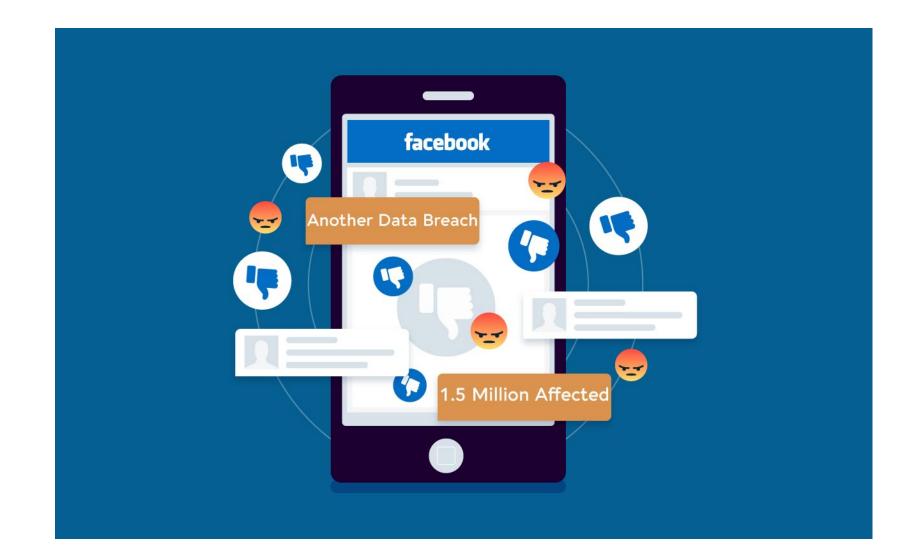
COMP6211I: Trustworthy Machine Learning Confidentiality (defense)

Minhao CHENG

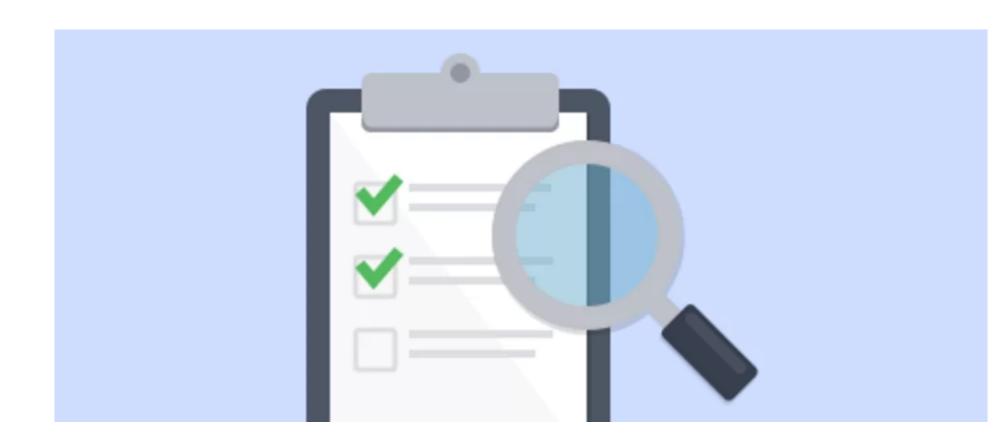
Privacy problem

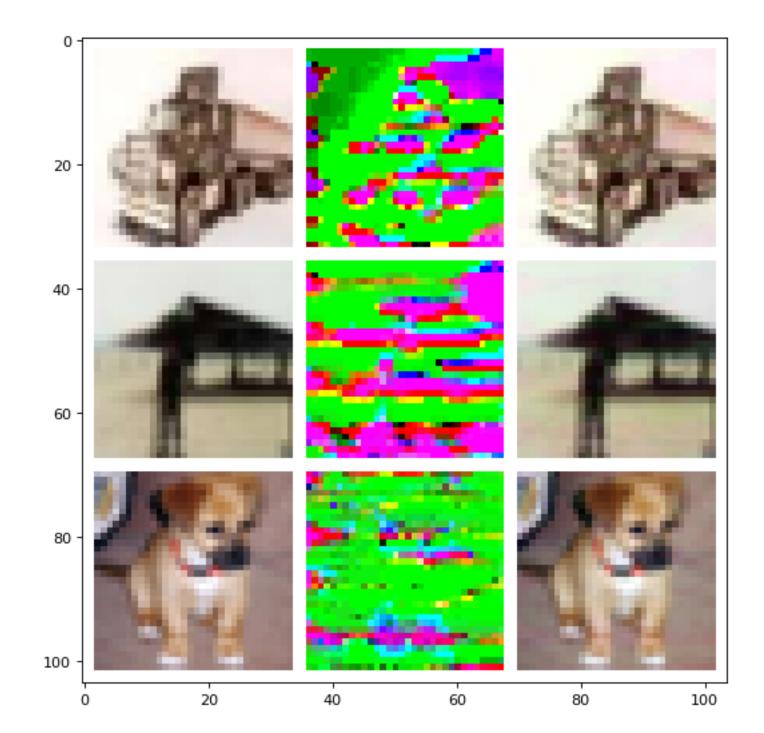
- Datasets are collected without mutual consent
- Datasets are vulnerable to steal for training other models \bullet



Privacy protection

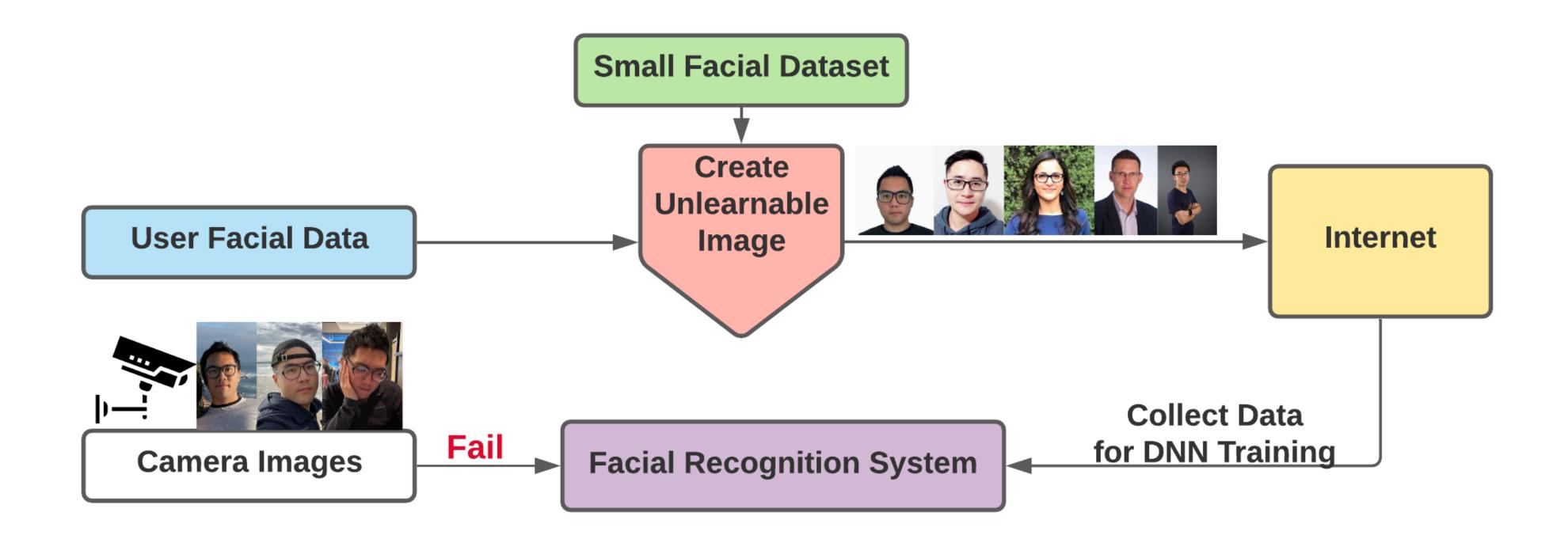
- How we could prevent other to use your personal data?
 - Persevering privacy by obfuscating information from the dataset
 - Proof their usage of your data





Unlearnable example

- \bullet
- Noise could only be added prior to model training \bullet



Make the example unlearnable should not affect its quality for normal usage

Threat model

- Defender has full access to the data lacksquare
- Cannot interfere with training and don't have access to the full training dataset
- Cannot further modify data once the examples are created

Problem formulation

- Clean training datasets \mathscr{D}_c and testing \mathscr{D}_t
- will perform poorly on \mathcal{D}_t
- $\mathscr{D}_{c} = \{(\mathbf{x}_{i}, y_{i})\}_{i=1}^{n}, \mathscr{D}_{u} = \{(\mathbf{x}_{i}', y_{i})\}_{i=1}^{n}$
- $\delta \in \Delta \in \mathbb{R}^d$ should be "invisible"
 - A choice would be $\|\delta\|_p \leq \epsilon$

• Transform training data \mathscr{D}_{c} into unlearnable \mathscr{D}_{u} so that DNNs trained on \mathscr{D}_{u}

$$_{i=1}^{n}$$
, where $\mathbf{x}' = \mathbf{x}' + \delta$

Problem formulation Objective

labels when trained on \mathcal{D}_{μ} :

•
$$\arg\min_{\theta} \mathbb{E}_{(\mathbf{x}', y) \sim \mathcal{D}_u} L(f(\mathbf{x}', y))$$

- Noise: $\mathbf{x}'_i = \mathbf{x}'_i + \delta_i$,
 - Sample-wise: $\delta_i \in \Delta_s = \{\delta_1, \dots, \delta_n\}$
 - Class-wise: $\delta_y i \in \Delta_c = \{\delta_1, \dots, \delta_K\}$

Trick the model into learning a strong correlation between and noise and the

Problem formulation Objective

- A simplified way
 - $\arg\min_{\theta} \mathbb{E}_{(\mathbf{x},y)\sim \mathcal{D}_c}[\min_{\delta} L(f'(\mathbf{x}'+\delta,y))]$ s.t. $\|\delta\|_p \leq \epsilon$
 - Where f' denotes the source model used for noise generation

Problem formulation Objective

A simplified way

• $\arg\min_{\theta} \mathbb{E}_{(\mathbf{x},y)\sim \mathcal{D}_c}[\min_{\delta} L(f'(\mathbf{x}'+\delta,y))]$ s.t. $\|\delta\|_p \leq \epsilon$

- Where f' denotes the source model used for noise generation
- Sample-wise: use PGD

$$\boldsymbol{x}_{t+1}' = \Pi_{\epsilon} \big(\boldsymbol{x}_t' - \alpha \cdot \operatorname{sign}(\nabla_{\boldsymbol{x}} \mathcal{L}(f'(\boldsymbol{x}_t'),$$

Class-wise: use UAP on the class by accumulates the perturbation

y)))

Comparison Sample-wise vs class-wise

- Work in different way:
 - Sample-wise: \bullet
 - Low-error samples \bullet can be ignored
 - Class-wise:
 - Make data not i.id.d

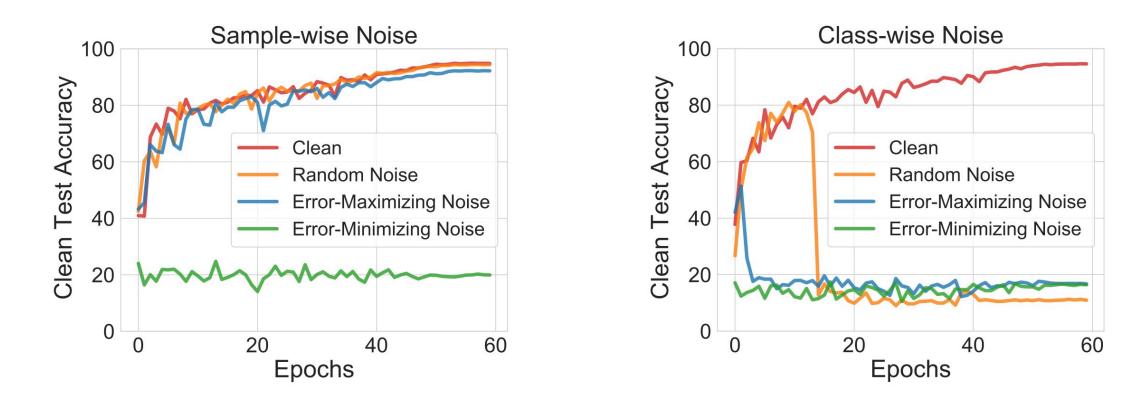
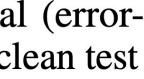


Figure 1: The unlearnable effectiveness of different types of noise: random, adversarial (errormaximizing) and our proposed error-minimizing noise on CIFAR-10 dataset. The lower the clean test accuracy the more effective of the noise.



Main results

Noise Form	Model	SVHN		CIFAR-10		CIFAR-100		ImageNet*	
NOISE FUTII		\mathcal{D}_c	${\mathcal D}_u$	\mathcal{D}_c	${\mathcal D}_u$	${\mathcal D}_c$	${\mathcal D}_u$	\mathcal{D}_c	${\mathcal D}_{m u}$
	VGG-11	95.38	35.91	91.27	29.00	67.67	17.71	48.66	11.38
Δ	RN-18	96.02	8.22	94.77	19.93	70.96	14.81	60.42	12.20
Δ_s	RN-50	95.97	7.66	94.42	18.89	71.32	12.19	61.58	11.12
	DN-121	96.37	10.25	95.04	20.25	74.15	13.71	63.76	15.44
	VGG-11	95.29	23.44	91.57	16.93	67.89	7.13	71.38	2.30
Δ	RN-18	95.98	9.05	94.95	16.42	70.50	3.95	76.52	2.70
Δ_c	RN-50	96.25	8.94	94.37	13.45	70.48	3.80	79.68	2.70
	DN-121	96.36	9.10	95.12	14.71	74.51	4.75	80.52	3.28

* ImageNet subset of the first 100 classes.

Table 1: The top-1 clean test accuracies (%) of DNNs trained on the clean training sets (\mathcal{D}_c) or their unlearnable ones (\mathcal{D}_u) made by sample-wise (Δ_s) or class-wise (Δ_c) error-minimizing noise.

Stability

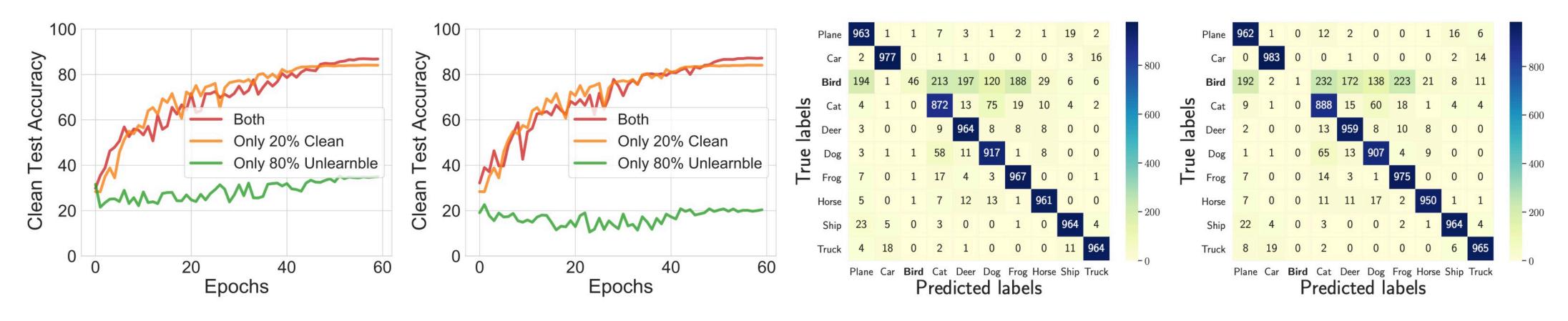
• Fail when unlearnable rate not 100%

 \mathcal{D}_c : only the clean proportion of data. Percentage of unlearnable examples: $\frac{\mathcal{D}_u}{\mathcal{D}_c + \mathcal{D}_u}$.

Noise Type	Percentage of unlearnable examples											
	0%	20%		40%		60%		80%		100%		
		$\mid \mathcal{D}_u + \mathcal{D}_c$	\mathcal{D}_{c}	${\mathcal D}_u+{\mathcal D}_c$	\mathcal{D}_{c}	$\mathcal{D}_u + \mathcal{D}_c$	\mathcal{D}_{c}	$\mid \mathcal{D}_u + \mathcal{D}_c$	${\mathcal D}_c$	100 70		
Δ_s	94.95	94.38	93.75	93.10	92.56	91.90	89.77	86.85	84.30	19.93		
Δ_c	94.95	94.24	93.75	92.99	92.56	91.10	89.77	87.23	84.30	16.42		

Table 2: Effectiveness under different unlearnable percentages on CIFAR-10 with RN-18 model: lower clean accuracy indicates better effectiveness. $\mathcal{D}_u + \mathcal{D}_c$: a mix of unlearnable and clean data;

Single unlearnable class



(a) Sample-wise Δ_s

(b) Class-wise Δ_c

Figure 2: (a-b): For both sample-wise (a) and class-wise (b) noise, learning curves of RN-18 on CIFAR-10 dataset with different types of training data: 1) only 20% clean data, 2) only 80% unlearnable data, and 3) both clean and unlearnable data. (c-d): Prediction confusion matrices (on the clean test set) of two RN-18s trained on CIFAR-10 with the 'Bird' unlearnable class created by sample-wise (c) or class-wise (d) error-minimizing noise.

(c) Sample-wise Δ_s

(d) Class-wise Δ_c

Against model stealing

- Watermarking model
 - Detect theft by verifying the suspect model responds with the expected outputs on watermarked inputs
 - Cons: need retraining/ vulnerable to adaptive attack
- Dataset inference: tracing the usage of your data or dataset and verification.
 - Detect the knowledge contained in the private training set of the victim

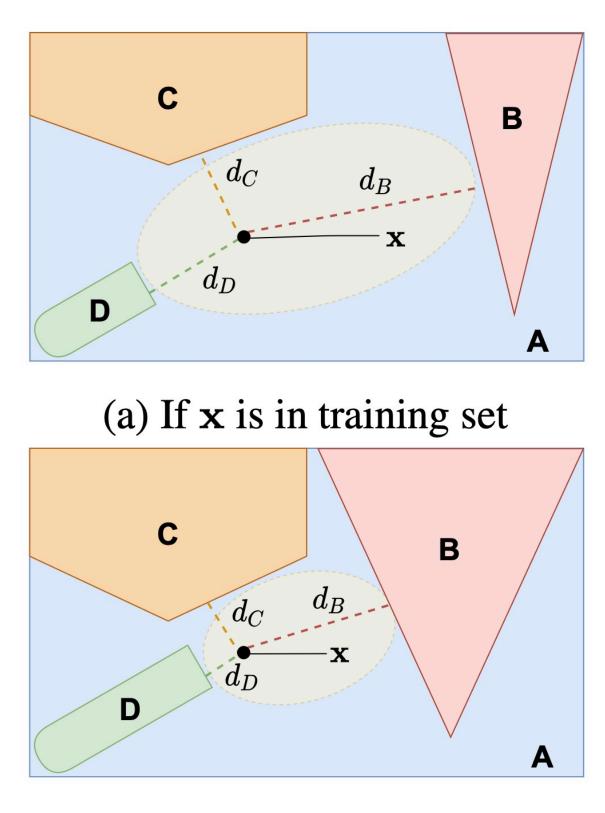
Against model stealing

- private knowledge
- An adversary \mathscr{A}_* gain access to $S_{\mathscr{V}}$ and train its model $f_{\mathscr{A}_*}$

• A victim \mathscr{V} trains a model $f_{\mathscr{V}}$ on their private data $S_{\mathscr{V}} \subseteq \mathscr{K}_{\mathscr{V}}$, $\mathscr{K}_{\mathscr{V}}$ is the

Data inference

- Motivations:
 - Stolen models are more confident about points in the victim model's training set than on a random point drawn from task distribution
 - Data trained in the dataset are far from decision boundaries



(b) If x is not in training set

Figure 1: The effect of including (x, A') in the train set. If x is in the train set, the classifier will learn to maximize the decision boundary's distance to $\mathcal{Y} \setminus \{ A' \}$. If x is in the test set, it has no direct impact on the learned landscape.

Data inference White-box setting

- For any data point $(\mathbf{x_i}, y_i)$, we evaluate its minimum distance Δ to target classes t
 - $\min_{\delta} \Delta(\mathbf{x}, \mathbf{x} + \delta)$ s.t. $f(\mathbf{x} + \delta) = t$

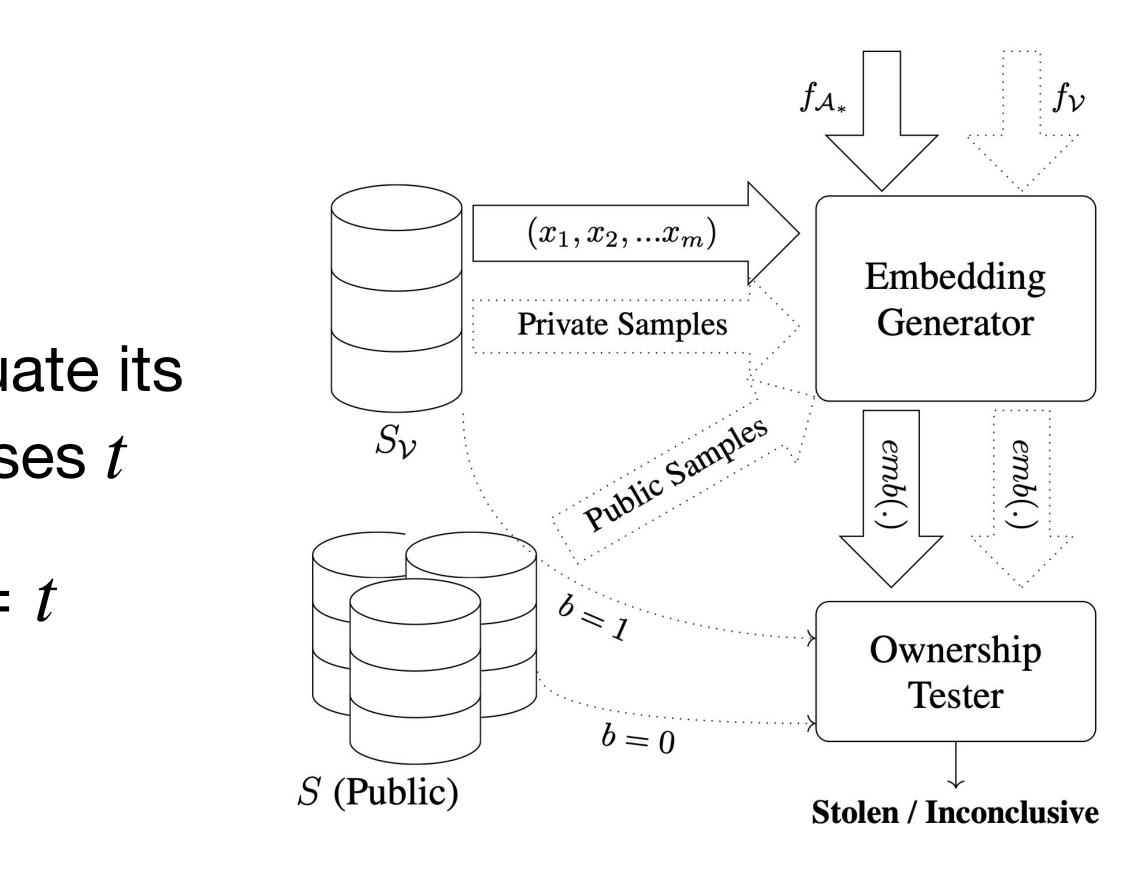


Figure 2: Training (dotted) the confidence regressor with embeddings of public and private data, and victim's model $f_{\mathcal{V}}$; Dataset Inference (solid) using *m* private samples and adversary model $f_{\mathcal{A}_*}$

Embedding generation black-box setting

• Starting from an data point $(\mathbf{x_i}, y_i)$, sample with a random direction δ , we take k steps in the same direction until

•
$$f(\mathbf{x} + k\delta) = t; t \neq y$$

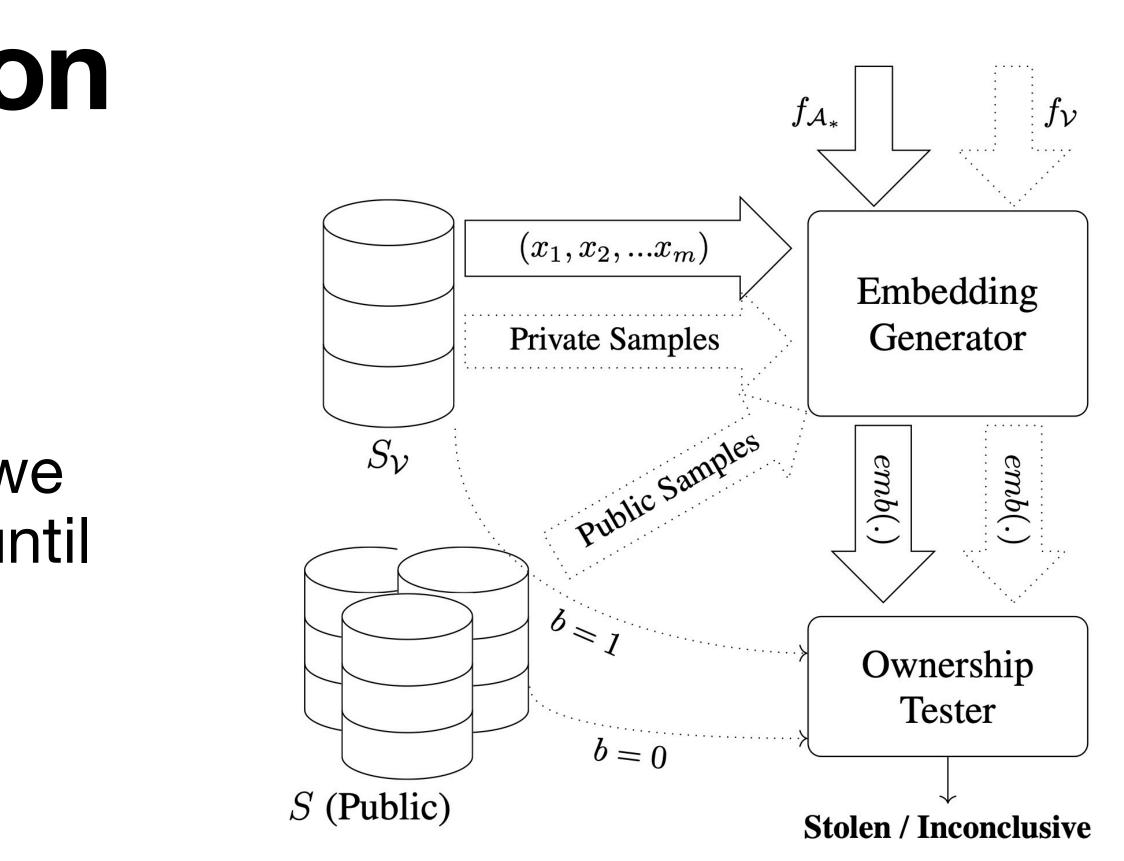


Figure 2: Training (dotted) the confidence regressor with embeddings of public and private data, and victim's model $f_{\mathcal{V}}$; Dataset Inference (solid) using *m* private samples and adversary model $f_{\mathcal{A}_*}$

Data inference Confidence regressor

- Min the false positive rate
- Train a regression model $g_{\mathcal{V}}$ -> predict a measure of confidence that it contains the private information

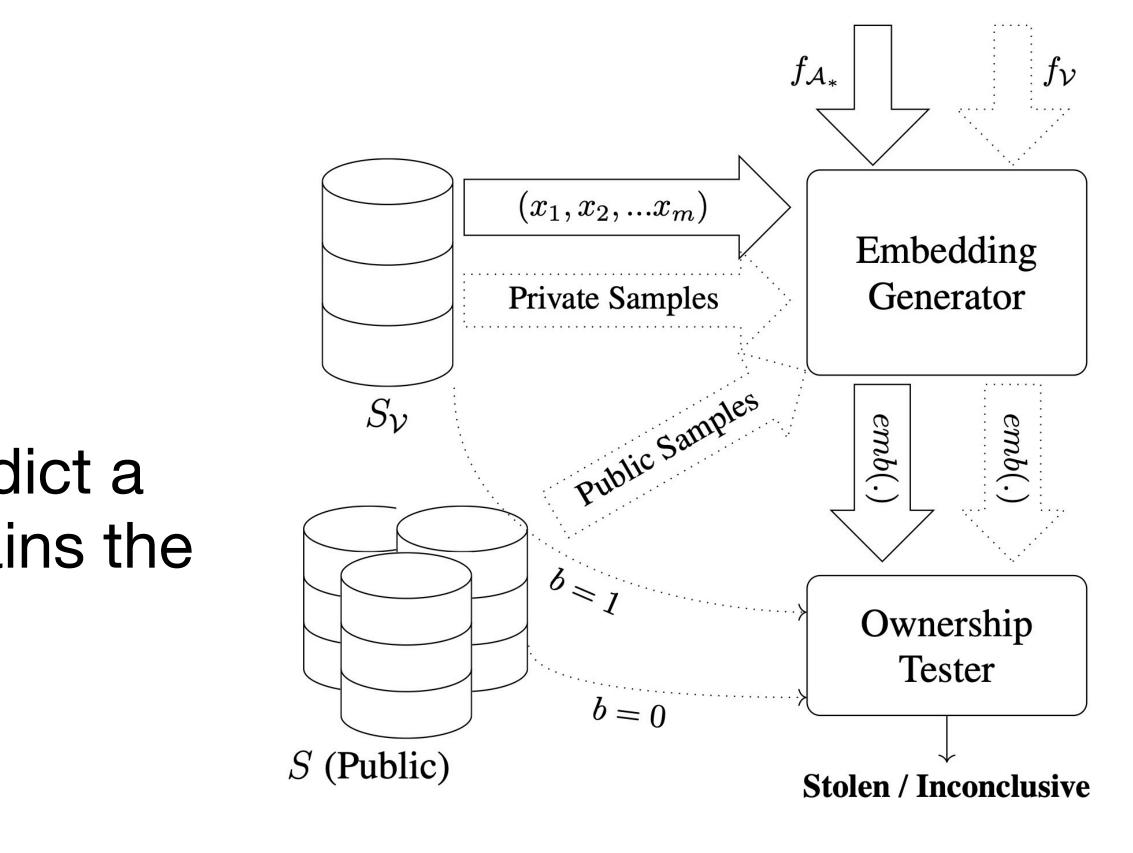


Figure 2: Training (dotted) the confidence regressor with embeddings of public and private data, and victim's model $f_{\mathcal{V}}$; Dataset Inference (solid) using *m* private samples and adversary model $f_{\mathcal{A}_*}$

Data inference Hypothesis testing

- Null hypothesis
 - $H_0: \mu < \mu_{\mathcal{V}}$ where $\mu = \bar{c}$ and $\mu_{\mathcal{V}} = \bar{c}_{\mathcal{V}}$

where $\mu = \bar{c}$ and $\mu_{\mathcal{V}} = \bar{c}_{\mathcal{V}}$ are mean confidence scores.

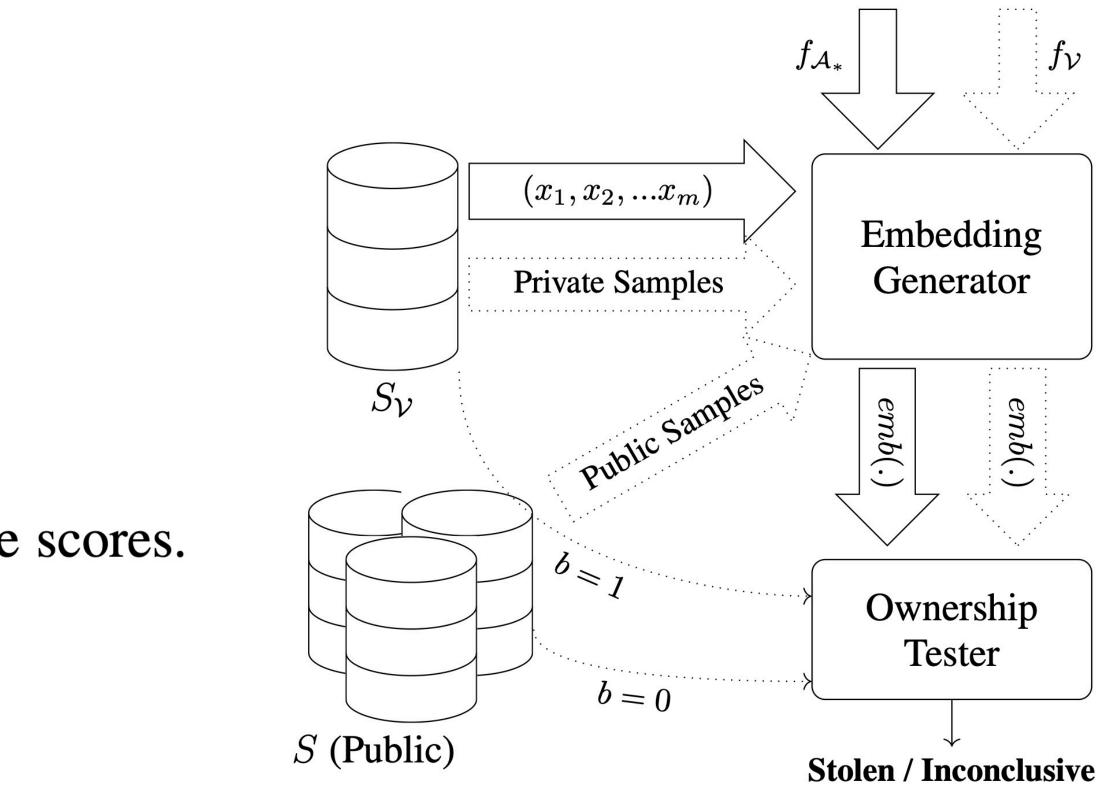


Figure 2: Training (dotted) the confidence regressor with embeddings of public and private data, and victim's model $f_{\mathcal{V}}$; Dataset Inference (solid) using *m* private samples and adversary model $f_{\mathcal{A}_*}$

Data inference Main results

		CIFAR10				CIFAR100				
	Model Stealing Attack	MinGD		Bline	Blind Walk		MinGD		Blind Walk	
	Steaming Mitaek	$\Delta \mu$	p-value	$\Delta \mu$	p-value	$\Delta \mu$	p-value	$\Delta \mu$	p-value	
$\overline{\mathcal{V}}$	Source	0.838	10^{-4}	1.823	10^{-42}	1.219	10^{-16}	1.967	10^{-44}	
\mathcal{A}_D	Distillation Diff. Architecture	0.586 0.645	$10^{-4} \\ 10^{-4}$	$0.778 \\ 1.400$	10^{-5} 10^{-10}	0.362 1.016	10^{-2} 10^{-6}	1.098 1.471	10^{-5} 10^{-14}	
\mathcal{A}_M	Zero-Shot Learning Fine-tuning	0.371 0.832	$10^{-2} \\ 10^{-5}$	0.406 1.839	$10^{-2} \\ 10^{-27}$	0.466 1.047	10^{-2} 10^{-7}	0.405 1.423	10^{-2} 10^{-10}	
\mathcal{A}_Q	Label-query Logit-query	0.475 0.563	10^{-3} 10^{-3}	1.006 1.048	$10^{-4} \\ 10^{-4}$	0.270 0.385	10^{-2} 10^{-2}	0.107 0.184	10^{-1} 10^{-1}	
${\mathcal I}$	Independent	0.103	1	-0.397	0.675	-0.242	0.545	-1.793	1	

stealing attacks $(\mathcal{A}_D, \mathcal{A}_M, \mathcal{A}_Q)$ are marked in red and blue respectively.

Table 1: Ownership Tester's effect size (higher is better) and p-value (lower is better) using m = 10samples on multiple threat models (see § 6.1). The highest and lowest effect sizes among the model

Data inference P value

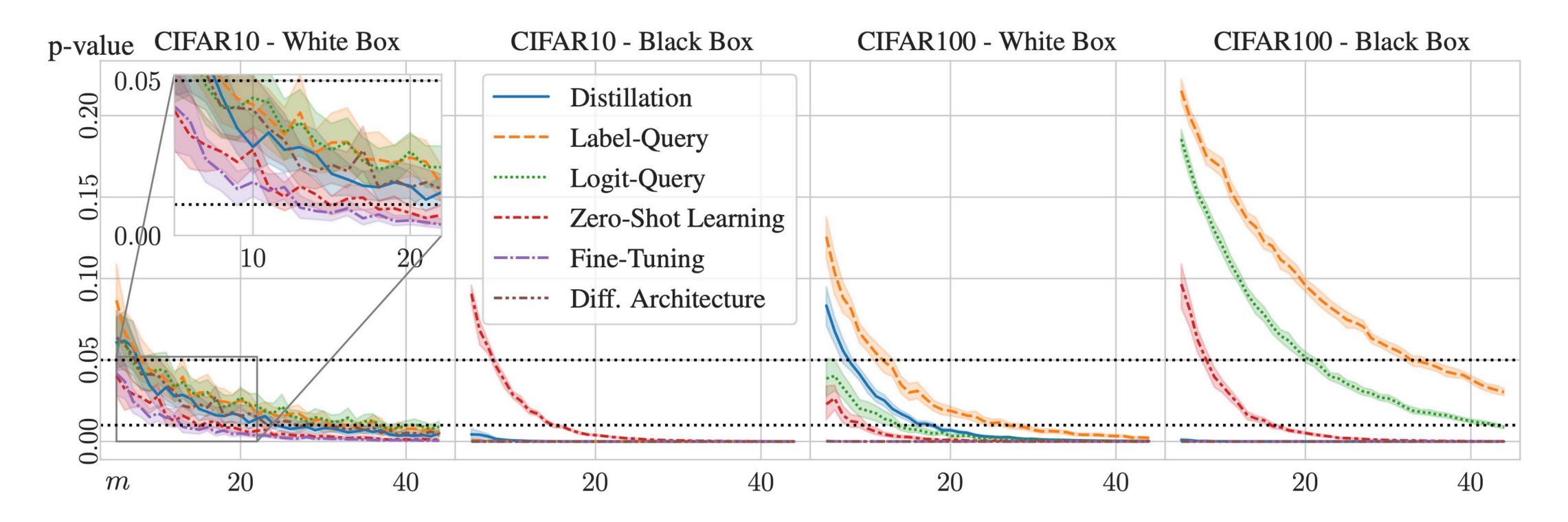


Figure 3: p-value against number of revealed samples (m). Significance levels (FPR) $\alpha = 0.01$ and 0.05 (dotted lines) have been drawn. Under most attack scenarios, the victim \mathcal{V} can dispute the adversary's ownership of $f_{\mathcal{A}_*}$ (with FPR of at most 1%) by revealing fewer than 50 private samples.