capacity of neural networks

- Universal approximation theorem (Horink, 1991):
 - "A neural network with single hidden layer can approximate any continuous function arbitrarily well, given enough hidden units"
- True for commonly used activations (ReLU, sigmoid, ...)

Neural Network Universal approximation for step activation

 How to approximate an arbitrary function by single-layer NN with step function as activation:

2 hidden units to form a "rectangle"

(figure from https://medium.com/analytics-vidhya)

any function can be approximated by rectangles

Neural Network Training

- Weights $W = \{W_1, \dots, W_L\}$ and bias $\{b_1, \dots, b_L\}$ determine h(x)
- Learning the weights: solve ERM with SGD
- Loss on example (x_n, y_n) is
 - $e(h(x_n), y_n) = e(W)$

as $\{b_1, \cdots, b_L\}$ determine h(x) ith SGD

Neural Network Training

- Weights $W = \{W_1, \dots, W_L\}$ and bias $\{b_1, \dots, b_L\}$ determine h(x)
- Learning the weights: solve ERM with SGD
- Loss on example (x_n, y_n) is

•
$$e(h(x_n), y_n) = e(W)$$

• To implement SGD, we need the gradient

•
$$\nabla e(W) : \{ \frac{\partial e(W)}{\partial w_{ij}^{(l)}} \}$$
 for all i, j, l (fo

or simplicity we ignore bias in the derivations)

Neural Network

Computing Gradient $\frac{\partial e(W)}{\partial w_{ii}^{(l)}}$

• Use chain rule:

Neural Network

Computing Gradient $\frac{\partial e(W)}{\partial w_{ij}^{(l)}}$

• Define
$$\delta_j^{(l)} := \frac{\partial e(W)}{\partial s_j^{(l)}}$$

• Compute by layer-by-layer:

$$\begin{split} \delta_i^{(l-1)} &= \frac{\partial e(W)}{\partial s_i^{(l-1)}} \\ &= \sum_{j=1}^d \frac{\partial e(W)}{\partial s_j^{(l)}} \times \frac{\partial s_j^{(l)}}{\partial x_i^{(l-1)}} \times \frac{\partial x_i^{(l-1)}}{\partial s_i^{l-1}} \\ &\cdot \qquad = \sum_{j=1}^d \frac{\delta_j^{(l)} \times w_{ij}^{(l)} \times \theta'(s_i^{(l-1)})}{\partial s_i^{l-1}} \\ &\cdot \qquad = \int_{j=1}^d \frac{\delta_j^{(l)} \times w_{ij}^{(l)} \times \theta'(s_i^{(l-1)})}{\partial s_i^{l-1}} \\ &\cdot \qquad = (1 - (x_i^{(l-1)})^2) \sum_{j=1}^d w_{ij}^{(l)} \frac{\delta_j^{(l)}}{\partial s_j^{(l)}} \end{split}$$

Neural Network Final layer

• (Assume square loss)

•
$$e(W) = (x_1^{(L)} - y_n)^2$$

•
$$x_1^{(L)} = \theta(s_1^{(L)})$$

• So,

$$\delta_{1}^{(L)} = \frac{\partial e(W)}{\partial s_{1}^{(L)}}$$
$$= \frac{\partial e(W)}{\partial x_{1}^{(L)}} \times \frac{\partial x_{1}^{(L)}}{\partial s_{1}^{(L)}}$$
$$= 2(x_{1}^{(L)} - y_{n}) \times \theta'(s_{1}^{(L)})$$

 $\delta_1^{(4)} = 2(x_1^{(4)} - y_n) \times (1 - (x_1^{(4)})^2)$

 $\delta_1^{(3)} = (1 - (x_1^{(3)})^2) \times \delta_1^{(4)} \times w_{11}^{(4)}$

 $\delta_2^{(3)} = (1 - (x_2^{(3)})^2) \times \delta_1^{(4)} \times w_{21}^{(4)}$

 $\delta_3^{(3)} = (1 - (x_3^{(3)})^2) \times \delta_1^{(4)} \times w_{31}^{(4)}$

 $\delta_1^{(2)} = \left(1 - (x_1^{(2)})^2\right) \sum_{j=1}^3 \delta_j^{(3)} w_{1j}^{(3)}$

 $\delta_2^{(2)} = (1 - (x_2^{(2)})^2) \sum_{j=1}^3 \delta_j^{(3)} w_{2j}^{(3)}$

SGD for neural networks

- Initialize all weights $w_{ij}^{(\prime)}$ at random
- For iter = $0, 1, 2, \cdots$
 - Forward: Compute all $x_i^{(l)}$ from input to output
 - Backward: Compute all $\delta_j^{(\prime)}$ from output to input
 - Update all the weights $w_{ij}^{I} \leftarrow w_{ij}^{(I)} \eta x_{i}^{(I-1)} \delta_{i}^{(I)}$

butput to input $(1) \delta_i^{(I)}$

- Just an automatic way to apply chain rule to compute gradient
- function, we can use AD to compute any of their compositions
- Implemented in most deep learning packages (e.g., pytorch, tensorflow)

Auto-differentiation (AD) --- as long as we define derivative for each basic

- Just an automatic way to apply chain rule to compute gradient
- Auto-differentiation (AD) --- as long as we define derivative for each basic function, we can use AD to compute any of their compositions
- Implemented in most deep learning packages (e.g., pytorch, tensorflow)
- Auto-differentiation needs to store all the intermediate nodes of each sample
 - ⇒ Memory cost > number of neurons × batch size
 - \Rightarrow This poses a constraint on the batch size

Neural Network Multiclass Classification

- *K* classes: *K* neurons in the final layer
- Output of each f_i is the score of class i
 - Taking $\arg \max_{i} f_i(x)$ as the prediction

features for one data point $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3]$

 \mathbf{X}_1

X₂

X₂

max

Neural Network Multiclass loss

Softmax function: transform output to probability:

•
$$[f_1, \cdots, f_K] \rightarrow [p_i, \cdots, p_K]$$

• Where
$$p_i = \frac{e^{f_i}}{\sum_{j=1}^{K} e^{f_j}}$$

• Cross-entropy loss:

$$L = -\sum_{i=1}^{K} y_i \log(p_i)$$

• Where y_i is the *i*-th label

Convolutional Neural Network Neural Networks

 $h(\mathbf{x}) = x_1^{(4)} = \theta(W_4 \mathbf{x}^{(3)}) = \theta(W_4 \theta(W_3 \mathbf{x}^{(2)}))$ $= \cdots = \theta(W_4\theta(W_3\theta(W_2\theta(W_1x))))$

• Fully connected networks \Rightarrow doesn't work well for computer vision applications

- Fully connected layers have too many parameters
 - \Rightarrow poor performance
- Example: VGG first layer \bullet
 - Input: $224 \times 224 \times 3$
 - Output: $224 \times 224 \times 64$
 - Number of parameters if we use fully connected net:
 - $(224 \times 224 \times 3) \times (224 \times 224 \times 64) = 483$ billion
 - Convolution layer leads to:
 - Local connectivity
 - Parameter sharing

• The convolution of an image x with a kernel k is computed as

•
$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{p,q}$$

1	0.5	20	
0.25	0	0	*
0	0	20	

1*1 + 0.5*0.2 + 0.25*0.2 + 0*0 = 1.15

0.5*1 + 20*0.2 + 0*0.2 + 0*0 = 4.5

0.25*1 + 0*0.2 + 0*0.2 + 0*0 = 0.25

1	0.2	1.15	4.5
0.2	0	0.25	

0*1 + 0*0.2 + 0*0.2 + 20*0 = 0

1	0.2	1.15	4.5
0.2	0	0.25	0

 $x * k_{ij}$, where $W_{ij} = \tilde{W}_{ij}$

		7	
255	0	0	0
0	255	0	0
0	128	128	0
0	128	128	0

 $x_i * k_{ij}$

- Element-wise activation function after convolution \bullet
 - \Rightarrow detector of a feature at any position in the image

Convolutional Neural Network Learned Kernels

• Example kernels learned by AlexNet

- Number of parameters:
 - Example: 200×200 image, 100 kernels, kernel size 10×10
 - $\Rightarrow 10 \times 10 \times 100 = 10$ K parameters

Convolutional Neural Network Padding

- Use zero padding to allow going over the boundary
 - Easier to control the size of output layer

Convolutional Neural Network Strides

- Stride: The amount of movement be input image
- Stride (1,1): no stride

• Stride: The amount of movement between applications of the filter to the

Convolutional Neural Network Pooling

- It's common to insert a pooling layer in-between successive convolutional layers
- Reduce the size of presentation, down-sampling
- Example: Max pooling •

Single depth slice

1	2	4
5	7	8
2	1	0
2	3	4
		_
		У

max pool with 2x2 filters and stride 2

6	8
3	4

Convolutional Neural Network Pooling

• By pooling, we gain robustness to the exact spatial location of features

Convolutional Neural Network Example: LeNet5

- Input: 32×32 images (MNIST)
- Convolution 1: 65×5 filters, stride 1
 - Output: 628×28 maps
- Pooling 1: 2×2 max pooling, stride 2
 - Output: 6.14×14 maps
- Convolution 2: 16 5×5 filters, stride 1
 - Output: 16 10×10 maps
- Pooling 2: 2×2 max pooling with stride 2
 - Output: 165×5 maps (total 400 values)
- 3 fully connected layers: $120 \Rightarrow 84 \Rightarrow 10$ neurons

Convolutional Neural Network Training

- Training:
 - Apply SGD to minimize in-sample training error
 - Backpropagation can be extended to convolutional layer and pooling layer to compute gradient!
 - Millions of parameters \Rightarrow easy to overfit

Convolutional Neural Network Revisit Alexnet

- Dropout: 0.5 (in FC layers)
- A lot of data augmentation
- Momentum SGD with batch size 128, momentum factor 0.9
- L2 weight decay (L2 regularization)
- validation accuracy

Learning rate: 0.01, decreased by 10 every time when reaching a stable

Convolutional Neural Network Dropout

One of the most effective regularization for deep neural networks

Method	CIFAR-10
Conv Net $+ \max$ pooling (hand tuned)	15.60
Conv Net + stochastic pooling (Zeiler and Fergus, 2013)	15.13
Conv Net $+$ max pooling (Snoek et al., 2012)	14.98
Conv Net + max pooling + dropout fully connected layers	14.32
Conv Net $+ \max \text{ pooling} + \text{ dropout in all layers}$	12.61
Conv Net $+$ maxout (Goodfellow et al., 2013)	11.68

Table 4: Error rates on CIFAR-10 and CIFAR-100.

Srivastava et al, "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", 2014.

Convolutional Neural Network Dropout(training)

- Dropout in the **training** phase:
 - For each batch, turn off each neuron (including inputs) with a probability $1 - \alpha$
 - Zero out the removed nodes/edges and do backpropogation

Full network

1st batch

2nd batch

.....

Convolutional Neural Network Dropout(test)

- The model is different from the full model: ullet
- Each neuron computes

•
$$x_i^{(l)} = B\sigma(\sum_j W_{ij}^{(l)} x_j^{(l-1)} + b_i^{(l)})$$

- Where B is Bernoulli variable that takes 1 with probability α
- The expected output of the neuron:

•
$$E[x_i^{(l)}] = \alpha \sigma (\sum_j W_{ij}^{(l)} x_j^{(l-1)} + b_i^{(l)})$$

• Use the expected output at test time \Rightarrow multiply all the weights by α

Convolutional Neural Network Batch Normalization

Initially proposed to reduce co-variate shift

•
$$O_{b,c,x,y} \leftarrow \gamma \frac{I_{b,c,x,y} - \mu_c}{\sqrt{\sigma_c^2 + \epsilon}} + \beta \quad \forall b, c$$

- $\mu_c = \frac{1}{|B|} \sum_{b,x,y} I_{b,c,x,y}$: the mean for channel *c*, and σ_c standard deviation.
- γ and β : two learnable parameters

c, *x*, *y*,

Convolutional Neural Network Batch Normalization

- Couldn't reduce covariate shift (Ilyas et al 2018)
- Allow larger learning rate
 - Constraint the gradient norm

Convolutional Neural Network Other normalization

Convolutional Neural Network Residual Networks

Very deep convnets do not train well —vanishing gradient problem

Convolutional Neural Network Residual Networks

Key idea: introduce "pass through" into each layer

• Thus, only residual needs to be learned

Convolutional Neural Network Residual Networks

method	top-1 err.	top-5 err.
VGG [41] (ILSVRC'14)	-	8.43 [†]
GoogLeNet [44] (ILSVRC'14)	-	7.89
VGG [41] (v5)	24.4	7.1
PReLU-net [13]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	19.38	4.49

Table 4. Error rates (%) of single-model results on the ImageNet validation set (except [†] reported on the test set).

Representation for sentence/document Bag of word

- A classical way to represent NLP data
- Each sentence (or document) is represented by a d-dimensional vector **X**, where x_i is number of occurrences of word *i*
- number of features = number of potential words (very large)

The International Conference		(international)	2
on Machine Learning is the		(conference)	2
leading international	\rightarrow	(machine)	2
academic conference in		(train)	0
machine learning,		(learning)	2
		(leading)	1
		(totoro)	0

Representation for sentence/document Feature generation for documents

- Bag of *n*-gram features (n = 2):
 - 10,000 words $\Rightarrow 10000^2$ potential features

The International Conference on Machine Learning is the leading international academic conference in machine learning,

(international)	2
(conference)	2
(machine)	2
(train)	0
(learning)	2
(leading)	1
(totoro)	0

(international conference)	1
(machine learning)	2
(leading international)	1
(totoro tiger)	0
(tiger woods)	0
(international academic)	1
(international academic)	1

Representation for sentence/document Bag of word + linear model

- Example: text classification (e.g., sentiment prediction, review score prediction)
- Linear model: $y \approx \text{sign}(w^T x)$ (e.g., by linear SVM/logistic regression)
- *w_i*: the ``contribution'' of each word

Representation for sentence/document Bag of word + Fully connected network

- $f(x) = W_L \sigma(W_{L-1} \cdots \sigma(W_0 x))$
- The first layer W_0 is a d_1 by d matrix:
 - Each column w_i is a d_1 dimensional representation of *i*-th word (word embedding)
 - $W_0 x = x_1 w_1 + x_2 w_2 + \dots + x_d w_d$ is a linear combination of these vectors
 - W_0 is also called the word embedding matrix
 - Final prediction can be viewed as an L-1 layer network on $W_0 \boldsymbol{x}$ (average of word embeddings)
- Not capturing the sequential information

Recurrent Neural Network Time series/Sequence data

- Input: $\{x_1, x_2, \dots, x_T\}$
 - Each x_t is the feature at time step t
 - Each x_t can be a d-dimensional vector
- Output: $\{y_1, y_2, \dots, y_T\}$
 - Each y_t is the output at step t
 - Multi-class output or Regression output:
 - $y_t \in \{1, 2, \dots, L\}$ or $y_t \in \mathbb{R}$

Recurrent Neural Network Example: Time Series Prediction

- Climate Data:
 - x_t : temperature at time t
 - y_t : temperature (or temperature change) at time t + 1
- Stock Price: Predicting stock price

Recurrent Neural Network Example: Language Modeling

The

cat is ?

Recurrent Neural Network Example: Language Modeling

The cat

- x_t : one-hot encoding to represent the word at step t ([0,...,0,1,0,...,0])
- y_t : the next word
 - $y_t \in \{1, \dots, V\}$ V: Vocabulary size

Recurrent Neural Network Example: POS Tagging

- Part of Speech Tagging:
 - Labeling words with their Part-Of-Speech (Noun, Verb, Adjective, ...)
 - *x_t*: a vector to represent the word at step *t*
 - y_t : label of word t

Recurrent Neural Network Example: POS Tagging

- x_t : *t*-th input
- s_t : hidden state at time t (`memory'' of the network)
 - $s_t = f(Ux_t + Ws_{t-1})$
 - W: transition matrix, U: word embedding matrix, s_0 usually set to be 0
- Predicted output at time *t*:
 - $o_t = \arg\max_i (Vs_t)_i$

Recurrent Neural Network Recurrent Neural Network (RNN)

- Training: Find U, W, V to minimize empirical loss:
- Loss of a sequence: •

$$\sum_{t=1}^{T} loss(Vs_t, y_t)$$

- $(s_t \text{ is a function of } U, W, V)$
- Loss on the whole dataset: \bullet
 - Average loss over all sequences
- Solved by SGD/Adam

Recurrent Neural Network RNN: Text Classification

- Not necessary to output at each step
- Text Classification:
 - sentence \rightarrow category
 - Output only at the final step
- Model: add a fully connected network to the final embedding

Recurrent Neural Network Problems of Classical RNN

- Hard to capture long-term dependencies
- Hard to solve (vanishing gradient problem)
- Solution:
 - LSTM (Long Short Term Memory networks)
 - GRU (Gated Recurrent Unit)
 - ullet

Recurrent Neural Network LSTM

• RNN:

• LSTM:

Recurrent Neural Network Neural Machine Translation (NMT)

- Out the translated sentence from an input sentence
- Training data: a set of input-output pairs (supervised setting)
- Encoder-decoder approach:
 - Encoder: Use (RNN/LSTM) to encode the input sentence input a latent vector
 - Decoder: Use (RNN/LSTM) to generate a sentence based on the latent vector

Recurrent Neural Network Neural Machine Translation

Recurrent Neural Network Attention in NMT

- Usually, each output word is only related to a subset of input words (e.g., for machine translation)
- Let u be the current decoder latent state, v_1, \ldots, v_n be the latent sate for each input word
- Compute the weight of each state by

•
$$p = \operatorname{Softmax}(u^T v_1, \dots, u^T v_n)$$

Compute the context vector by $Vp = p_1v_1 + \ldots + p_nv_n$

Recurrent Neural Network Attention in NMT

