COMP6211I:
Trustworthy Machine Learning

Lecture 1

Minhao Cheng

Math Basics

Linear Algebra

Linear dependence, span

Orthogonal, orthonormal,

Eigendecomposition, quadratic form
+ fx) =x"Ax,s.1 ||x]l, = 1
Positive definite: all eigenvalues are positive, positive semidefinite are all positive or zero

e Vx, xTAx>0

Singular Value Decomposition (SVD)

e« A =UDV! where A is m X n matrix, U is m X m matrix, Vis n X n vector

Math Basics

Matrix calculus

of

. f=|IXw — y||% solve ™ where y is m X 1 vector, X is m X n matrix, w is
W

n X 1 vector

df = d(||IXw — y|I?) = d(Xw — y)' (Xw — y)) = d(Xw — y)H(Xw — y) + Xw — y) dXw — y)
= (Xdw)' (Xw — y) + (Xw — y)' (Xdw) = 2(Xw — y)" Xdw

0
. So 9 2X' (Xw — y)

ow

Regression

Linear regression

» Classification:
 Customer record — Yes/No

* Regression: predicting credit limit
 Customer record — dollar amount

* Linear Regression:

d
o= $Eh-F3

Linear Regression
The data set

* [raining data:

® (Xl,yl), (x2,y2), e oo (XN, yN)

¢ X, € I

ey, E |

4. feature vector for a sample

. observed output (real number)

Linear Regression
The data set

* [raining data:

® (Xl,yl), (x2,y2), e oo (XN, yN)

¢ X, €| 9: feature vector for a sample

e y, € IR: observed output (real number)

» Linear regression: find a function A(x) = w!xto approximate y

Linear Regression
The data set

* Training data:
¢ (.Xl,yl), (x2,y2), coos (XN, yN)
. x, € R feature vector for a sample
 y, € R: observed output (real number)

+ Linear regression: find a function A(x) = w’ x to approximate y

- Measure the error by (h(x) — y)? ()

N
Training error: Eypqin(h) = 1 Z (h(x,) — ¥,)°
. N n=1

Linear Regression

lllustration

X=(x)eR

Linear Regression

Matrix form

xlTW_Y1
| < T 2 1 szW—)’z y)
Etpain(w) = — X, W — = —
train(W) N;(rz V) NH E |
XZEW_yN
X~ N
I =x— Y2
=l 72w |
y
o _x]z;_ N
1
=~ X w=y I

Linear Regression

Minimize Eypain

. min, f(w) = || Xw — y||*

» Lirain: continuous, differentiable, convex

E
« Necessary condition of optimal w: n
of
a_wO(W) 0
Viw*) = 5 = | :
o 5f O

a—Wd(W*)

Linear Regression

Minimizing f

fw) = [IXw = ylI* = w X" Xw = 2w X"y + y'y
Viw) = 2(XT Xw — X'y)
Viw*) =0 = X' Xw* =Xy

normal equation

Linear Regression

Minimizing f

fw) = [IXw = ylI* = w X" Xw = 2w X"y + y'y
Viw) = 2(XT Xw — X'y)
Viw*) =0 = X' Xw* =Xy

ﬁonnaléquaﬁoﬁ
. = w¥ = X'X)" Xy How?

Linear Regression

Solutions
. Case I: X' X is invertible = Unique solution " X_
Case | h —
» Often when N > d L —| "
. Yes. w* = (XTX)_IXTy ___
Casell ¢ = B
. Case Il: X' X is non-invertible = Many solutions

e Oftenwhend > N

Logistic Regression

Binary Classification

e Input: training data x, x,, ..., x, € | 4 and corresponding outputs
VisVos--es ¥, € 1+ 1, — 1}

» Training: compute a function f such that sign(f(x;)) ~ y, for all i

» Prediction: given a testing sample X, predict the output as sign(f(x,))

Logistic Regression

Binary Classification

. Assume linear scoring function: s = f(x) = w'x

* |Logistic hypothesis:
.+ Py =1]x) = 0w"x) :
ev 1
l4+ef 14e

. Where 0(s) =

e How about P(y = — 1 |x)? 0
P(1x) =1 : : O(—w' x)
° —_ X) = — p— — —W X
Y l4+ewx 1 4ew'x

e Therefore, P(y | x) = O(yw!x)

Logistic Regression

Maximizing the likelihood

» Likelihood of D = (xy,¥y), --., (X5 Vn):

N N
] Pouix) =1]00w x)
n=1 n=1

Logistic Regression

Maximizing the likelihood

. Likelihood of * Find w to maximize the likelihood!
Y = (x . o o oes \ XA : -
(1 yl) (N yN) maxHH(anTxn)
N N v n=1
n=1 n=1 W n=1
N
= min—) log(0(y,w"x,)
W n=1

N
“~= min log(1 + eV %
1 Z 8()

n=1

Logistic Regression

Empirical Risk Minimization (linear)
» Linear classification/regression:

- T
min,,— Z loss(WX,

y :the predicted score
* |Linear regression:
loss(h(x,),y,) = (wan — yn)2

* | ogistic regression: .
loss(h(x,),y,) = log(1l 4+ ™" ")

, V)

1 vy

- Classification error
- = Hinge loss

""" Logistic loss
- Squared loss

Support Vector Machines

Hinge loss

 Replace the logistic loss by hinge loss:

min — max(0,1 — vy wlx
 mi NZ (0,1 = y,w'x,)

- Classification error
- = Hinge loss

""" Logistic loss
- Squared loss

Logistic Regression

Empirical Risk Minimization (general)

» Assume fy(x) is the decision function to be learned

* (W is the parameters of the function)

* General empirical risk minimization

1 N
. Wllnwﬁ Z IOSS(fW(xn)a yn)
n=1

» Example: Neural network (fy(-) is the network)

Optimization
Goal

e Goal: find the minimizer of a function .

« min,, f(w)

Optimal Solution

» For now we assume f is twice differentiable

Optimization

Convex function

» A function f: R" — R is a convex
function

» & the function fis below any line @) +a-nsw)
segment between two points on f: s+ 0

e Vx;,x,, Vt €]0,1],

o ftx; + (1 —Dxy) < tf(x)) + (1 — 0)f(xy)

Optimization

Convex function

» A function f: R" — R is a convex

function
tf (x1) + (1 —1t)f (w2)

» & the function fis below any line f 21 + (1~ b))
segment between two points on f:

® Vxl, x2’ Vt E [0,1], $1 tx1+(§1—t):v2 332

o f(tx; + (1 —1)xy)) < tf(xy) + (1 — 1)f(x,)

o Strictly convex:

Jtx, + (1 =)xy) < tf(x)) + (1 — 1)f(x,)

Optimization

Convex function

* Another equivalent definition for differentiable function:

» fis convex if and only if f(x) > f(x)) + V f(xO)T(x — X)), VX, X

convex function nonconvex function

Convex

Optimization

Convex function \,/

Minimizer

* Convex function:
» (For differentiable function) Vf(w™) = 0 < w™ is a global minimum
» If fis twice differentiable =

. Fis convex if and only if VZf(w) is positive semi-definite

 Example: linear regression, logistic regression, ...

Optimization Convex

Convex function

e Strict convex function: \,/

Minimizer

« VH(w*) =0 < w¥*is the unique global minimum
* Most algorithms only converge to gradient=0

» Example: Linear regression when X' X is invertible

Optimization

Convex vs Nonconvex

e Convex function:

« Vf(x) =0- ~Global minimum Convex

. A function is convex if V*f(x) is positive definite

 Example: linear regression, logistic rgression, ... \‘/

Minimizer

* Non-convex function:

« V/f(x) = 0——Global min, local min, or saddle point
 Most algorithms only converge to gradient =0

 Example: neural network, ...

Non-Convex

Saddle point

Local min

Global min

Optimization

Gradient descent

 (Gradient descent: repeatedly do
e Wt — Wl —aVAw)

e a > (isthe step size

 Generate the sequence wl, wz,

. Converge to stationary points (lim ||[Vf(w)|| =0)

[— 00

Optimization

Gradient descent

* (Gradient descent: repeatedly do
. Wt+1 — wi— avf(wt)

e a > (is the step size

|

 Generate the sequence w , w-, ...

* Converge to stationary points

(lim [[Vf(wW)|| =0)

[I— 0

e Step size too large = diverge;

Error

10

10

10

10

-10

0 20 40

= stepsize 0.001
— stepsize 0.01
—stepsize 0.1

lterations

60 80 100

Optimization
Why gradient descent

* At each iteration, form a approximation function of f(-):

1
. fw +d) = g(d) = f(w") + VfiwH)d + EHdHZ

. Update solution by w'*! « w! + d*

. d* =argmin g(d)
d

. Ve(d*) =0 = VAw) + éd* — 0= d* = — aVfw

 d* will decrease f(-) if o (step size) is sufficiently small

Optimization

lllustration of gradient descent

g(d) ~ f(w'+d)

Wt
 Form a quadratic approximation

1

. fw+d) = g(d) := f(w') + Vfw)d zaHdHZ

Optimization

lllustration of gradient descent

g(d) ~ f(wt+d)

» Minimize g(d)

. Vg(d*)=0= Vfiw') + la’* =0=>d*F =—aViw)
0

Optimization

lllustration of gradient descent

g(d) ~ f(w'+d)

 Update w

e Wt = Wit d* = wi—a V')

Optimization

lllustration of gradient descent

wt wt+1

 Update w

e Wt = Wit d* = wi—a V')

Optimization

lllustration of gradient descent

Optimization

lllustration of gradient descent

~ f(wt+d)

f(w)

Optimization
When will it diverge

Can diverge (f(w") < f(w"™1))if g is not an upper bound of f

f(w?) < f(wt*!), diverge because g’s curvature is too small

Optimization
When will it converge

Always converge (f(w") > f(w'*1))if g is an upper bound of f

Wt Wt+1

f(w?) > f(w'*1), converge when g’s curvature is large enough

Optimization

Convergence

» A differential function f is said to be L-Lipschitz continuous:

o [[f(x) =)l < Lllx) — x5l

» A differential function f is said to be L-smooth: its gradient are Lipschitz continuous:

e [[VSf(x)) = V)|l < Lilx; — x]l5

 And we could get

. V?f(x) < LI

1
. f) < fx) + VA (v —x) + ELHY — x|

Optimization

Convergence

. Let L be a Lipchitz constant (V?f(x) < LI for all x)
|

. Iheorem: gradient descent converges if a < Z

 |n practice, we do not know L ...

* Need to tune step size when running gradient descent

Optimization

Applying to logistic regression

gradient descent for logistic regression

@ Initialize the weights wy
@ Fort=1,2,---
o Compute the gradient

1 VnX
Vf(W) — _N 1 _|_ gan;/Txn

n=1

o Update the weights: w <+ w —nVf(w)

@ Return the final weights w

Optimization

Applying to logistic regression

gradient descent for logistic regression

 When to stop?

@ Initialize the weights wy
@ Fort=1,2,---

* Fixed number of o Compute the gradient

iterations, or

1 YnXn
Vi(w) = —— i
° StOp When (w) N — 1 + eyaw'x;
H Vf(W) H < € o Update the weights: w < w — an(w)

@ Return the final weights w

Optimization

Line search

 |n practice, we do not know L ...
 Need to tune step size when running gradient descent

* Line Search: Select step size automatically (for gradient descent)

Optimization

Line search

* [he back-tracking line search:

o Start from some large o,
° Try a = U, a0/2,a0/4, . o

o Stop when o satisfies some sufficient decrease condition

Optimization

Line search

* [he back-tracking line search:

o Start from some large o,
° Try a = U, a0/2,a0/4, .o
o Stop when o satisfies some sufficient decrease condition

» A simple condition: f(w + ad) < f(w)

Optimization

Line search

* [he back-tracking line search:
o Start from some large o,
e Try a = ay, 0yl 2,0p/4,...
o Stop when o satisfies some sufficient decrease condition

» A simple condition: f(w + ad) < f(w)

» Often works in practice but doesn’t work in theory

Optimization

Large-scale problem

* Machine learning: usually minimizing the training loss:

N
nivin{% ’; z/”(wan, y,)} = f(w) (linear model)

1

N
) nivin{ ~ Z (fw(x,),y,)} :=f(w) (general hypothesis)

n=1
« ¢:loss function (e.g., £(a, b) = (a — b)z)

e (Gradient descent:

W w— Viw)

Main computation

Optimization

Large-scale problem

* Machine learning: usually minimizing the training loss:

N
) mjn{% ’; 4 (wan, y,)} :=f(w) (linear model)

R IR
) mm{ﬁ Z C(fu(x,),y,)} :=f(w) (general hypothesis)

W n=1

. ¢: loss function (e.g., Z(a, b) = (a — b)?)

 Gradient descent:

S Wew-—q Viw)

Main i:orﬁpljtation
1 &
_ Ingeneral, f(w) = ~ ’;fn(w),

» Each f,(w) only depends on (x,,y,)

Optimization

Stochastic gradient

N
_ Gradient: Vf(w) = %z Vi (w),
n=1

 Each gradient computation needs to go through all training samples
e Slow when millions of samples

* Faster way to compare “approximate gradient”?

Optimization

Stochastic gradient

N
_ Gradient: Vf(w) = %Z Vi w),
n=1

 Each gradient computation needs to go through all training samples
e Slow when millions of samples
* Faster way to compare “approximate gradient”?

e Use stochastic sampling:

« Sample a small subset B C {1,..., N}

* Estimated gradient

1
. VW) & — D VW)

neB

« |B|: batch size

Optimization

Stochastic gradient descent

Stochastic Gradient Descent (SGD)

@ Input: training data {x,, y, ,’)’:1
@ Initialize w (zero or random)
o Fort=1,2,---

o Sample a small batch B C {1,---, N}
o Update parameter

1
t
W<— W —17 ﬁ nEEBan(W)

« Extreme case: | B| = 1 = Sample one training data at a time

Optimization
Logistic Regression by SGD

o LOgiStiC regreSSiOn SGD for Logistic Regression
o Input: training data {x,, y,}"_,

o Initialize w (zero or random)

mln—ZIOg(1+e W)C) @ Fort=1,2,---

o Sample a batch B C {1,--- , N}
o Update parameter

£,(w) g

Optimization
Why SGD works?

o Stochastic gradient is an unbiased estimator of full gradient:

[D Vi (w)] = Z V(W) = VAw)

. ‘B‘ neB

Optimization
Why SGD works?

o Stochastic gradient is an unbiased estimator of full gradient:

, '[W D Vi w)] = Z V(W) = VAw)
neb

 Each iteration updated by

e (Gradient + zero-mean noise

Optimization

Stochastic gradient descent

 |In gradient descent, 1 (step size) is a fixed constant

 Can we use fixed step size for SGD?

Optimization

Stochastic gradient descent

 |In gradient descent, 1 (step size) is a fixed constant
 Can we use fixed step size for SGD?

o SGD with fixed step size cannot converge to global/local minimizers

Optimization

Stochastic gradient descent

* |n gradient descent, 7 (step size) is a fixed constant

 Can we use fixed step size for SGD?

 SGD with fixed step size cannot converge to global/local minimizers

| o
If w* is the minimizer, Vf(w*) = — » Vj (w*) =0,
fow#) ==), V)

n=1

|
~ But B Zan(W);éOifBisasubset

neB

* (Even if we got minimizer, SGD will move away from it)

Optimization

Stochastic gradient descent: step size

 To make SGD converge:
e Step size should decrease to O
® }/]t —_ O g

e Usually with polynomial rate ' ~ t~“ with
constant a

o Step decay of learning rate

102 -
L

Linear hypotheses

 Up to now: linear
hypotheses

 Perception, Linear
regression, Logistic
regression, ...

 Many problems are not
linearly separable

Patar

Nonlinear transformation

Hypothesis:

1

Nonlinear transformation

Circular Separable and Linear Separable

h(x) = sign(0.6 - 1+ (- 1) xl + (= 1) x)

= sign(Ww’ 2)

o {(x,,y,)} circular separable =
{(z,,y,)} linear separable

e XE X — x € Z (using a
nonlinear transformation @)

Nonlinear Transformation

Definition

e Define nonlinear transformation

* ¢(X) — (1,x12,x22) — (Z(), {15 Zz) = Z

» Linear hypotheses in £ -space:

+ sign(h(z)) = sign(A(¢(x))) = sign(w’ ¢ (x))

» Line in Z -space < some quadratic curves in 2 -space

Nonlinear Transformation
General Quadratic Hypothesis Set

« A “bigger ” Z -space:

¢2(X) — (1 xla x29 xl) x1x29)
 Linear in £ -space < quadratic hypotheses in X -space

 The hypotheses space:
« A b = th(x) : h(x) = WTgbz(x) for some W} (quadratic hypotheses)

* Also include linear model as a degenerate case

Nonlinear transformation

Learning a good quadratic function

» Transform original data {x,, v}
to {Zn — ¢(Xn), yn}

* Solve a linear problem on
1Z,, v, } using your favorite
algorithm & to get a good

model w

e Return the model

h(x) = sign(W" ¢(x))

1 - 1

x
X
x X ‘ 0

Nonlinear transformation

Polynomial mappings

 Can now freely do quadratic classification, quadratic regression

 Can easily extend to any degree of polynomial mappings

e E.0.,
_ 2 2 2 .2 2
P(x) = (X1, Xy, X3, X1 X5, x1x3,x2x3,x1x2,x1x3,xlxz,x2x3,x2x3,x1,xz,x3)

Nonlinear Transformation

The price we pay: computational complexity

» ()-th oder polynomial transform:

P(x) = (1x, x5, ..., x,,

2 2 2
xl,XIxz, ...,Xd, ...,Xd,

Q0 ,.0-1 é,
X7 X7 X, ...,xd)

. O(dQ) dimensional vector = High computational cost

e Kernel method

Nonlinear Transformation

The price we pay: overfitting

* Qverfitting: the model has low training error but high prediction error

Model: 9t order polynomial 1
1 P Target: sin(21x) + noise | —©— Training
D/ N
/ \ —O— TJest
t / \\
Y 4 :
4 - g -
ol 7/
\\\\ /;5} E O 5
\ s \/
\.\ O
\| p.
A //
_l w A
0
0 1 0 3 degree 6 9

Theory of Generalization

Training versus testing

 Machine learning pipeline:

* [raining phase:

 Obtain the best model /2 by minimizing training error

* Jest (inference) phase:
 For any incoming test data x”
« Make prediction by /(x)

 Measure the performance of h: test error

Theory of Generalization

Training versus testing

* Does low training error imply low test error?

 They can be totally different if

o train distribution # test distribution

Theory of Generalization

Training versus testing

* Does low training error imply low test error?

 They can be totally different if

o train distribution # test distribution

 Even under the same distribution, they can be very different:

» Because /1 is picked to minimize training error, not test error

Theory of Generalization

Formal definition

e Assume training and test data are both sampled from D

 The ideal function (for generating labels) is f : f(x) — y

e Training error: Sample x, ..., xy from D and
1 &
o Etr(h) — N Z e(h(xn)a f(xn))
n=1
* his determined by Xy, ..., X,
e Test error: Sample xy, ..., xy from D and
1 M
Bl =— n; e(h(x,), f(x,))

* hisindependent to x, ..., x,

Theory of Generalization

Formal definition

Assume training and test data are both sampled from D

The ideal function (for generating labels) is f : f(x) — y

» Training error: Sample X, ..., xy from D and
1 &
MOEEDICCCANIEN)
n=1
* his determined by Xy, ..., X,
o Test error: Sample xy, ..., xy from D and
1 M
By =— D" e(h(x,), fx,))
m=1
* hisindependentto x,...,X,

Generalization error = Test error = Expected performance on D:

» E(h) = B, ple(h(x), f(x)] = E;(h)

Theory of Generalization

The 2 questions of learning

e E(h) ~ O is achieved through:
« E(h) =~ E (h)and E, (h) =~ 0

Theory of Generalization

The 2 questions of learning

e E(h) ~ 0 is achieved through:
« E(h) % E,(h)and E, (h) = 0
* |earning is split into 2 questions:
» Can we make sure that E(h) ~ E, (h)?

e (Generalization

 Can we make E, (1) small?

e Optimization

Theory of Generalization

Connection to Learning

e Given a function A

e If we randomly draw x;, ..., x, (independent to /):

« E(h) =L, _plh(x) # f(x)] & u (generalization error, unknown)

1 N
i Z [h(x,) # y,] © v (error on sampled data, known)
n=1

 Based on Hoeffding’s inequality:

e pllv—pu| > el <2e72N

o “u = U” Is probably approximately correct (PAC)

 However, this can only “verify” the error of a hypothesis:

 handXx, ..., xy must be independent

Theory of Generalization

A simple solution

» For each particular A,
. P[|E,(h) — E(h)| > €] <2e72N
- If we have a hypothesis set #',we want to derive the bound for P[sup, o, | E,(h) — E(h) | > €]

» PL|E,(h) — E(h)| > €]or...or P[|E,(Iyg) — E(lyg) | > €]

H
. < D PIIE,(h,) - Eh,)|]1 <2|%|e >N
m=1

o0 0
Because of union bound inequality P(UAZ-) < Z P(A))
i=1 i=1

Theory of generalization

When is learning successful?

» When our learning algorithm &/ picks the hypothesis g:
e P[SUPco |E (h) — E(h)| > €] < 2| |e 2N
 If | 7| is small and N is large enough:

. If of finds E, (g) ~ 0 = E(g) = 0O (Learning is successfull)

Theory of Generalization

Feasibility of Learning

+ PIE(8) —E(®)| > el <2|7 |7V
 Two questions:
» 1. Can we make sure L(g) ~ E,(g)7?
» 2. Can we make sure E, (g) ~ 07?
e | A |: complexity of model
« Small | Z |: 1 holds, but 2 may not hold (too few choices) (under-fitting)

» Large | # |: 1 doesn’t hold, but 2 may hold (over-fitting)

Regularization

The polynomial model

» # : polynomials of order

Q
T o= WL)

qg=0

* Linear regression in the £ space with

v 2= [1L,L(x), ..., Ly(x)]

Legendre polynomials:

Ly

vy

£(35z* — 302? + 3)

Regularization

Unconstrained solution

o Input (X1, 1), ..., (s V) = (215 V1)s -+ -5 (Zs V)

* Linear regression:

N

1
. _ T, _)2
_ Minimize: Ey(w) = N E (W' z,—y,)

n=1

|
. Minimize: N(Zw — W (Zw —y)

o Solution wy, = (ZTZ)_lZTy

Regularization

Constraining the weights

. Hard constraint: #Z, is constrained version of #Z ;, (with w_ = 0O for g > 2)

q

Regularization

Constraining the weights

. Hard constraint: #Z, is constrained version of #Z ;, (with w_ = 0O for g > 2)

q

9,
Soft-order constraint: Z qu <C

q=0

Regularization

Constraining the weights

. Hard constraint: /', is constrained version of #Z (with w, = 0forg > 2)

9,
Soft-order constraint: 2 wg <(C

q=0
* The problem given soft-order constraint;

|
Minimize N(Zw —WHZw —y) sit. wlw < C

smallerkhypc;thesijs space

» Solution wygq Instead of wy,

Regularization

Equivalent to the unconstrained version

 Constrained version: E = const.
, |

. min Ey(w) = —(Zw — V' (Zw — y)
W N

. st.wlw<C

* Optimal when

. VE’cr(Wreg) X = Wreg

» Why? If —V E4(Wreg) and w are not parallel, can decrease Ey(w) without violating the
constraint

Regularization

Equivalent to the unconstrained version

e Constrained version:

|
. min Ey(w) = N(ZW —W(Zw—-y) st ww<C

* Optimal when

. VE’tr(Wreg) X = Wreg

A A
. Assume V Ey(Wreg) = — ZNWreg = VEy(Wreg) + zﬁwreg =0

Regularization

Equivalent to the unconstrained version

e Constrained version:
1
. min Ey (w) = N(ZW —WZw—-y) st wlw<C
w

* Optimal when

’ VE’tr(Wreg) X = Wreg

A A
, Assume V E;i.(w = — 2—Wyany = V E; (W + 2—w
tr reg) N Treg tr reg) N

* Wreg IS also the solution of unconstrained problem

T

. min £y (w) + —w’w (Ridge regression!)

W N

reg=0

Regularization

Equivalent to the unconstrained version

* Constrained version:
|
. min Ey (w) = N(ZW —WZw—-y) st wlw<C
w
* Optimal when

’ VE’tr(Wreg) X = Wreg

A A
, Assume V E;i.(w = — 2—Wyany = V E; (W + 2—w
tr reg) N Treg tr reg) N

* Wreg IS also the solution of unconstrained problem

., min E;.(w) + —w
" tr() N

reg=0

Ty (Ridge regression!) C T A\ i

Regularization

Ridge regression solution

. min Eyeq(w) = %((Zw - 22w —y) + /IWTW)

. VEreg(W) =0=>Z"Zw—-y)+iw =0

Regularization

Ridge regression solution

. min Eyeq(w) = %((Zw - 22w —y) + /IWTW)

. VEreg(w) =0=>Z"Zw—-y)+iw =0

¢ SO, Wreg = (ZTZ + Al)_lZTy (with regularization) as opposed to
wye = (Z1Z)~1Z"y (without regularization)

The result

Regularization

. min Ey (W) + —w'w
W N
A=0 A = 0.0001
o Data
— Target
— Fit \//

i

overfitting

b

A= 0.01

v :

h

underfitting

Regularization

Equivalent to “weight decay”

* Consider the general case

. min Ey (w) + —w’w

w N

Regularization

Equivalent to “weight decay”

* Consider the general case

. min Ey,(w) + —w'w

w N

e (Gradient descent:

A
Wi =w,—n(VE(w,) + ZNWt)

A
=w, (I - ZnN) —nVEy(w)

Weighf decéy

Regularization

Variations of weight decay

e Calling the regularizer €2 = €2(/h), we minimize

A
. Ereg(h) = Ey(h) + NQ(h)

 In general, £2(/) can be any measurement for the “size” of h

Regularization

L2 vs L1 regularizer

L1-regularizer: Q(w) = |[w]|; = Z |w, |
q

« Usually leads to a sparse solution (only few w, will be nonzero)

FE = const. E- = const.

