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Introduction

• Model Specific vs. Model Agnostic

• Global Methods vs. Local Methods

• Pre-Model vs. In-Model vs. Post-Model

• Surrogate Methods vs. Visualization Methods

Can it explain a particular model or many 
models?

Does it explain a particular sample or 
entire model?

When does it occur?

Does it work separately from the model, 
or does it visualize the model?

The categories are non-exclusive. There is no universally accepted taxonomy 
of XAI techniques!
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Introduction

• Model Specific vs. Model Agnostic
Model-specific interpretation methods are based on the parameters of 
the individual models.

Model Agnostic methods are mainly applicable in post-hoc analysis and 
not limited to specified model architecture.
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Introduction

• Global Methods vs. Local Methods
Global methods concentrate on the inside of a model by exploiting the
overall knowledge about the model, the training, and the associated
data.

Local interpretable methods are applicable to a single outcome of the 
model. This can be done by designing methods that can explain the 
reason for a particular prediction or outcome.
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Introduction

LIME
• Title: “Why Should I Trust You?” Explaining the Predictions of Any

Classifier
• Conference: KDD2016
• Authors: Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin

(University Of Washington)
SHAP
• Title: A unified approach to interpreting model predictions
• Conference: NIPS2017
• Authors: Scott M. Lundberg, Su-In Lee (University Of Washington)
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LIME: Local interpretable model-agnostic explanations

Task: Stroke Prediction

Feature 1: age 
Feature 2: body mass index

How could we explain to him why our 
model outputs stroke?



6

LIME: Local interpretable model-agnostic explanations

surrogate
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LIME: Local interpretable model-agnostic explanations

• Works on any black-box model

• Model internals are “hidden”

• Works with many data types

• Using prior knowledge we can validate the explanations and create trust

• Explanations are locally faithful, but not necessarily globally
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The Math in LIME
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The Math in LIME
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The Math in LIME
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How to train the surrogate 
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How to train the surrogate 
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How to train the surrogate 

New dataset
Labels: Prediction of complex model

Features: Newly generated datapoints
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How to train the surrogate 
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Example for LIME
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Example for LIME
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SHAP: SHapley Additive exPlanations

Cooperative Game Theory
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SHAP

10.000$
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SHAP
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Shapley Values
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Shapley Values

Domain expert

3.000$
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Shapley Values

Domain expert

7.000$
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Shapley Values
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Shapley Values
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Shapley Values
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Shapley Values

Marginal
Contribution
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Shapley Values

3.000$ 1.500$ 2.500$ 3.000$
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Calculating shapley value

Shapley value 
for feature i

Age

Black model Input datapoint

Age = 56 Gender = Fx = Body Mass Index = 30 Hear disease = yes …
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Calculating shapley value

Shapley value 
for feature i

Age

Black model Input datapoint

subset Simplified 
data input

Age = 56 Gender = Fx = Body Mass Index = 30 Hear disease = yes …
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Calculating shapley value

Shapley value 
for feature i

Age

Black model Input datapoint

subset Simplified 
data input

Age = 56 Gender = Fx = Body Mass Index = 30 Hear disease = yes …
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Calculating shapley value

Shapley value 
for feature i

Age

Black model Input datapoint

subset Simplified 
data input

Age = 56 Body Mass Index = 30

Body Mass Index = 30

Age = 56 Gender = Fx = Body Mass Index = 30 Hear disease = yes …
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Calculating shapley value

Shapley value 
for feature i

Age

Black model Input datapoint

subset Simplified 
data input

Age = 56 Body Mass Index = 30

Body Mass Index = 30

Age = 56 Gender = Fx = Body Mass Index = 30 Hear disease = yes …

70% Stroke
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Calculating shapley value

Shapley value 
for feature i

Age

Black model Input datapoint

subset Simplified 
data input

Age = 56 Body Mass Index = 30

Body Mass Index = 30

Age = 56 Gender = Fx = Body Mass Index = 30 Hear disease = yes …

10% Stroke
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Calculating shapley value

Shapley value 
for feature i

Age

Black model Input datapoint

subset Simplified 
data input

Age = 56 Body Mass Index = 30

Body Mass Index = 30

Age = 56 Gender = Fx = Body Mass Index = 30 Hear disease = yes …
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Calculating shapley value

Shapley value 
for feature i

Age

Black model Input datapoint

subset Simplified 
data input

Age = 56 Gender = Fx = Body Mass Index = 30 Hear disease = yes …

Weighting Contribution
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Calculating shapley value

Shapley value 
for feature i

Age

Black model Input datapoint

subset Simplified 
data input

Age = 56 Gender = Fx = Body Mass Index = 30 Hear disease = yes …

Weighting Contribution
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Calculating shapley value

Shapley value 
for feature i

Age

Black model Input datapoint

subset Simplified 
data input

Age = 56 Gender = Fx = Body Mass Index = 30 Hear disease = yes …

Weighting Contribution
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Calculating shapley value

Shapley value 
for feature i

Age

Black model Input datapoint

subset Simplified 
data input

Age = 56 Body Mass Index = 30

Body Mass Index = 30

Age = 56 Gender = Fx = Body Mass Index = 30 Hear disease = yes …
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Calculating shapley value

Age = 56 Random() Body Mass Index = 30 Random() …

Age = 56 Gender = F Body Mass Index = 30 Hear disease = yes …

subset

Model
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Calculating shapley value

2! = total number of 
subsets of a set
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Calculating shapley value

2! = total number of 
subsets of a set
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Calculating shapley value

2! = total number of 
subsets of a set

Kernel SHAP
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Calculating shapley value

2! = total number of 
subsets of a set

Kernel SHAP

Tree SHAP

Deep SHAP


