COMP6211I: Trustworthy Machine Learning

Lecture 1

Math Basics

Linear Algebra

- Linear dependence, span
- Orthogonal, orthonormal,
- Eigendecomposition, quadratic form
 - $f(x) = x^T A x$, $s \cdot t ||x||_2 = 1$
- Positive definite: all eigenvalues are positive, positive semidefinite are all positive or zero
 - $\forall x, x^T A x \geq 0$
- Singular Value Decomposition (SVD)
 - $A = UDV^T$, where A is $m \times n$ matrix, U is $m \times m$ matrix, V is $n \times n$ vector

Math Basics

Matrix calculus

• $f=\|Xw-y\|^2$, solve $\frac{\partial f}{\partial w}$, where y is $m\times 1$ vector, X is $m\times n$ matrix, w is $n\times 1$ vector

$$df = d(||Xw - y||^2) = d((Xw - y)^T(Xw - y)) = d((Xw - y)^T)(Xw - y) + (Xw - y)^Td(Xw - y)$$

$$= (Xdw)^T(Xw - y) + (Xw - y)^T(Xdw) = 2(Xw - y)^TXdw$$

So
$$\frac{\partial f}{\partial w} = 2X^T(Xw - y)$$

Regression

Linear regression

- Classification:
 - Customer record → Yes/No
- Regression: predicting credit limit
 - Customer record dollar amount
- Linear Regression:

$$h(x) = \sum_{i=0}^{d} w_i x_i = w^T x$$

The data set

- Training data:
 - $(x1,y1), (x2,y2), ..., (x_N, y_N)$
 - $x_n \in \mathbb{R}^d$: feature vector for a sample
 - $y_n \in \mathbb{R}$: observed output (real number)

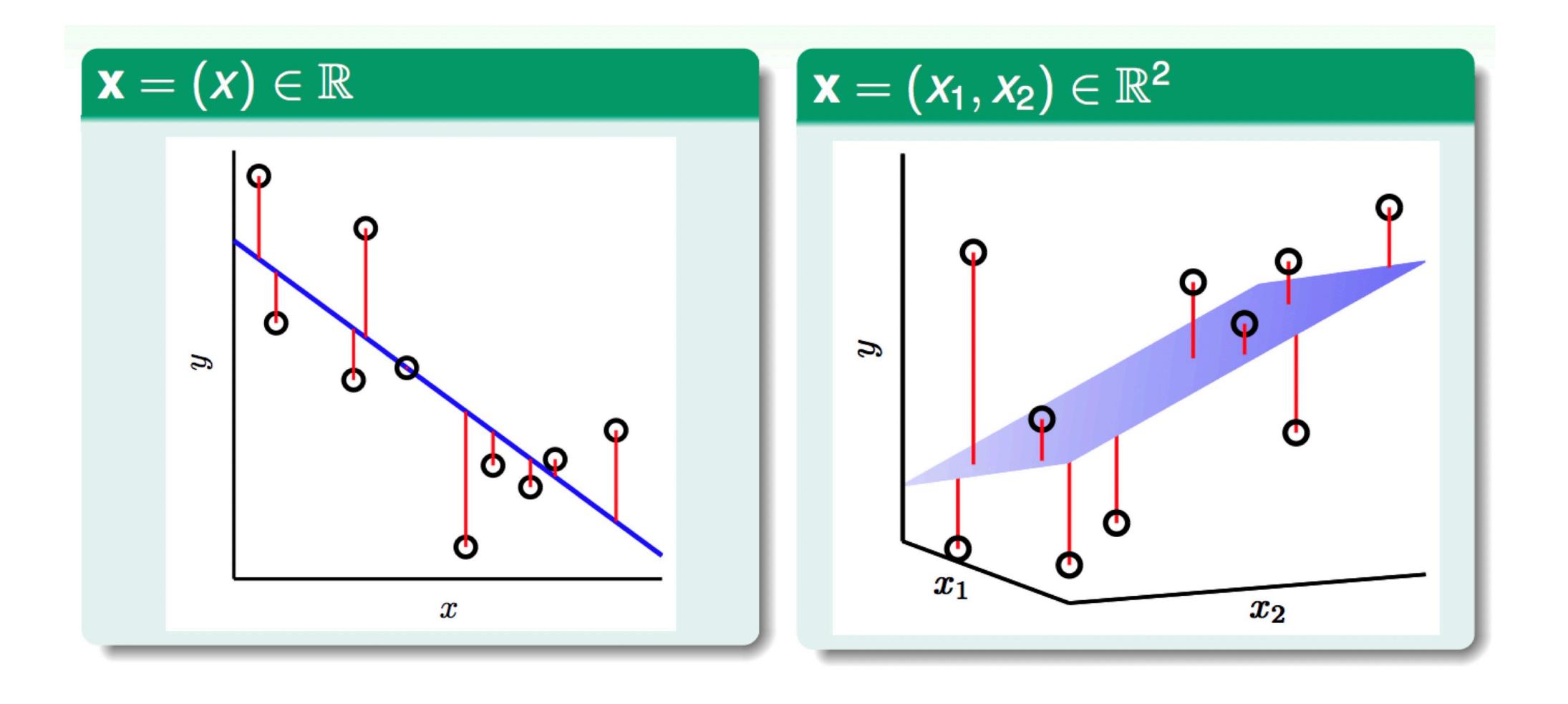
The data set

- Training data:
 - $(x1,y1), (x2,y2), ..., (x_N, y_N)$
 - $x_n \in \mathbb{R}^d$: feature vector for a sample
 - $y_n \in \mathbb{R}$: observed output (real number)
- Linear regression: find a function $h(x) = w^T x$ to approximate y

The data set

- Training data:
 - $(x1,y1), (x2,y2), ..., (x_N, y_N)$
 - $x_n \in \mathbb{R}^d$: feature vector for a sample
 - $y_n \in \mathbb{R}$: observed output (real number)
- Linear regression: find a function $h(x) = w^T x$ to approximate y
- Measure the error by $(h(x) y)^2$ (square error)
 - Training error: $E_{\mathsf{train}}(h) = \frac{1}{N} \sum_{n=1}^{N} (h(x_n) y_n)^2$

Illustration



Matrix form

$$E_{\text{train}}(w) = \frac{1}{N} \sum_{n=1}^{N} (x_n^T w - y_n)^2 = \frac{1}{N} \| \begin{bmatrix} x_1^T w - y_1 \\ x_2^T w - y_2 \\ \vdots \\ x_N^T w - y_N \end{bmatrix} \|^2$$

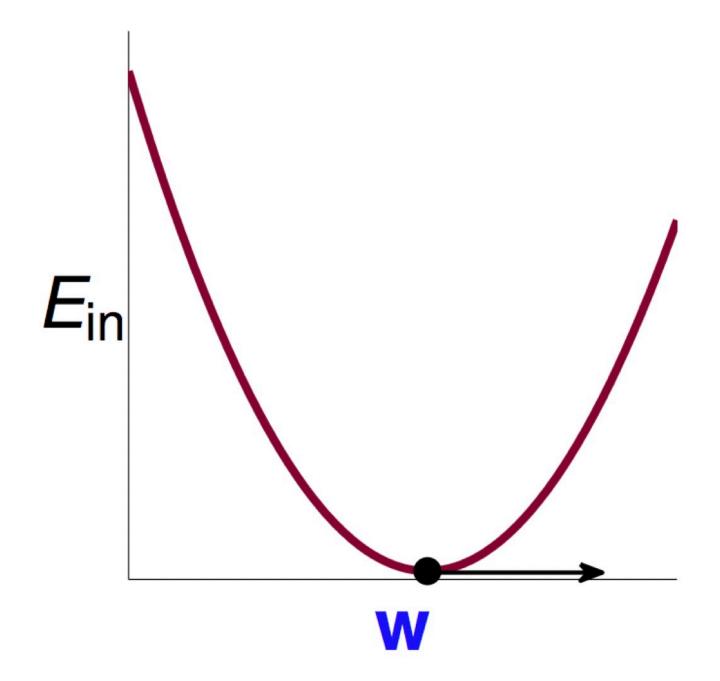
$$= \frac{1}{N} \left\| \begin{bmatrix} -x_1^T - \\ -x_2^T - \\ \vdots \\ -x_N^T - \end{bmatrix} w - \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \right\|$$

$$= \frac{1}{N} \left\| \underbrace{X}_{N \times d} w - \underbrace{y}_{N \times 1} \right\|^2$$

Minimize E_{train}

- $min_w f(w) = ||Xw y||^2$
 - E_{train} : continuous, differentiable, convex
 - Necessary condition of optimal w:

$$\nabla f(w^*) = \begin{bmatrix} \frac{\partial f}{\partial w_0}(w^*) \\ \vdots \\ \frac{\partial f}{\partial w_d}(w^*) \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$



Minimizing f

$$f(w) = ||Xw - y||^2 = w^T X^T X w - 2w^T X^T y + y^T y$$

$$\nabla f(w) = 2(X^T X w - X^T y)$$

$$\nabla f(w^*) = 0 \Rightarrow X^T X w^* = X^T y$$

$$\overbrace{\text{normal equation}}$$

Minimizing f

$$f(w) = ||Xw - y||^2 = w^T X^T X w - 2w^T X^T y + y^T y$$

$$\nabla f(w) = 2(X^T X w - X^T y)$$

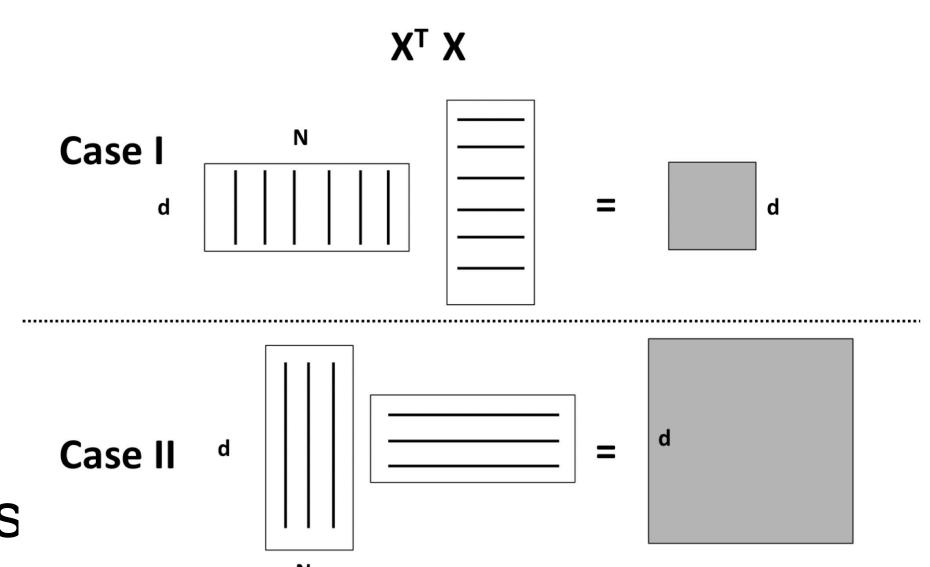
$$\nabla f(w^*) = 0 \Rightarrow X^T X w^* = X^T y$$

$$\text{normal equation}$$

$$\Rightarrow w^* = (X^T X)^{-1} X^T y \qquad \text{How?}$$

Solutions

- Case I: X^TX is invertible \Rightarrow Unique solution
 - Often when N > d
 - Yes, $w^* = (X^T X)^{-1} X^T y$
- Case II: X^TX is non-invertible \Rightarrow Many solutions
 - Often when d > N



Binary Classification

- Input: training data $x_1, x_2, ..., x_n \in \mathbb{R}^d$ and corresponding outputs $y_1, y_2, ..., y_n \in \{+1, -1\}$
- Training: compute a function f such that $sign(f(x_i)) \approx y_i$ for all i
- Prediction: given a testing sample \tilde{x} , predict the output as $sign(f(x_i))$

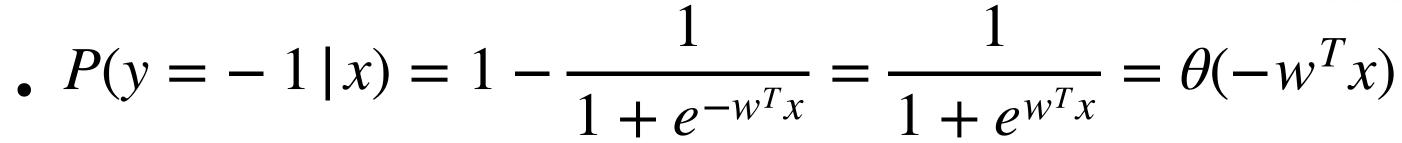
Binary Classification

- Assume linear scoring function: $s = f(x) = w^T x$
- Logistic hypothesis:

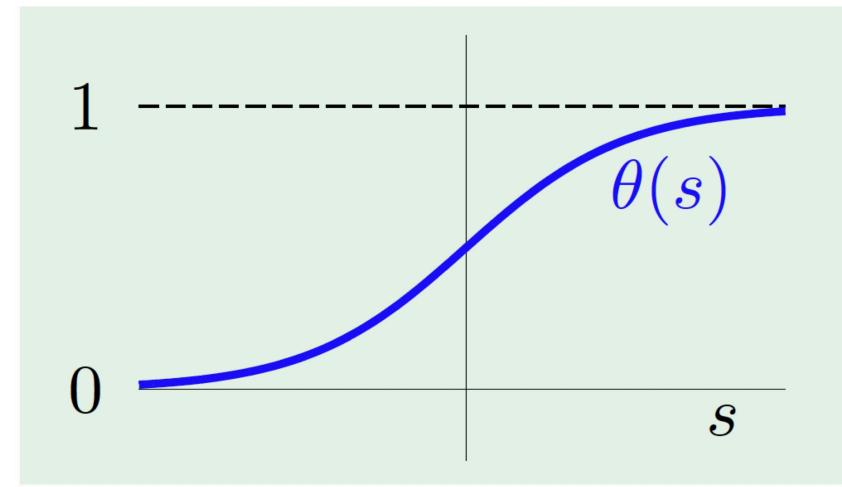
•
$$P(y = 1 \mid x) = \theta(w^T x)$$
,

• Where
$$\theta(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

• How about P(y = -1 | x)?



• Therefore, $P(y | x) = \theta(yw^Tx)$



Maximizing the likelihood

• Likelihood of $\mathcal{D} = (x_1, y_1), ..., (x_N, y_N)$:

$$\prod_{n=1}^{N} P(y_n | x_n) = \prod_{n=1}^{N} \theta(y_n w^T x_n)$$

Maximizing the likelihood

Likelihood of

$$\mathcal{D} = (x_1, y_1), \dots, (x_N, y_N)$$
:

$$\prod_{n=1}^{N} P(y_n | x_n) = \prod_{n=1}^{N} \theta(y_n w^T x_n)$$

• Find w to maximize the likelihood!

$$\max_{w} \prod_{n=1}^{N} \theta(y_{n}w^{T}x_{n})$$

$$\Rightarrow \max_{w} \log(\prod_{n=1}^{N} \theta(y_{n}w^{T}x_{n}))$$

$$\Rightarrow \min_{w} - \sum_{n=1}^{N} \log(\theta(y_{n}w^{T}x_{n}))$$

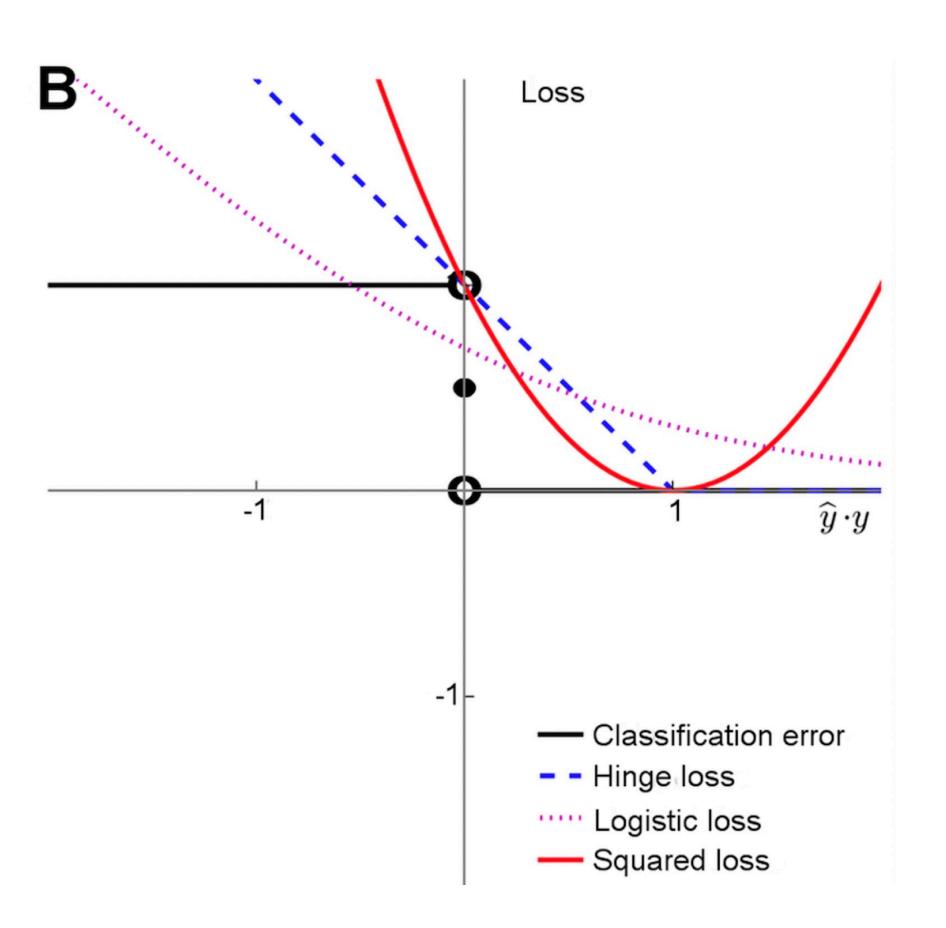
$$\Rightarrow \min_{w} \sum_{n=1}^{N} \log(1 + e^{-y_{n}w^{T}x_{n}})$$

Empirical Risk Minimization (linear)

• Linear classification/regression:

•
$$\min_{w} \frac{1}{N} \sum_{n=1}^{N} loss(\underbrace{w^{T} x_{n}}_{\hat{y_{n}}}, y_{n})$$
• $\hat{y_{n}}$: the predicted score

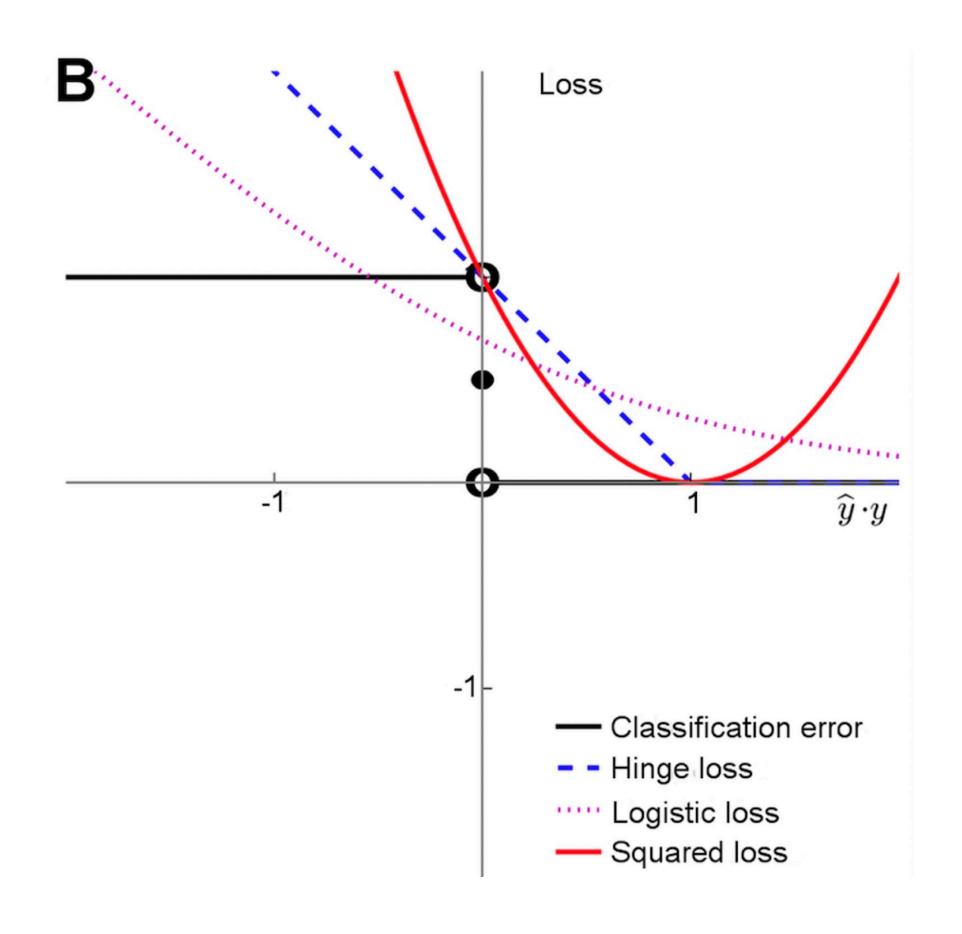
- Linear regression: $loss(h(x_n), y_n) = (w^T x_n - y_n)^2$
- Logistic regression: $loss(h(x_n), y_n) = log(1 + e^{-y_n w^T x_n})$



Support Vector Machines Hinge loss

Replace the logistic loss by hinge loss:

•
$$\min_{w} \frac{1}{N} \sum_{n=1}^{N} \max(0, 1 - y_n w^T x_n)$$



Empirical Risk Minimization (general)

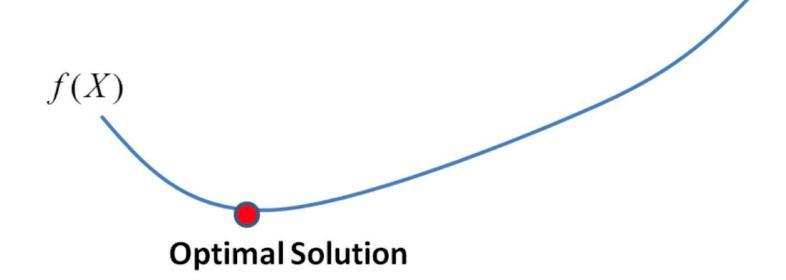
- Assume $f_W(x)$ is the decision function to be learned
 - (W is the parameters of the function)
- General empirical risk minimization

$$min_{W} \frac{1}{N} \sum_{n=1}^{N} loss(f_{W}(x_n), y_n)$$

• Example: Neural network ($f_W(\ \cdot\)$ is the network)

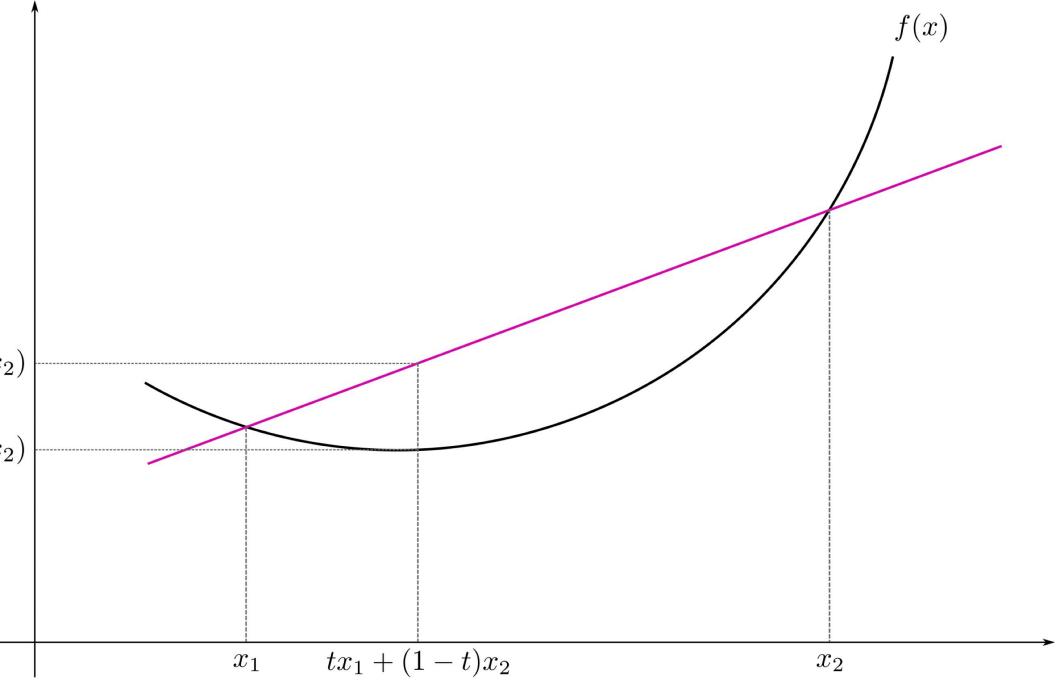
Optimization Goal

- Goal: find the minimizer of a function
 - $min_w f(w)$
- \bullet For now we assume f is twice differentiable



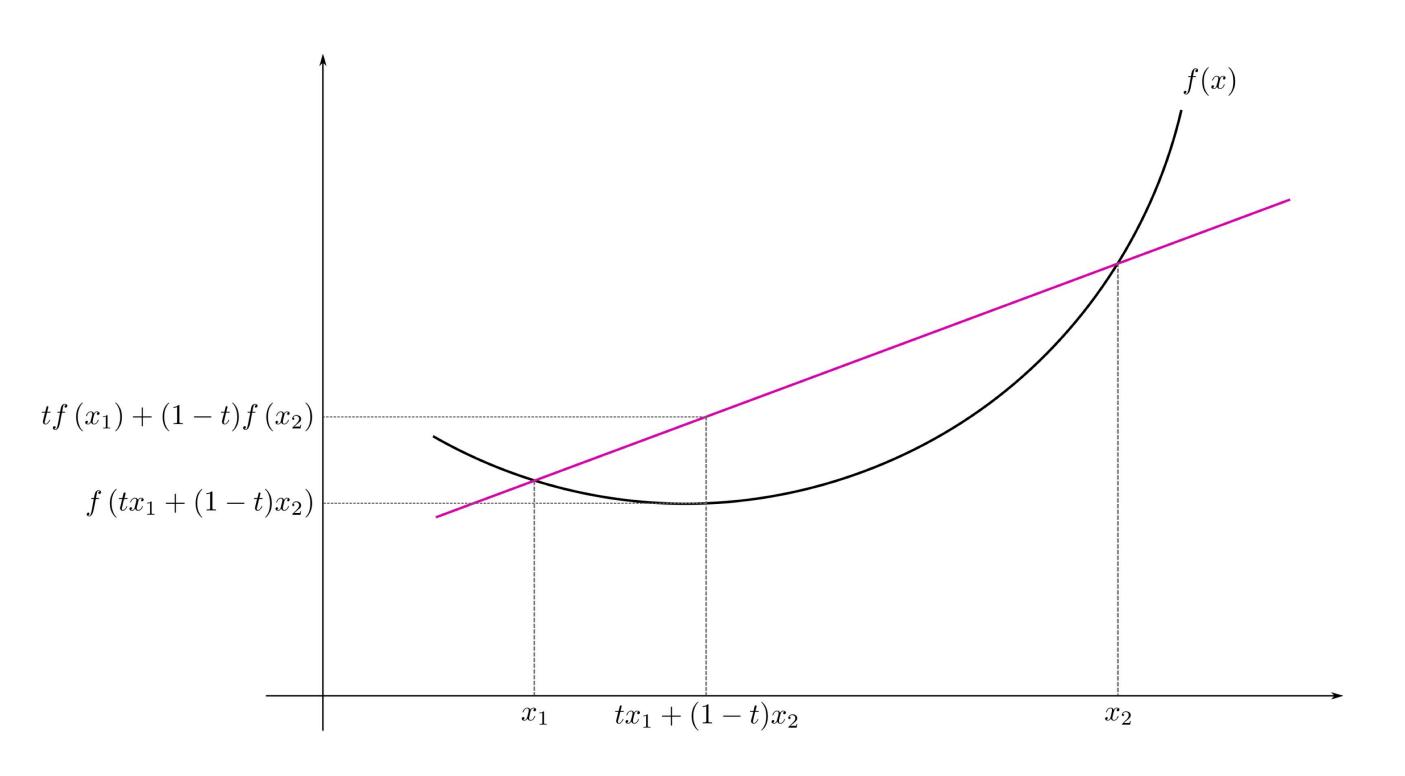
Convex function

- A function $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function
- \Leftrightarrow the function f is below any line $tf(x_1) + (1-t)f(x_2)$ segment between two points on f: $f(tx_1 + (1-t)x_2)$
 - $\forall x_1, x_2, \forall t \in [0,1],$
 - $f(tx_1 + (1 t)x_2) \le tf(x_1) + (1 t)f(x_2)$



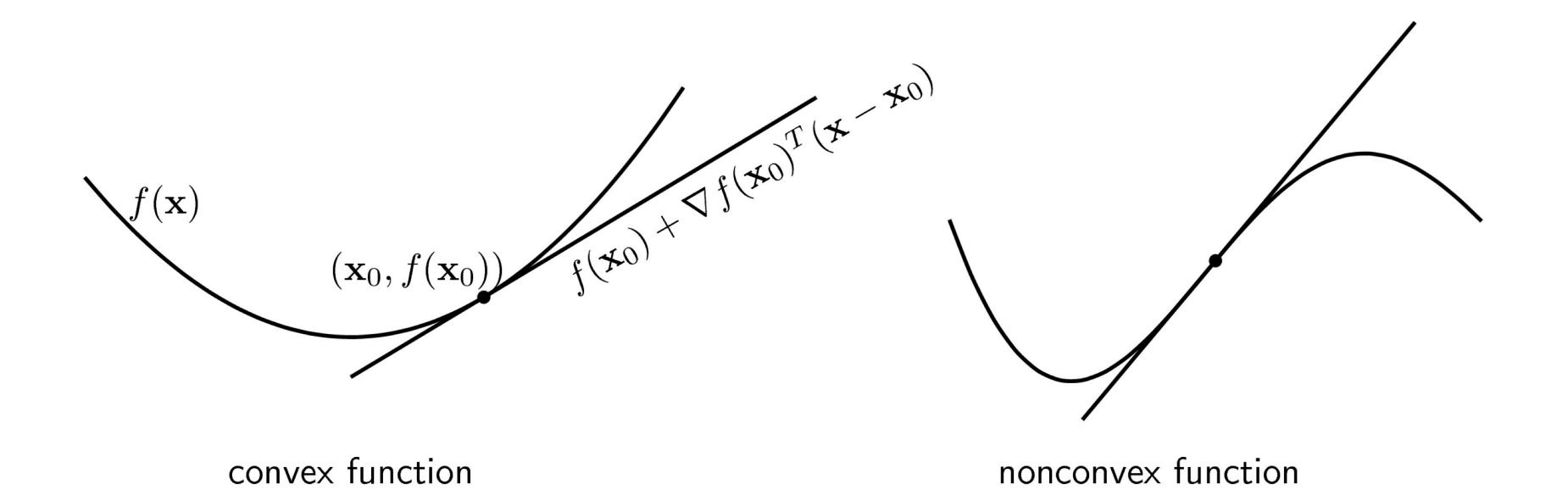
Convex function

- A function $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function
- \Leftrightarrow the function f is below any line segment between two points on f:
 - $\forall x_1, x_2, \forall t \in [0,1],$
 - $f(tx_1 + (1 t)x_2) \le tf(x_1) + (1 t)f(x_2)$
- Strictly convex: $f(tx_1 + (1 - t)x_2) < tf(x_1) + (1 - t)f(x_2)$

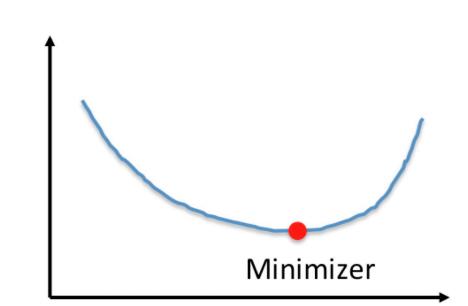


Convex function

- Another equivalent definition for differentiable function:
 - f is convex if and only if $f(x) \ge f(x_0) + \nabla f(x_0)^T (x x_0)$, $\forall x, x_0$



Convex function



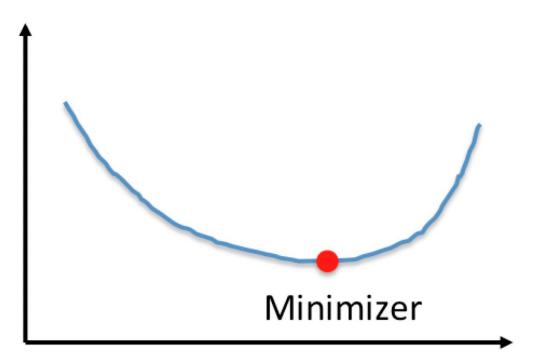
Convex

- Convex function:
 - (For differentiable function) $\nabla f(w^*) = 0 \Leftrightarrow w^*$ is a global minimum
 - If f is twice differentiable \Rightarrow
 - F is convex if and only if $\nabla^2 f(w)$ is positive semi-definite
 - Example: linear regression, logistic regression, ...

Convex function

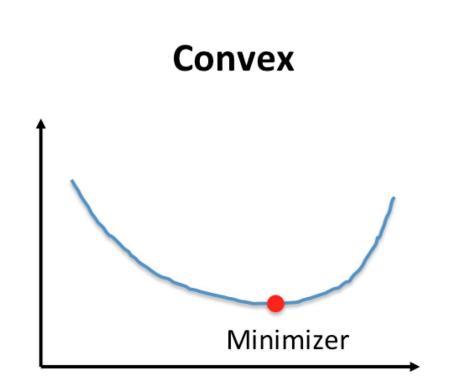
- Strict convex function:
 - $\nabla f(w^*) = 0 \Leftrightarrow w^*$ is the unique global minimum
 - Most algorithms only converge to gradient=0
 - Example: Linear regression when $\boldsymbol{X}^T\boldsymbol{X}$ is invertible

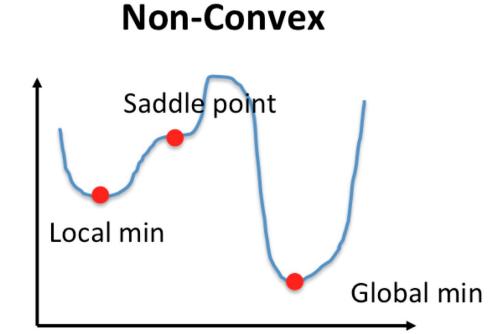
Convex



Convex vs Nonconvex

- Convex function:
 - $\nabla f(x) = 0$ Global minimum
 - A function is convex if $\nabla^2 f(x)$ is positive definite
 - Example: linear regression, logistic rgression, ...
- Non-convex function:
 - $\nabla f(x) = 0$ ——Global min, local min, or saddle point
 - Most algorithms only converge to gradient =0
 - Example: neural network, ...



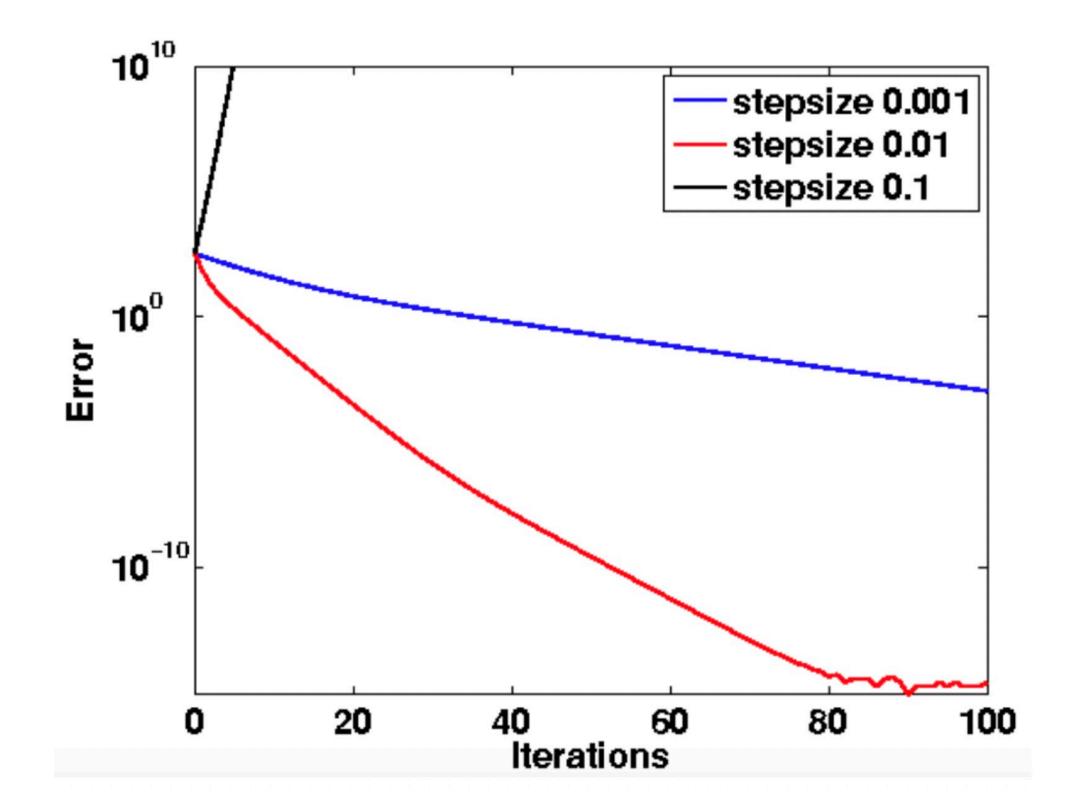


Gradient descent

- Gradient descent: repeatedly do
 - $w^{t+1} \leftarrow w^t \alpha \nabla f(w^t)$
 - $\alpha > 0$ is the step size
- Generate the sequence w^1, w^2, \dots
 - . Converge to stationary points ($\lim_{t \to \infty} \|\nabla f(w^t)\| = 0$)

Gradient descent

- Gradient descent: repeatedly do
 - $w^{t+1} \leftarrow w^t \alpha \nabla f(w^t)$
 - $\alpha > 0$ is the step size
- Generate the sequence w^1, w^2, \dots
 - Converge to stationary points $(\lim_{t \to \infty} \|\nabla f(w^t)\| = 0)$
 - Step size too large ⇒ diverge;
 - too small ⇒ slow convergence



Why gradient descent

• At each iteration, form a approximation function of $f(\cdot)$:

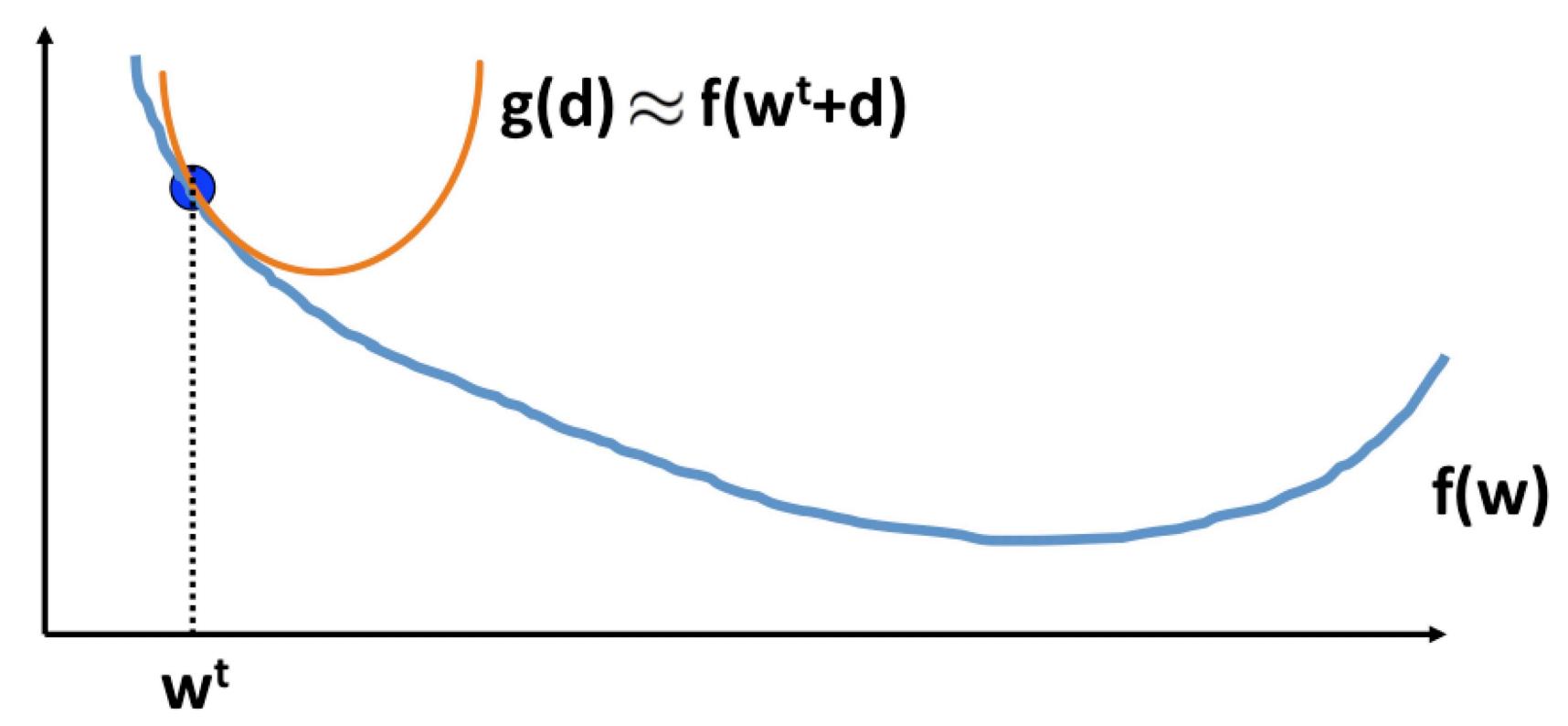
•
$$f(w+d) \approx g(d) := f(w^t) + \nabla f(w^t)d + \frac{1}{2\alpha} ||d||^2$$

- Update solution by $w^{t+1} \leftarrow w^t + d^*$
- $d^* = \arg\min_{d} g(d)$

•
$$\nabla g(d^*) = 0 \Rightarrow \nabla f(w^t) + \frac{1}{\alpha}d^* = 0 \Rightarrow d^* = -\alpha \nabla f(w^t)$$

• d^* will decrease $f(\cdot)$ if α (step size) is sufficiently small

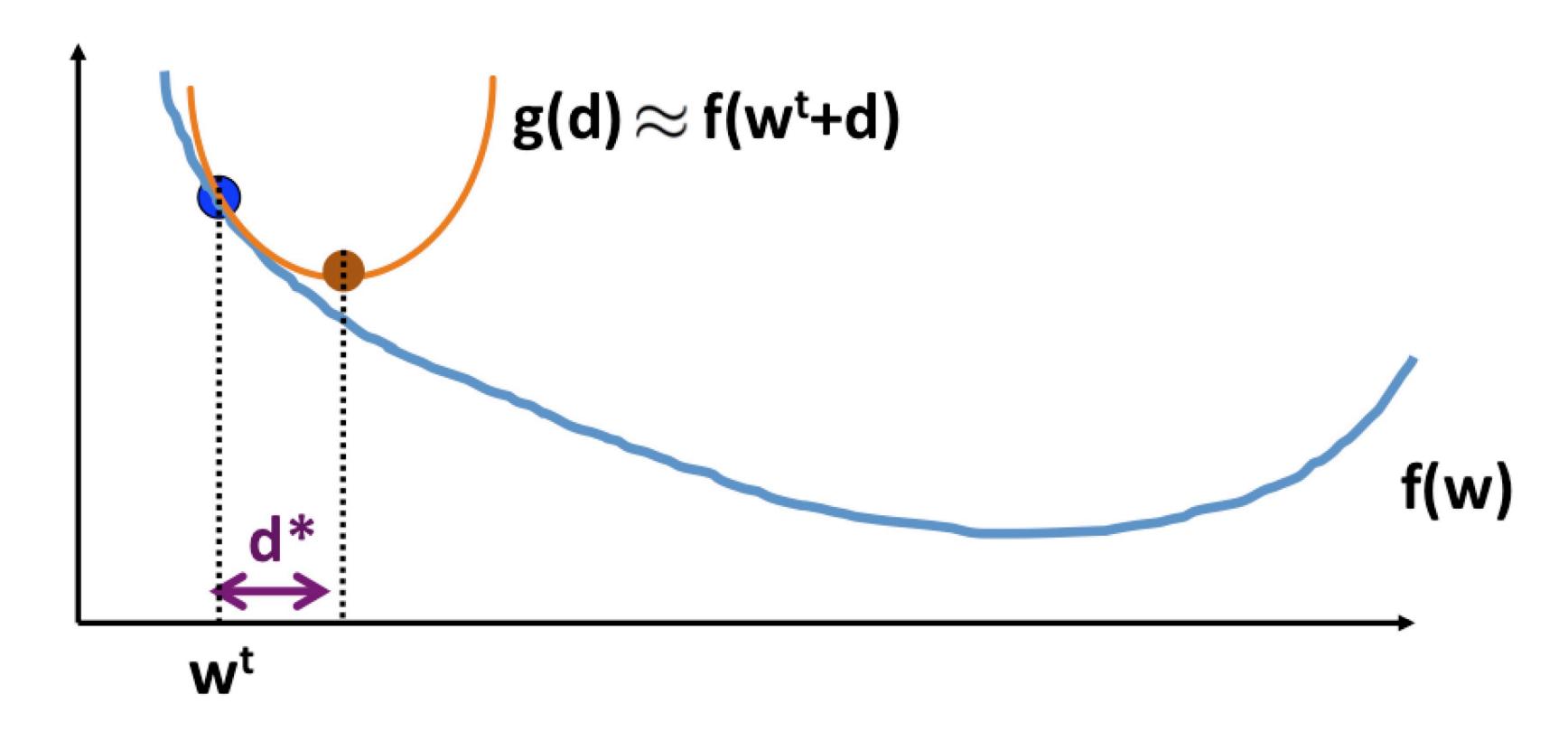
Illustration of gradient descent



• Form a quadratic approximation

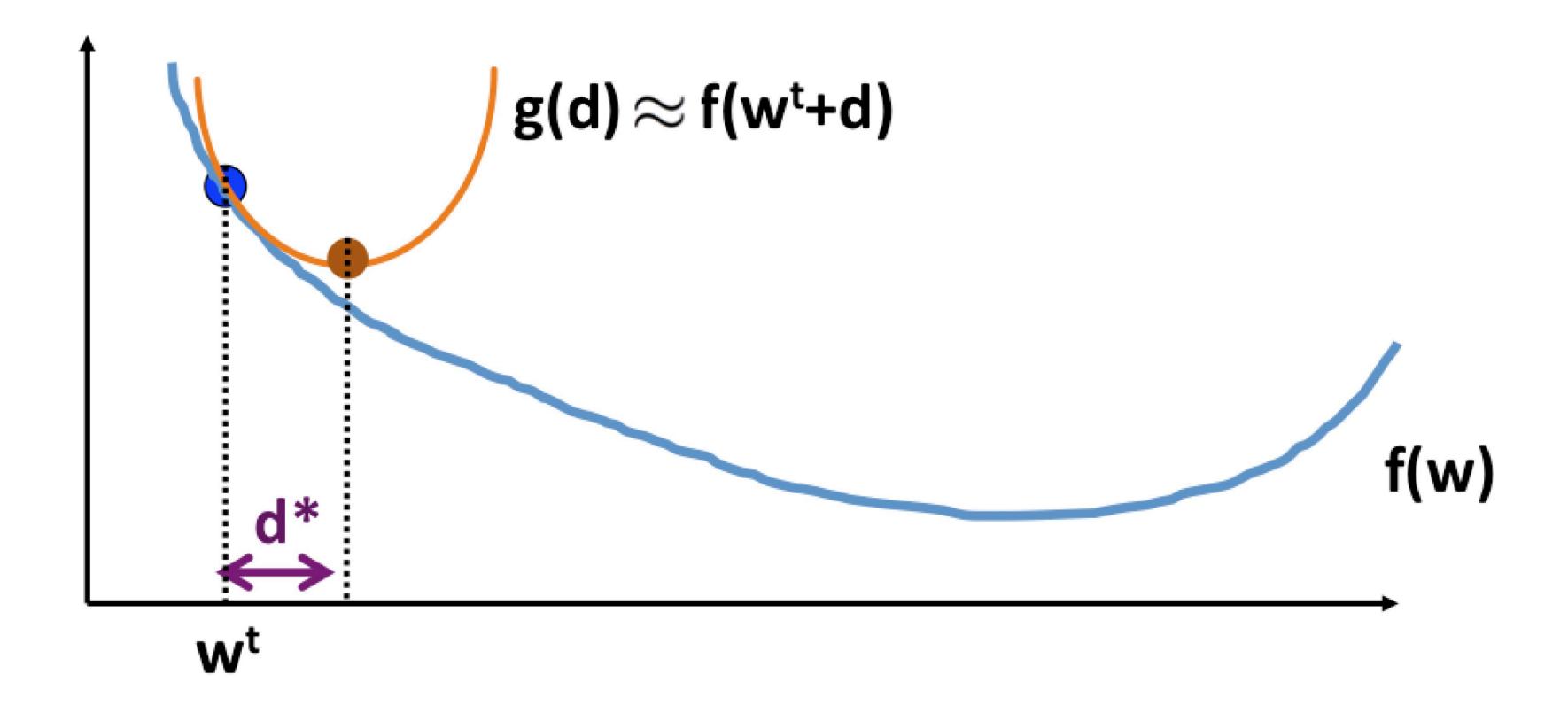
•
$$f(w+d) \approx g(d) := f(w^t) + \nabla f(w^t) d + \frac{1}{2\alpha} ||d||^2$$

Illustration of gradient descent

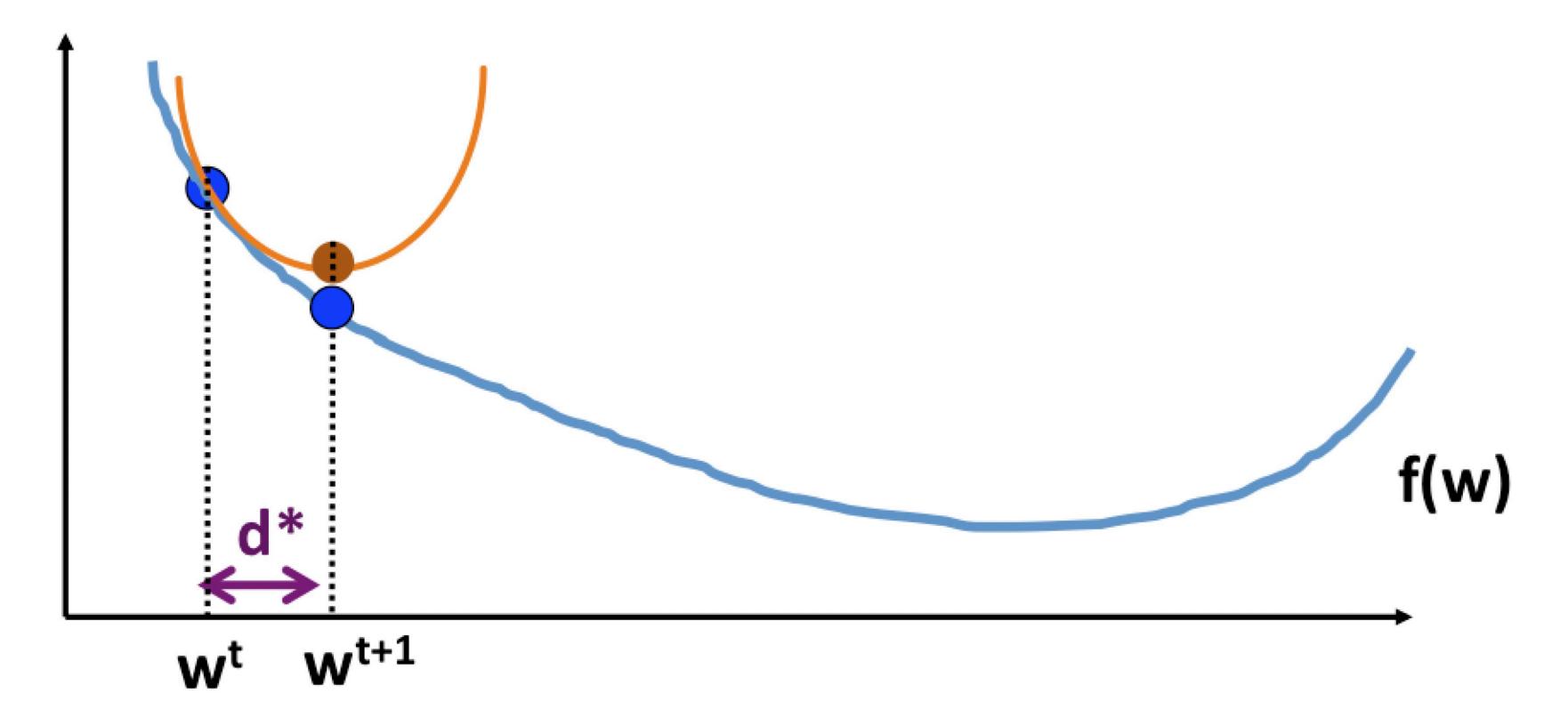


• Minimize g(d)

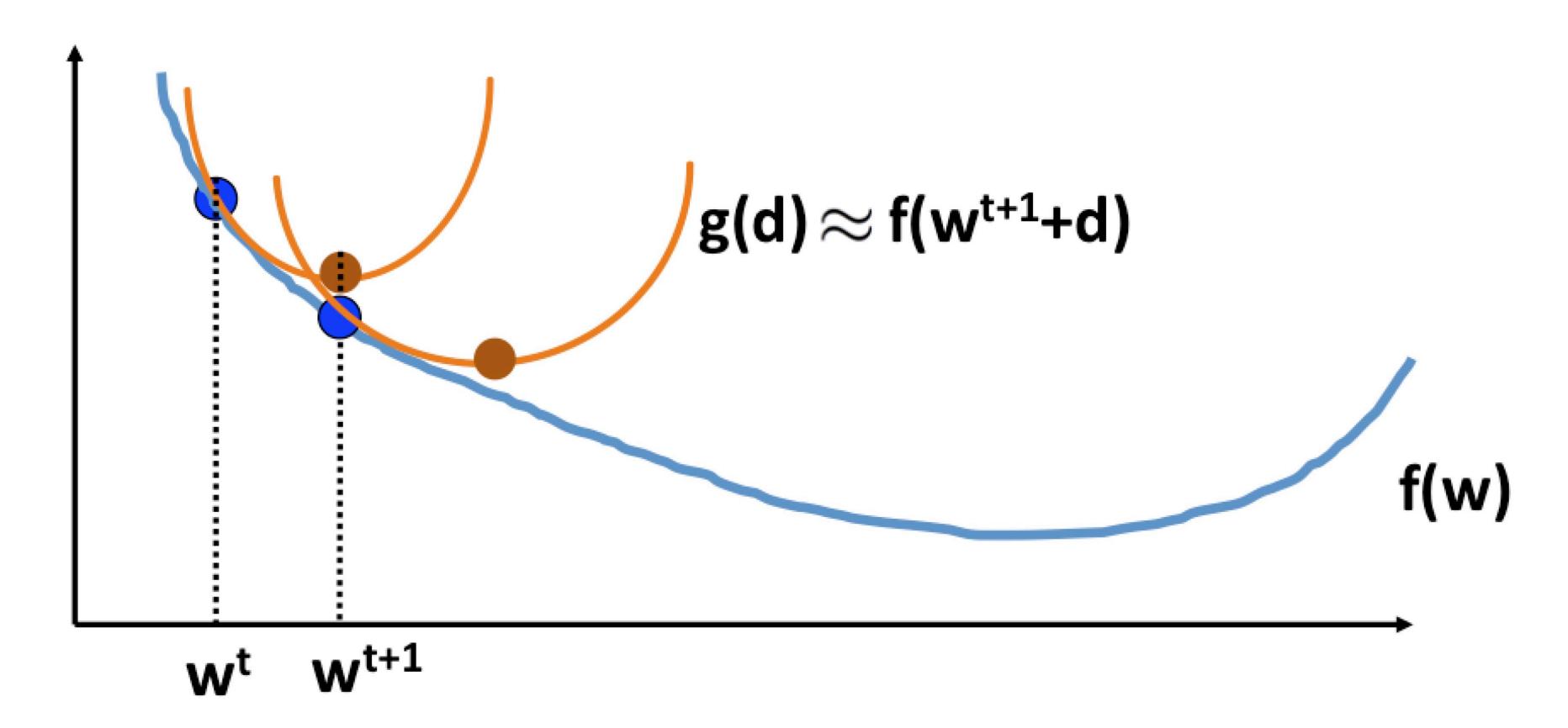
$$\nabla g(d^*) = 0 \Rightarrow \nabla f(w^t) + \frac{1}{\alpha} d^* = 0 \Rightarrow d^* = -\alpha \nabla f(w^t)$$

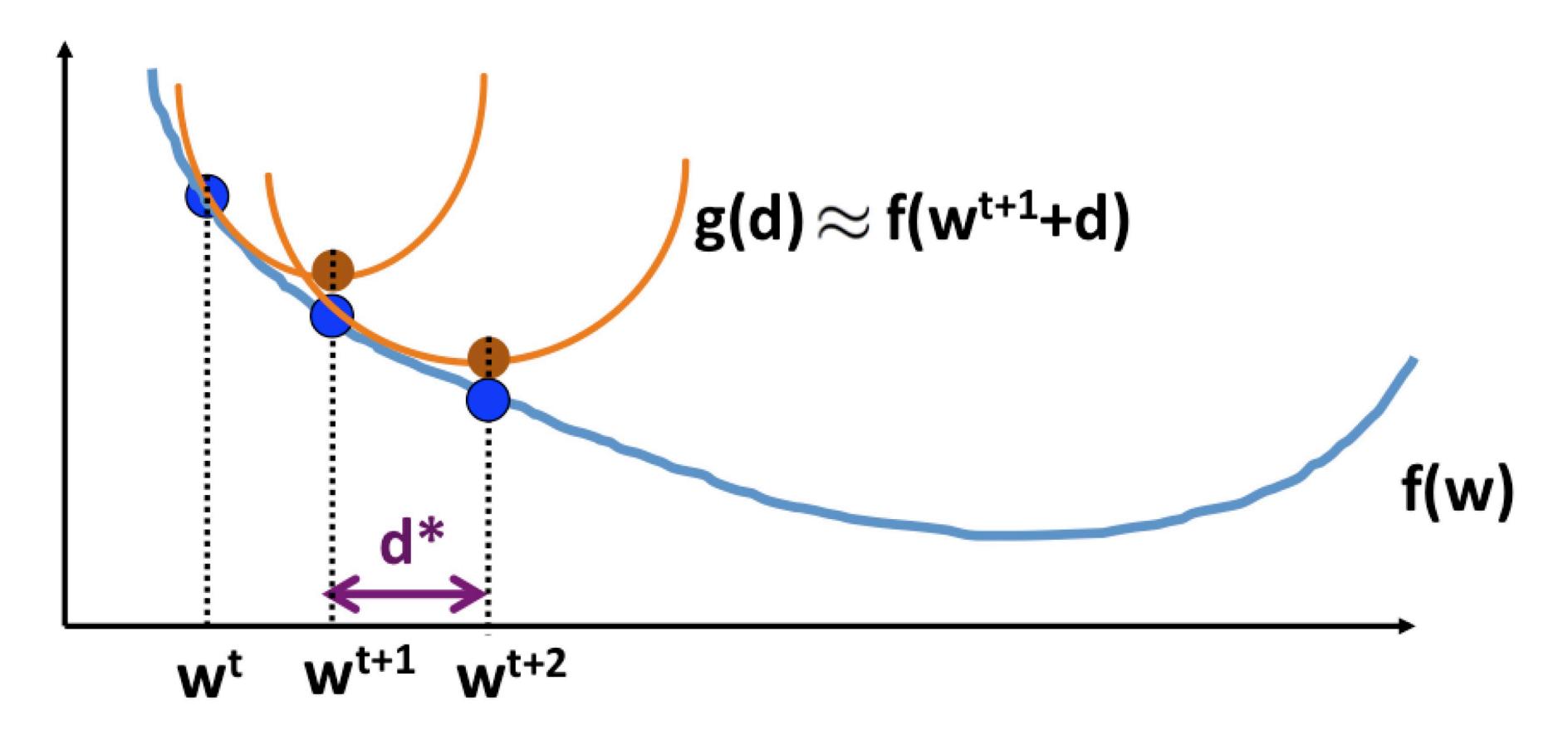


- Update w
 - $w^{t+1} = w^t + d^* = w^t \alpha \nabla f(w^t)$



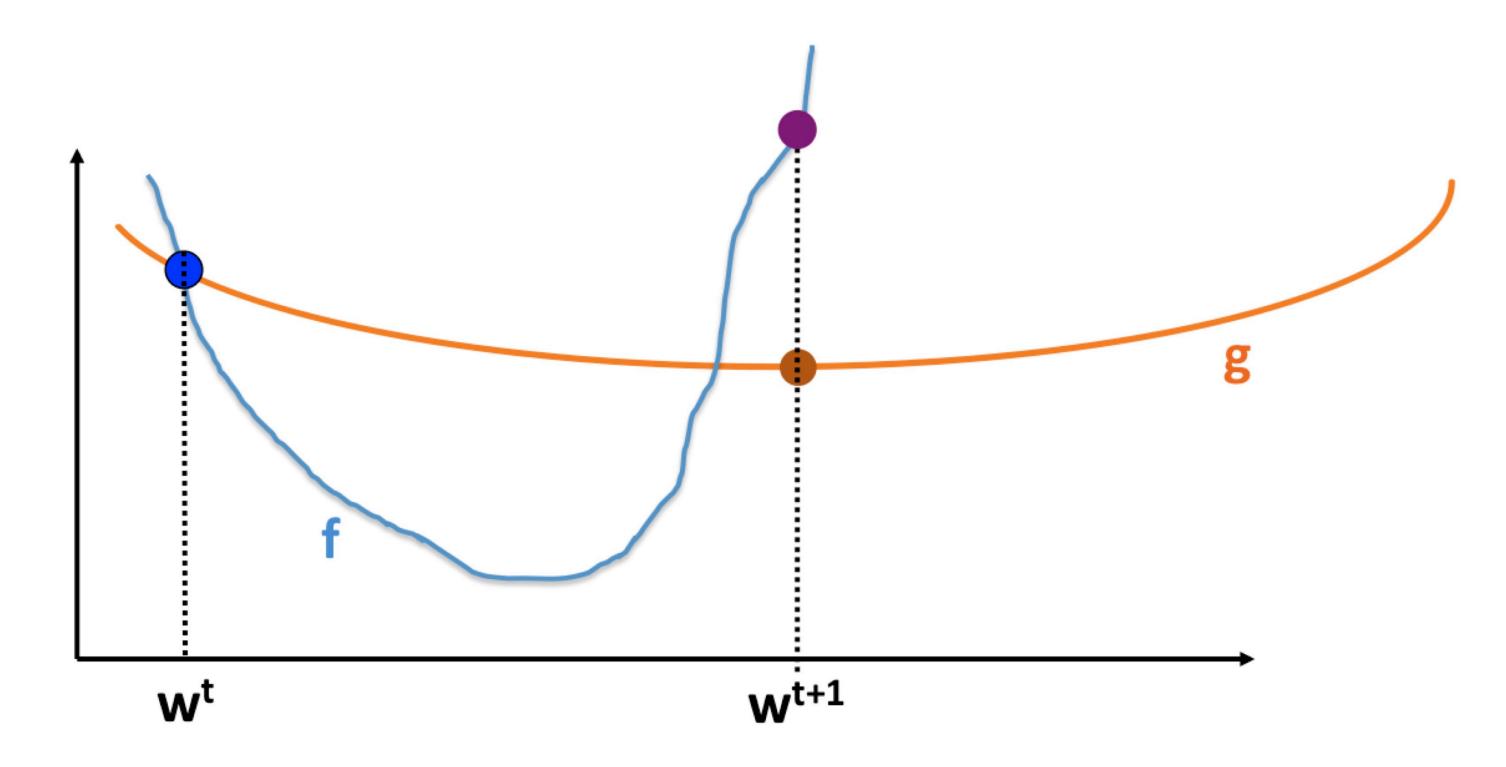
- Update w
 - $w^{t+1} = w^t + d^* = w^t \alpha \nabla f(w^t)$





When will it diverge

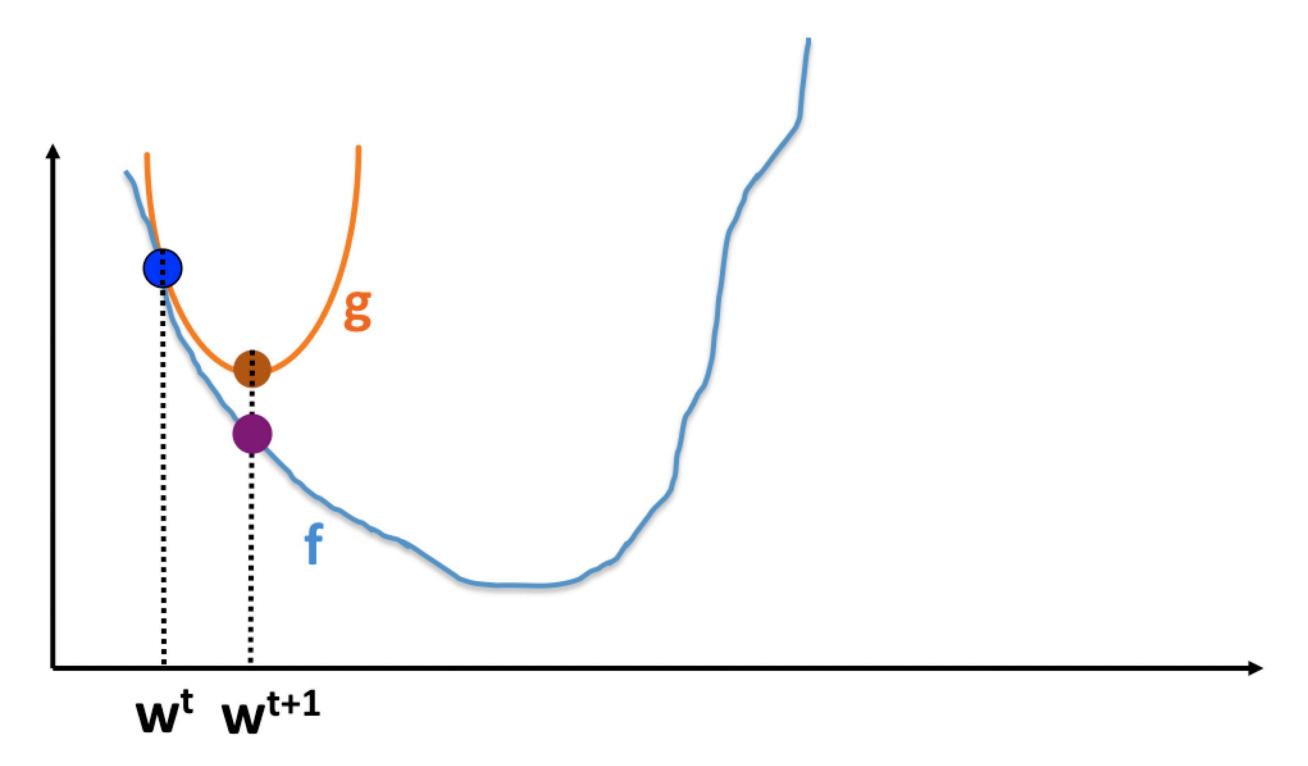
Can diverge $(f(w^t) < f(w^{t+1}))$ if g is not an upper bound of f



f(wt) < f(wt+1), diverge because g's curvature is too small

When will it converge

Always converge $(f(w^t) > f(w^{t+1}))$ if g is an upper bound of f



 $f(w^t) > f(w^{t+1})$, converge when g's curvature is large enough

Convergence

- A differential function f is said to be L-Lipschitz continuous:
 - $||f(x_1) f(x_2)||_2 \le L||x_1 x_2||_2$
- A differential function f is said to be L-smooth: its gradient are Lipschitz continuous:
 - $\|\nabla f(x_1) \nabla f(x_2)\|_2 \le L\|x_1 x_2\|_2$
 - And we could get
 - $\nabla^2 f(x) \leq LI$
 - $f(y) \le f(x) + \nabla f(x)^T (y x) + \frac{1}{2} L ||y x||^2$

Convergence

- Let L be a Lipchitz constant $(\nabla^2 f(x) \leq LI \text{ for all } x)$
- . Theorem: gradient descent converges if $\alpha < \frac{1}{L}$
- In practice, we do not know $L\dots$
 - Need to tune step size when running gradient descent

Applying to logistic regression

gradient descent for logistic regression

- Initialize the weights w_0
- For $t = 1, 2, \cdots$
 - Compute the gradient

$$abla f(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^T \mathbf{x}_n}}$$

- Update the weights: $\mathbf{w} \leftarrow \mathbf{w} \eta \nabla f(\mathbf{w})$
- Return the final weights **w**

Applying to logistic regression

- When to stop?
 - Fixed number of iterations, or
 - Stop when $\|\nabla f(w)\| < \epsilon$

gradient descent for logistic regression

- Initialize the weights w_0
- For $t = 1, 2, \cdots$
 - Compute the gradient

$$abla f(\mathbf{w}) = -rac{1}{N} \sum_{n=1}^{N} rac{y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^T \mathbf{x}_n}}$$

- Update the weights: $\mathbf{w} \leftarrow \mathbf{w} \eta \nabla f(\mathbf{w})$
- Return the final weights **w**

- In practice, we do not know $L\dots$
 - Need to tune step size when running gradient descent
- Line Search: Select step size automatically (for gradient descent)

- The back-tracking line search:
 - Start from some large α_0
 - Try $\alpha = \alpha_0, \alpha_0/2, \alpha_0/4,...$
 - Stop when α satisfies some sufficient decrease condition

- The back-tracking line search:
 - Start from some large α_0
 - Try $\alpha = \alpha_0, \alpha_0/2, \alpha_0/4,...$
 - Stop when α satisfies some sufficient decrease condition
 - A simple condition: $f(w + \alpha d) < f(w)$

- The back-tracking line search:
 - Start from some large α_0
 - Try $\alpha = \alpha_0, \alpha_0/2, \alpha_0/4,...$
 - Stop when α satisfies some sufficient decrease condition
 - A simple condition: $f(w + \alpha d) < f(w)$
 - Often works in practice but doesn't work in theory

Large-scale problem

Machine learning: usually minimizing the training loss:

$$\min_{w} \left\{ \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}(w^T x_n, y_n) \right\} := f(w) \text{ (linear model)}$$

$$\min_{w} \left\{ \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}(f_{W}(x_n), y_n) \right\} := f(w) \text{ (general hypothesis)}$$

- ℓ : loss function (e.g., $\ell(a,b) = (a-b)^2$)
- Gradient descent:

Large-scale problem

• Machine learning: usually minimizing the training loss:

$$\min_{w} \left\{ \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}(w^T x_n, y_n) \right\} := f(w) \text{ (linear model)}$$

$$\min_{w} \left\{ \frac{1}{N} \sum_{n=1}^{N} \mathcal{C}(f_{W}(x_n), y_n) \right\} := f(w) \text{ (general hypothesis)}$$

- ℓ : loss function (e.g., $\ell(a,b) = (a-b)^2$)
- Gradient descent:

$$\begin{array}{ccc} w \leftarrow w - \eta & \nabla f(w) \\ & & & \\ & &$$

• In general,
$$f(w) = \frac{1}{N} \sum_{n=1}^{N} f_n(w)$$
,

• Each $f_n(w)$ only depends on (x_n, y_n)

Stochastic gradient

• Gradient:
$$\nabla f(w) = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(w)$$
,

- Each gradient computation needs to go through all training samples
 - Slow when millions of samples
- Faster way to compare "approximate gradient"?

Optimization Stochastic gradient

• Gradient:
$$\nabla f(w) = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(w)$$
,

- Each gradient computation needs to go through all training samples
 - Slow when millions of samples
- Faster way to compare "approximate gradient"?
- Use stochastic sampling:
 - Sample a small subset $B \subseteq \{1,...,N\}$
 - Estimated gradient

•
$$\nabla f(w) \approx \frac{1}{B} \sum_{n \in B} \nabla f_n(w)$$

• |B|: batch size

Stochastic gradient descent

Stochastic Gradient Descent (SGD)

- Input: training data $\{x_n, y_n\}_{n=1}^N$
- Initialize **w** (zero or random)
- For $t = 1, 2, \cdots$
 - Sample a small batch $B \subseteq \{1, \dots, N\}$
 - Update parameter

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{\eta^t}{|B|} \sum_{n \in B} \nabla f_n(\mathbf{w})$$

• Extreme case: $|B| = 1 \Rightarrow$ Sample one training data at a time

Logistic Regression by SGD

Logistic regression

$$\min_{w} \frac{1}{N} \sum_{n=1}^{N} \log(1 + e^{-y_n w^T x_n})$$
• $f_n(w)$

SGD for Logistic Regression

- Input: training data $\{x_n, y_n\}_{n=1}^N$
- Initialize **w** (zero or random)
- For $t = 1, 2, \cdots$
 - Sample a batch $B \subseteq \{1, \dots, N\}$
 - Update parameter

$$\mathbf{w} \leftarrow \mathbf{w} - \eta^t \frac{1}{|B|} \sum_{i \in B} \frac{-y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^T \mathbf{x}_n}}$$

Why SGD works?

• Stochastic gradient is an unbiased estimator of full gradient:

$$\cdot \mathbb{E}\left[\frac{1}{|B|}\sum_{n\in B}\nabla f_n(w)\right] = \frac{1}{N}\sum_{n=1}^N \nabla f_n(w) = \nabla f(w)$$

Why SGD works?

• Stochastic gradient is an unbiased estimator of full gradient:

$$\mathbb{E}\left[\frac{1}{|B|}\sum_{n\in B}\nabla f_n(w)\right] = \frac{1}{N}\sum_{n=1}^N \nabla f_n(w) = \nabla f(w)$$

- Each iteration updated by
 - Gradient + zero-mean noise

OptimizationStochastic gradient descent

- In gradient descent, η (step size) is a fixed constant
- Can we use fixed step size for SGD?

OptimizationStochastic gradient descent

- In gradient descent, η (step size) is a fixed constant
- Can we use fixed step size for SGD?
- SGD with fixed step size cannot converge to global/local minimizers

Stochastic gradient descent

- In gradient descent, η (step size) is a fixed constant
- Can we use fixed step size for SGD?
- SGD with fixed step size cannot converge to global/local minimizers

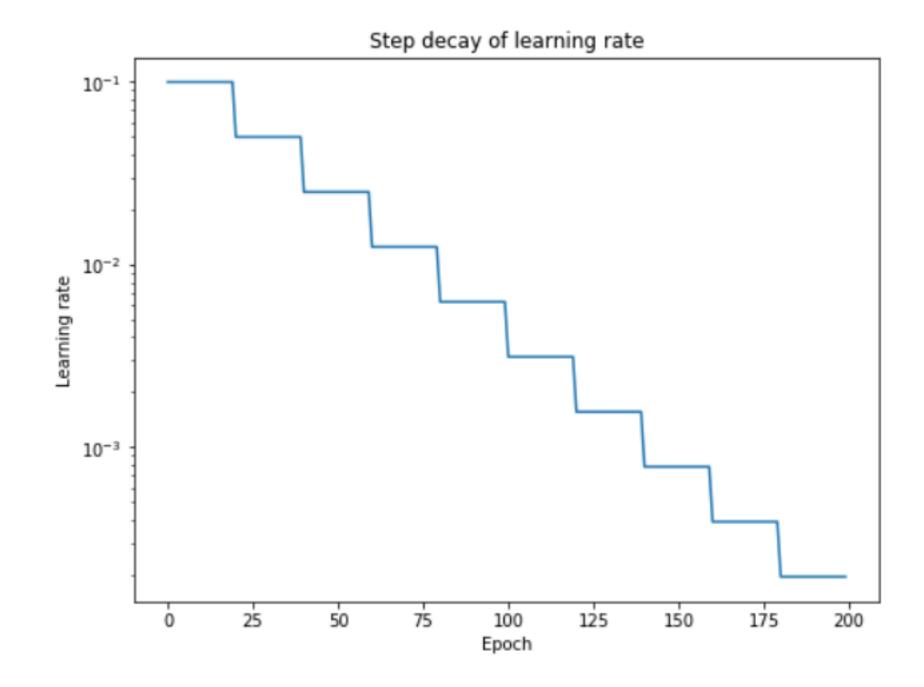
• If
$$w^*$$
 is the minimizer, $\nabla f(w^*) = \frac{1}{N} \sum_{n=1}^N \nabla f_n(w^*) = 0$,

• But
$$\frac{1}{|B|} \sum_{n \in B} \nabla f_n(w) \neq 0$$
 if B is a subset

• (Even if we got minimizer, SGD will move away from it)

Stochastic gradient descent: step size

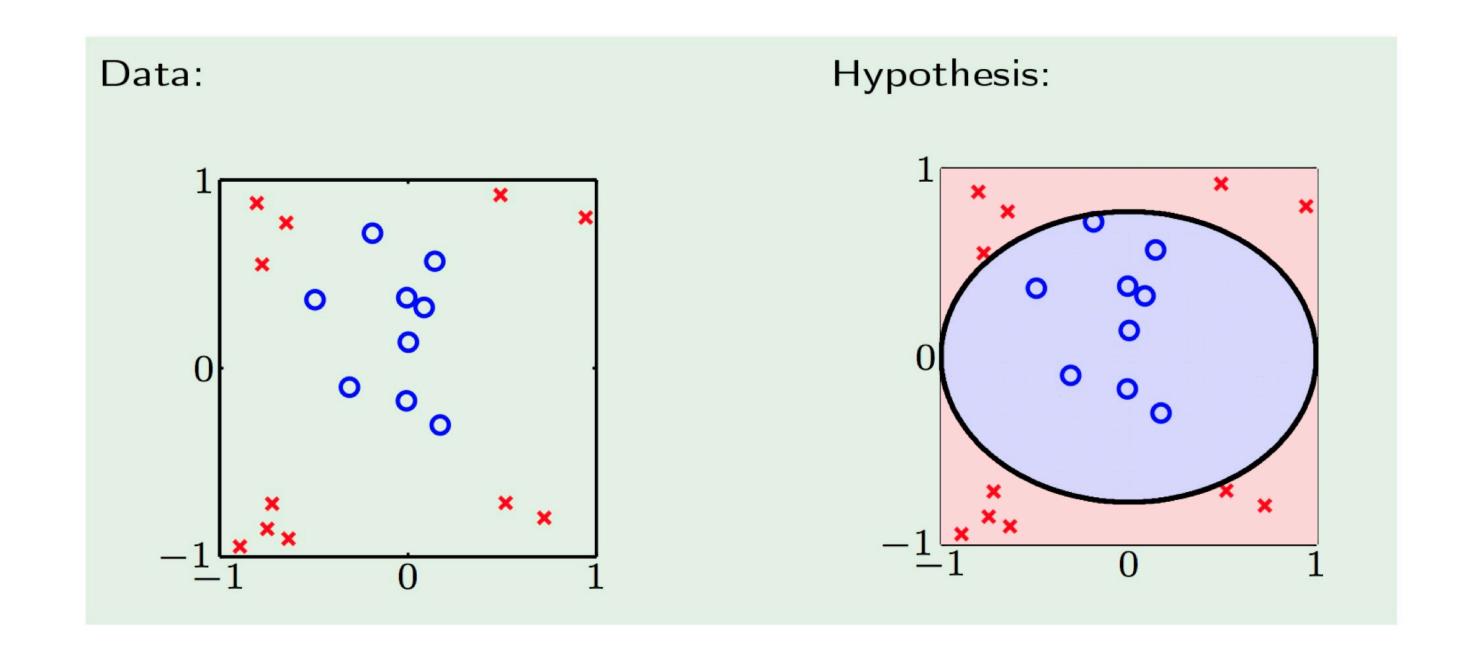
- To make SGD converge:
 - Step size should decrease to 0
 - $\eta^t \rightarrow 0$
 - Usually with polynomial rate $\eta^t \approx t^{-a}$ with constant a
- Step decay of learning rate



Nonlinear transformation

Linear hypotheses

- Up to now: linear hypotheses
 - Perception, Linear regression, Logistic regression, ...
- Many problems are not linearly separable



Nonlinear transformation

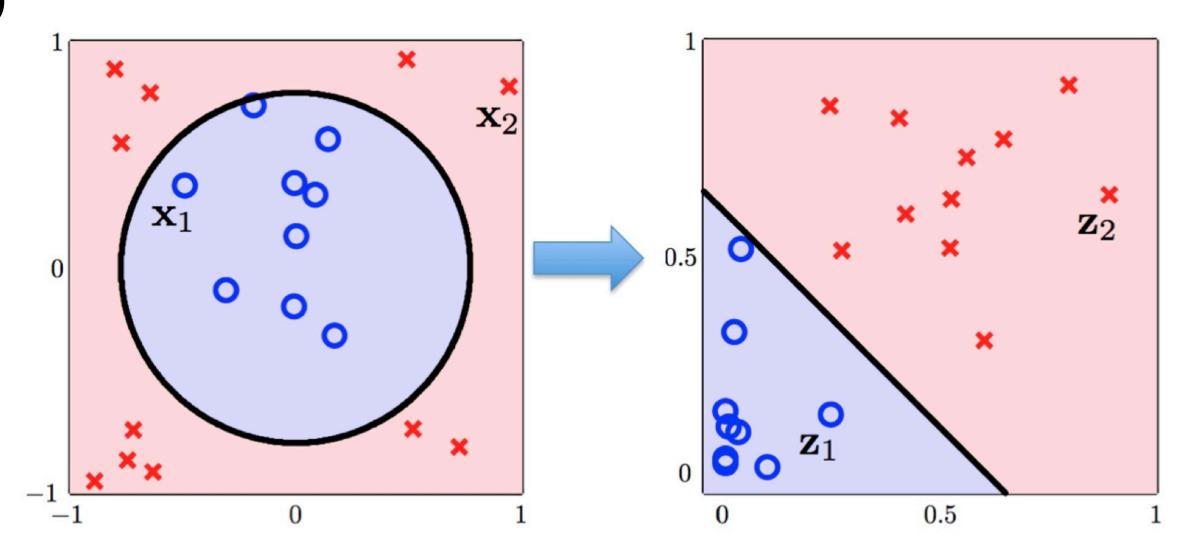
Circular Separable and Linear Separable

$$h(x) = \operatorname{sign}(\underbrace{0.6} \cdot \underbrace{1} + \underbrace{(-1)} \cdot \underbrace{x_1^2} + \underbrace{(-1)} \cdot \underbrace{x_2^2})$$

$$\overset{\tilde{w_0}}{\sim} \overset{\tilde{z_0}}{\sim} \overset{\tilde{w_1}}{\sim} \overset{\tilde{z_1}}{\sim} \overset{\tilde{w_2}}{\sim} \overset{\tilde{z_2}}{\sim}$$

$$= \operatorname{sign}(\tilde{w}^T z)$$

- $\{(x_n, y_n)\}$ circular separable \Rightarrow $\{(z_n, y_n)\}$ linear separable
- $x \in \mathcal{X} \to x \in \mathcal{Z}$ (using a nonlinear transformation ϕ)



Nonlinear Transformation

Definition

- Define nonlinear transformation
 - $\phi(\mathbf{x}) = (1, x_1^2, x_2^2) = (z_0, z_1, z_2) = \mathbf{z}$
- Linear hypotheses in ${\mathcal Z}$ -space:
 - $\operatorname{sign}(\tilde{h}(\mathbf{z})) = \operatorname{sign}(\tilde{h}(\phi(\mathbf{x}))) = \operatorname{sign}(w^T \phi(\mathbf{x}))$
- Line in ${\mathcal Z}$ -space \Leftrightarrow some quadratic curves in ${\mathcal X}$ -space

Nonlinear Transformation

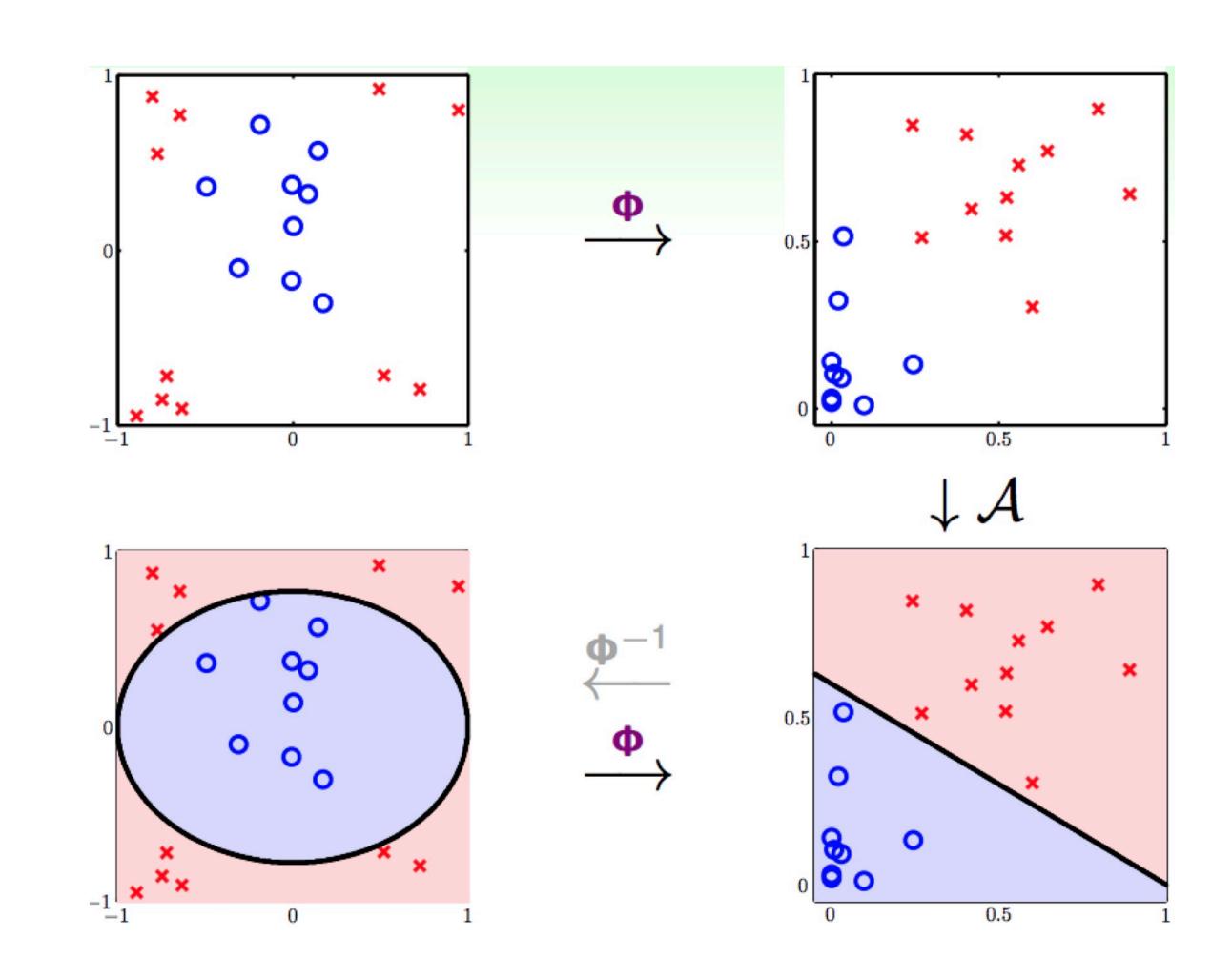
General Quadratic Hypothesis Set

- A "bigger" *X*-space:
 - $\phi_2(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2)$
- Linear in ${\mathcal Z}$ -space \Leftrightarrow quadratic hypotheses in ${\mathcal X}$ -space
- The hypotheses space:
 - $\mathcal{H}_{\phi_2} = \{h(x) : h(x) = \tilde{w}^T \phi_2(x) \text{ for some } \tilde{w}\}$ (quadratic hypotheses)
- Also include linear model as a degenerate case

Nonlinear transformation

Learning a good quadratic function

- Transform original data $\{x_n, y_n\}$ to $\{z_n = \phi(x_n), y_n\}$
- Solve a linear problem on $\{z_n, y_n\}$ using your favorite algorithm \mathscr{A} to get a good model \tilde{w}
- Return the model $h(x) = \operatorname{sign}(\tilde{w}^T \phi(x))$



Nonlinear transformation

Polynomial mappings

- Can now freely do quadratic classification, quadratic regression
- Can easily extend to any degree of polynomial mappings
 - E.g., $\phi(x) = (x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3, x_1x_2^2, x_1x_3^2, x_1x_2^2, x_2^2x_3, x_2^2x_3, x_2^2x_3, x_1^3, x_2^3, x_3^3)$

Nonlinear Transformation

The price we pay: computational complexity

• Q-th oder polynomial transform:

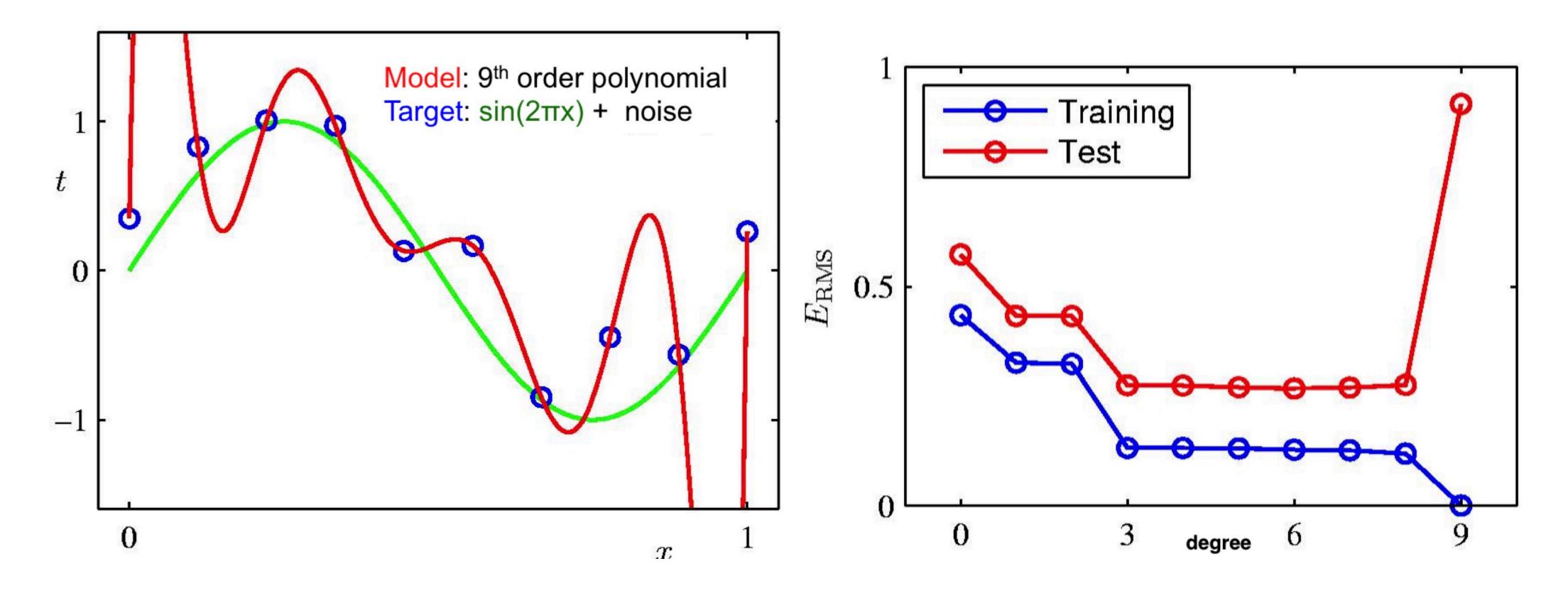
$$\phi(x) = (1, x_1, x_2, \dots, x_d, x_d, x_1^2, x_1 x_2, \dots, x_d^2, \dots, x$$

- $O(d^Q)$ dimensional vector \Rightarrow High computational cost
 - Kernel method

Nonlinear Transformation

The price we pay: overfitting

Overfitting: the model has low training error but high prediction error



Training versus testing

- Machine learning pipeline:
 - Training phase:
 - Obtain the best model h by minimizing training error
 - Test (inference) phase:
 - For any incoming test data x"
 - Make prediction by h(x)
 - Measure the performance of h: test error

Training versus testing

- Does low training error imply low test error?
 - They can be totally different if
 - train distribution ≠ test distribution

Training versus testing

- Does low training error imply low test error?
 - They can be totally different if
 - train distribution ≠ test distribution
 - Even under the same distribution, they can be very different:
 - Because h is picked to minimize training error, not test error

Formal definition

- ullet Assume training and test data are both sampled from D
- The ideal function (for generating labels) is $f: f(x) \to y$
- Training error: Sample $x_1, ..., x_N$ from D and

•
$$E_{tr}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(x_n), f(x_n))$$

- h is determined by $x_1, ..., x_n$
- Test error: Sample $x_1, ..., x_N$ from D and

•
$$E_{te}(h) = \frac{1}{M} \sum_{m=1}^{M} e(h(x_m), f(x_m))$$

• h is independent to $x_1, ..., x_n$

Formal definition

- ullet Assume training and test data are both sampled from D
- The ideal function (for generating labels) is $f: f(x) \to y$
- Training error: Sample $x_1, ..., x_N$ from D and

•
$$E_{tr}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(x_n), f(x_n))$$

- h is determined by $x_1, ..., x_n$
- Test error: Sample $x_1, ..., x_N$ from D and

•
$$E_{te}(h) = \frac{1}{M} \sum_{m=1}^{M} e(h(x_m), f(x_m))$$

- h is independent to $x_1, ..., x_n$
- Generalization error = Test error = Expected performance on D:

•
$$E(h) = \mathbb{E}_{x \sim D}[e(h(x), f(x))] = E_{te}(h)$$

The 2 questions of learning

- $E(h) \approx 0$ is achieved through:
 - $E(h) \approx E_{tr}(h)$ and $E_{tr}(h) \approx 0$

The 2 questions of learning

- $E(h) \approx 0$ is achieved through:
 - $E(h) \approx E_{tr}(h)$ and $E_{tr}(h) \approx 0$
- Learning is split into 2 questions:
 - Can we make sure that $E(h) \approx E_{tr}(h)$?
 - Generalization
 - Can we make $E_{tr}(h)$ small?
 - Optimization

Connection to Learning

- Given a function h
- If we randomly draw $x_1, ..., x_n$ (independent to h):
 - $E(h) = \mathbb{E}_{x \sim D}[h(x) \neq f(x)] \Leftrightarrow \mu$ (generalization error, unknown)
 - $\frac{1}{N} \sum_{n=1}^{N} [h(x_n) \neq y_n] \Leftrightarrow \nu$ (error on sampled data, known)
- Based on Hoeffding's inequality:
 - $p[|\nu \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$
- " $\mu = \nu$ " Is probably approximately correct (PAC)
- However, this can only "verify" the error of a hypothesis:
 - h and $x_1, ..., x_N$ must be independent

A simple solution

- For each particular h,
 - $P[|E_{tr}(h) E(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$
- If we have a hypothesis set \mathscr{H} , we want to derive the bound for $P[\sup_{h\in\mathscr{H}}|E_{tr}(h)-E(h)|>\epsilon]$
 - $P[|E_{tr}(h_1) E(h_1)| > \epsilon]$ or ... or $P[|E_{tr}(h_{|\mathcal{H}|}) E(h_{|\mathcal{H}|})| > \epsilon]$
 - $\leq \sum_{m=1}^{\mathcal{H}} P[|E_{tr}(h_m) E(h_m)|] \leq 2|\mathcal{H}|e^{-2\epsilon^2 N}$
 - Because of union bound inequality $P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i)$

When is learning successful?

- When our learning algorithm \mathcal{A} picks the hypothesis g:
 - $P[SUP_{h\in\mathcal{H}} | E_{tr}(h) E(h) | > \epsilon] \le 2 |\mathcal{H}| e^{-2\epsilon^2 N}$
- If | # is small and N is large enough:
 - If \mathscr{A} finds $E_{tr}(g) \approx 0 \Rightarrow E(g) \approx 0$ (Learning is successful!)

Feasibility of Learning

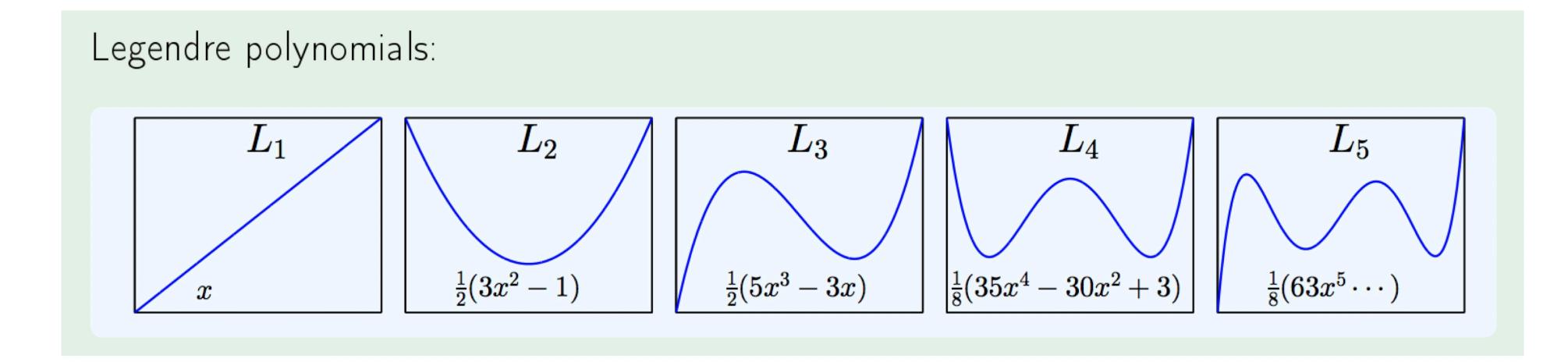
- $P[|E_{tr}(g) E(g)| > \epsilon] \le 2 |\mathcal{H}| e^{-2\epsilon^2 N}$
 - Two questions:
 - 1. Can we make sure $E(g) \approx E_{tr}(g)$?
 - 2. Can we make sure $E_{tr}(g) \approx 0$?
- | \mathcal{H} | : complexity of model
 - Small $|\mathcal{H}|$: 1 holds, but 2 may not hold (too few choices) (under-fitting)
 - Large $|\mathcal{H}|$: 1 doesn't hold, but 2 may hold (over-fitting)

Regularization The polynomial model

• $\mathcal{H}_{\mathcal{Q}}$: polynomials of order \mathcal{Q}

$$\mathcal{H}_{Q} = \{ \sum_{q=0}^{Q} w_{q} L_{q}(x) \}$$

- Linear regression in the ${\mathcal Z}$ space with
 - $z = [1, L_1(x), ..., L_O(x)]$



Unconstrained solution

- Input $(x_1, y_1), \dots, (x_N, y_N) \to (z_1, y_1), \dots, (z_N, y_N)$
- Linear regression:
 - Minimize: $E_{tr}(w) = \frac{1}{N} \sum_{n=1}^{N} (w^T z_n y_n)^2$
 - Minimize: $\frac{1}{N}(Zw y)^T(Zw y)$
- Solution $w_{\mathsf{tr}} = (Z^T Z)^{-1} Z^T y$

Constraining the weights

• Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10} (with $w_q=0$ for q>2)

Constraining the weights

- Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10} (with $w_q=0$ for q>2)

• Soft-order constraint: $\sum_{q=0}^{Q} w_q^2 \leq C$

Constraining the weights

- Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10} (with $w_q=0$ for q>2)

• Soft-order constraint:
$$\sum_{q=0}^{Q} w_q^2 \le C$$

• The problem given soft-order constraint:

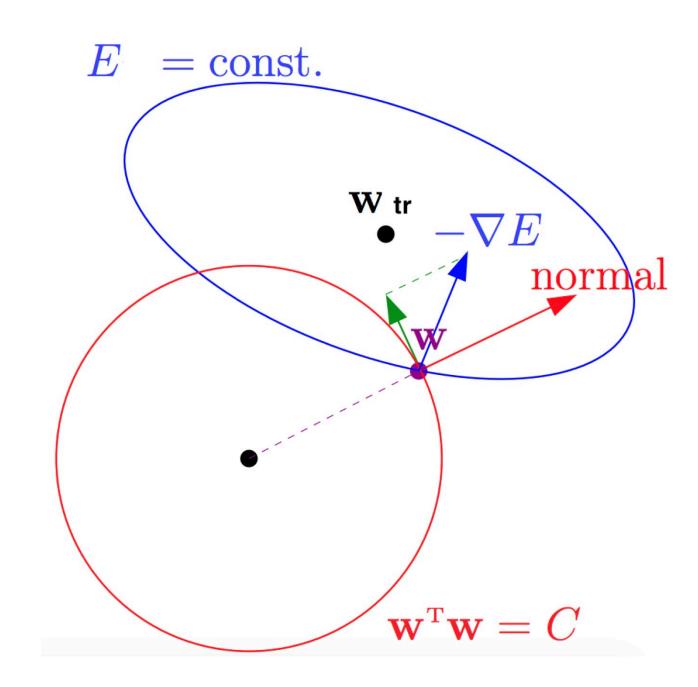
$$\text{Minimize } \frac{1}{N} (Zw - y)^T (Zw - y) \text{ s.t. } \underbrace{w^T w \leq C} \\ \text{smaller hypothesis space}$$

• Solution w_{reg} instead of w_{tr}

Equivalent to the unconstrained version

- Constrained version:
 - $\min_{w} E_{tr}(w) = \frac{1}{N} (Zw y)^{T} (Zw y)$
 - s.t. $w^T w \leq C$

- Optimal when
 - $\nabla E_{\rm tr}(w_{\rm reg}) \propto -w_{\rm reg}$
 - Why? If $-\nabla E_{\rm tr}(w_{\rm reg})$ and w are not parallel, can decrease $E_{\rm tr}(w)$ without violating the constraint



Equivalent to the unconstrained version

Constrained version:

•
$$\min_{w} E_{tr}(w) = \frac{1}{N} (Zw - y)^{T} (Zw - y)$$
 s.t. $w^{T}w \le C$

- Optimal when
 - $\nabla E_{\rm tr}(w_{\rm reg}) \propto -w_{\rm reg}$

. Assume
$$\nabla E_{\text{tr}}(w_{\text{reg}}) = -2\frac{\lambda}{N}w_{\text{reg}} \Rightarrow \nabla E_{\text{tr}}(w_{\text{reg}}) + 2\frac{\lambda}{N}w_{\text{reg}} = 0$$

Equivalent to the unconstrained version

Constrained version:

$$\min_{w} E_{\mathsf{tr}}(w) = \frac{1}{N} (Zw - y)^T (Zw - y) \quad \text{s.t. } w^T w \le C$$

- Optimal when
 - $\nabla E_{\rm tr}(w_{\rm reg}) \propto -w_{\rm reg}$
- . Assume $\nabla E_{\mathrm{tr}}(w_{\mathrm{reg}}) = -2\frac{\lambda}{N}w_{\mathrm{reg}} \Rightarrow \nabla E_{\mathrm{tr}}(w_{\mathrm{reg}}) + 2\frac{\lambda}{N}w_{\mathrm{reg}} = 0$
- w_{req} is also the solution of unconstrained problem

•
$$\min_{w} E_{\text{tr}}(w) + \frac{\lambda}{N} w^T w$$
 (Ridge regression!)

Equivalent to the unconstrained version

Constrained version:

•
$$\min_{w} E_{tr}(w) = \frac{1}{N} (Zw - y)^{T} (Zw - y)$$
 s.t. $w^{T}w \le C$

- Optimal when
 - $\nabla E_{\rm tr}(w_{\rm reg}) \propto -w_{\rm reg}$
- . Assume $\nabla E_{\mathrm{tr}}(w_{\mathrm{reg}}) = -2\frac{\lambda}{N}w_{\mathrm{reg}} \Rightarrow \nabla E_{\mathrm{tr}}(w_{\mathrm{reg}}) + 2\frac{\lambda}{N}w_{\mathrm{reg}} = 0$
- w_{reg} is also the solution of unconstrained problem

•
$$\min_{w} E_{tr}(w) + \frac{\lambda}{N} w^{T} w$$
 (Ridge regression!) $C \uparrow \lambda \downarrow$

Ridge regression solution

$$\min_{w} E_{\text{reg}}(w) = \frac{1}{N} \left((Zw - y)^{T} (Zw - y) + \lambda w^{T} w \right)$$

•
$$\nabla E_{\text{reg}}(w) = 0 \Rightarrow Z^T Z(w - y) + \lambda w = 0$$

Ridge regression solution

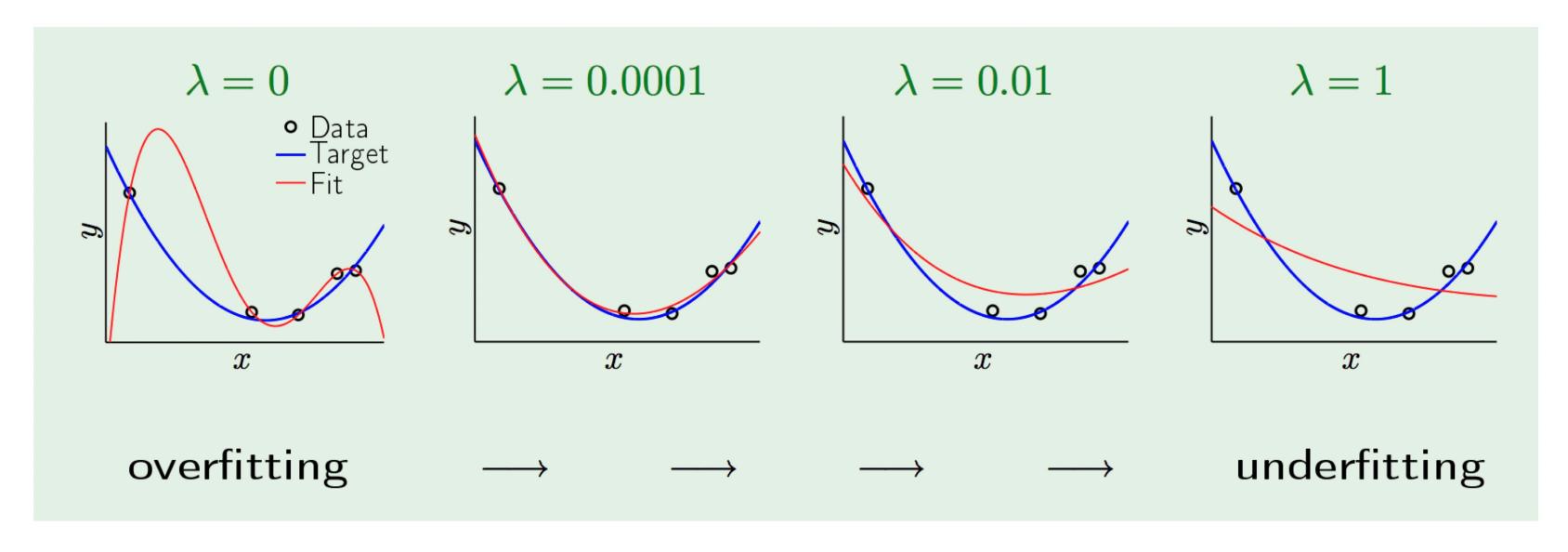
$$\min_{w} E_{\mathsf{reg}}(w) = \frac{1}{N} \left((Zw - y)^{T} (Zw - y) + \lambda w^{T} w \right)$$

•
$$\nabla E_{\text{reg}}(w) = 0 \Rightarrow Z^T Z(w - y) + \lambda w = 0$$

• So, $w_{\text{reg}} = (Z^T Z + \lambda I)^{-1} Z^T y$ (with regularization) as opposed to $w_{\text{tr}} = (Z^T Z)^{-1} Z^T y$ (without regularization)

The result

$$\min_{w} E_{\mathsf{tr}}(w) + \frac{\lambda}{N} w^{T} w$$



Equivalent to "weight decay"

Consider the general case

$$\min_{w} E_{\mathsf{tr}}(w) + \frac{\lambda}{N} w^{T} w$$

Equivalent to "weight decay"

Consider the general case

$$\min_{w} E_{\mathsf{tr}}(w) + \frac{\lambda}{N} w^{T} w$$

Gradient descent:

$$\begin{split} w_{t+1} &= w_t - \eta (\nabla E_{\mathsf{tr}}(w_t) + 2\frac{\lambda}{N} w_t) \\ &= w_t \ (1 - 2\eta \frac{\lambda}{N}) \ - \eta \, \nabla E_{\mathsf{tr}}(w_t) \end{split}$$
 • weight decay

Variations of weight decay

• Calling the regularizer $\Omega = \Omega(h)$, we minimize

•
$$E_{\text{reg}}(h) = E_{\text{tr}}(h) + \frac{\lambda}{N}\Omega(h)$$

• In general, $\Omega(h)$ can be any measurement for the "size" of h

Regularization L2 vs L1 regularizer

L1-regularizer:
$$\Omega(w) = \|w\|_1 = \sum_q \|w_q\|$$

• Usually leads to a sparse solution (only few \boldsymbol{w}_q will be nonzero)

