COMP6211I: Trustworthy Machine Learning Interpretability (XAI) part 2

- Model Specific vs. Model Agnostic
- Global Methods vs. Local Methods
- Pre-Model vs. In-Model vs. Post-Model

Can it explain a particular model or many models?

Does it explain a particular sample or entire model?

When does it occur?

• Surrogate Methods vs. Visualization Methods

Does it work separately from the model, or does it visualize the model?

The categories are non-exclusive. There is no universally accepted taxonomy of XAI techniques!

• Model Specific vs. Model Agnostic

Model-specific interpretation methods are based on the parameters of the individual models.

Model Agnostic methods are mainly applicable in post-hoc analysis and not limited to specified model architecture.

• Global Methods vs. Local Methods

Global methods concentrate on the inside of a model by exploiting the overall knowledge about the model, the training, and the associated data.

Local interpretable methods are applicable to a single outcome of the model. This can be done by designing methods that can explain the reason for a particular prediction or outcome.

LIME

- Title: "Why Should I Trust You?" Explaining the Predictions of Any Classifier
- Conference: KDD2016
- Authors: Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin (University Of Washington)
 SHAP
- Title: A unified approach to interpreting model predictions
- Conference: NIPS2017
- Authors: Scott M. Lundberg, Su-In Lee (University Of Washington)

LIME: Local interpretable model-agnostic explanations

Task: Stroke Prediction

Feature 1: age Feature 2: body mass index

How could we explain to him why our model outputs stroke?

LIME: Local interpretable model-agnostic explanations

LIME: Local interpretable model-agnostic explanations

- Works on any black-box model
- Model internals are "hidden"
- Works with many data types
- Using prior knowledge we can validate the explanations and create trust
- Explanations are locally faithful, but not necessarily globally

The Math in LIME

The Math in LIME

The Math in LIME

Feature 2

New dataset <u>Labels:</u> Prediction of complex model <u>Features</u>: Newly generated datapoints

Example for LIME

(a) Original Image (b) Explaining *Electric guitar* (c) Explaining *Acoustic guitar* (d) Explaining *Labrador*

Figure 4: Explaining an image classification prediction made by Google's Inception neural network. The top 3 classes predicted are "Electric Guitar" (p = 0.32), "Acoustic guitar" (p = 0.24) and "Labrador" (p = 0.21)

Example for LIME

Prediction probabilities

atheism	0.58
christian	0.42

atheism
Posting
0.15
Host
0.14
NNTP
0.11
edu
0.04
have
0.01
There
0.01

christian

Text with highlighted words

From: johnchad@triton.unm.edu (jchadwic) Subject: Another request for Darwin Fish Organization: University of New Mexico, Albuquerque Lines: 11 NNTP-Posting-Host: triton.unm.edu

Hello Gang,

There have been some notes recently asking where to obtain the DARWIN fish.

This is the same question I have and I have not seen an answer on the

net. If anyone has a contact please post on the net or email me.

SHAP: SHapley Additive exPlanations

Cooperative Game Theory

SHAP

SHAP

Domain expert

24

Marginal Contribution

ф

ay b

Shapley value for feature i

2ⁿ = total number of subsets of a set

2ⁿ = total number of subsets of a set

 $2^{10} = 1024$

...

 2^n = total number of subsets of a set

Kernel SHAP

$$Y=x_1eta_1+x_2eta_2+x_3eta_3\cdots$$

 $2^{10} = 1024$

...

