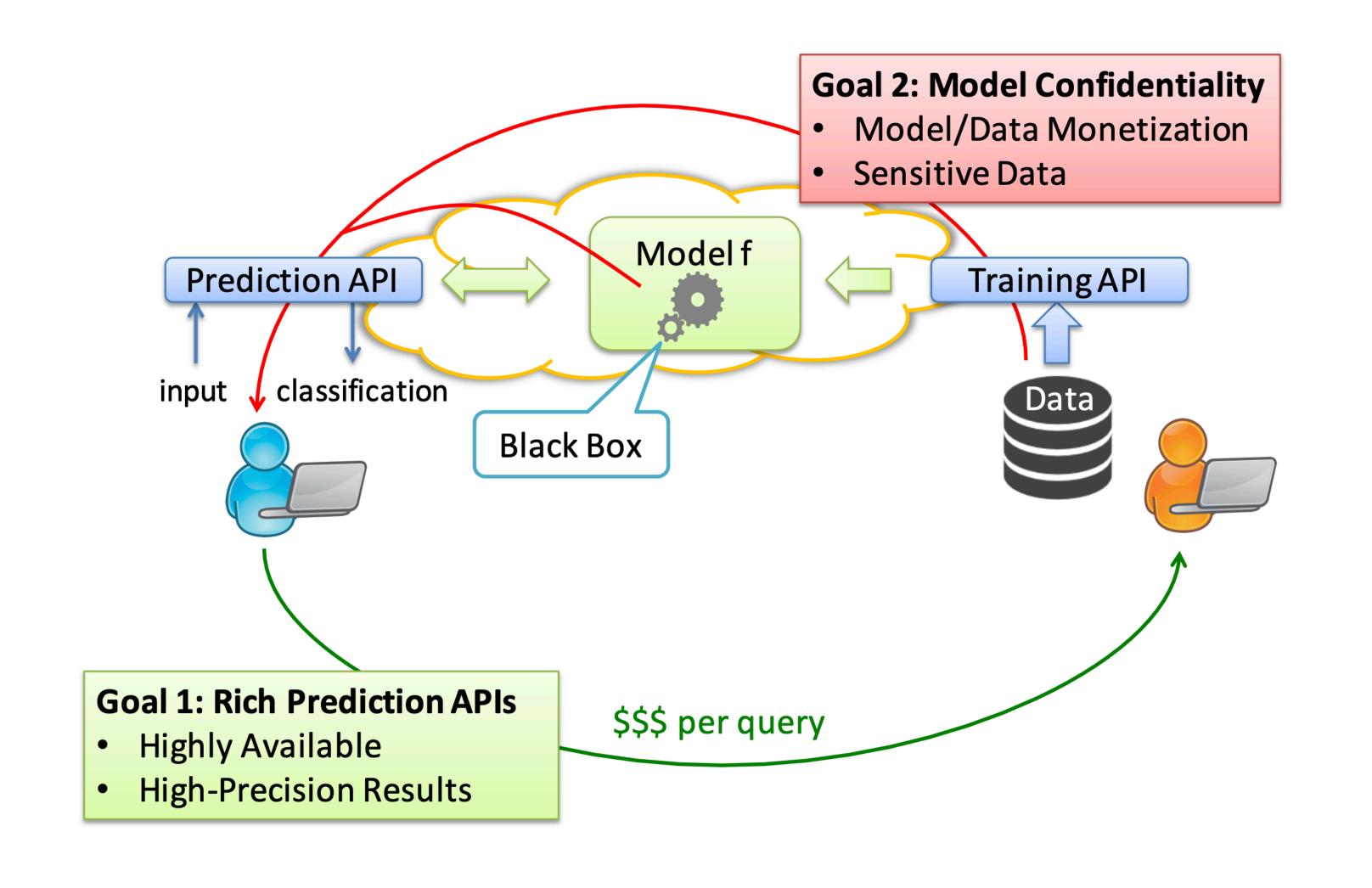
COMP6211I: Trustworthy Machine Learning

Model Confidentiality (attack)

Machine learning as a service (MaaS)



Attack Taxonomy

- Theft
 - Accuracy
- Reconnaissance
 - Fidelity
 - Function Equivalence

Threat model

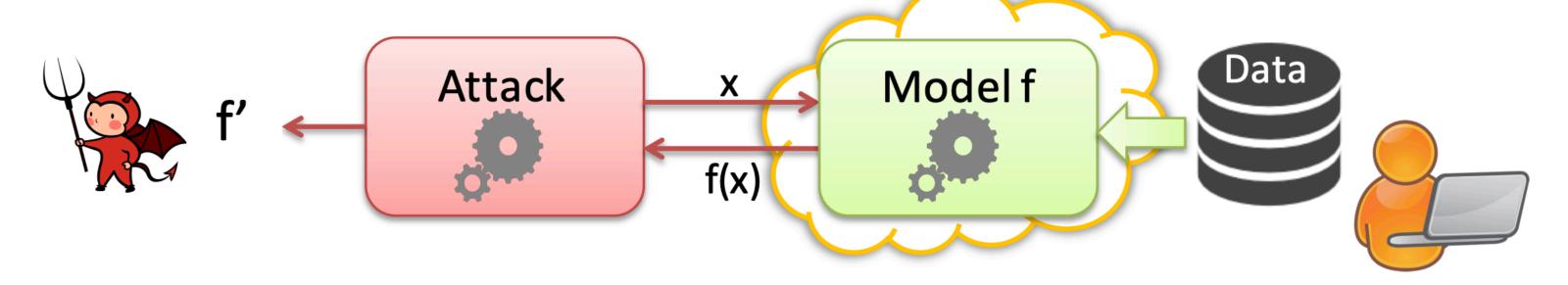
- Could only query the model with confidence output
- No idea about the training procedure
- Model architecture

Model extraction attack

Goal: Adversarial client learns close approximation of f using as

few queries as possible

Target: f(x) = f'(x) on $\geq 99.9\%$ of inputs



Applications:

- 1) Undermine pay-for-prediction pricing model
- 2) Facilitate privacy attacks (
- 3) Stepping stone to model-evasion [Lowd, Meek 2005] [Srndic, Laskov 2014]

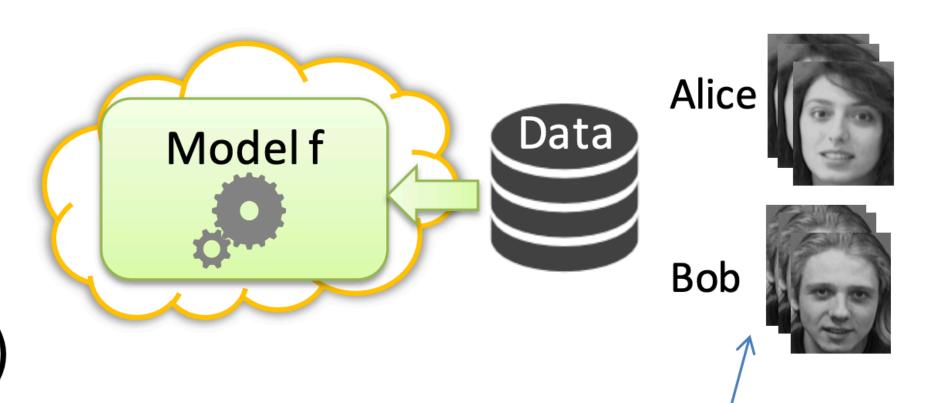
Model extraction example: Logistic regression

Task: Facial Recognition of two people (binary classification)

n+1 parameters w,b chosen using training set to minimize expected error

$$f(x) = 1/(1+e^{-(w^*x+b)})$$

f maps features to predicted probability of being "Alice" ≤ 0.5 classify as "Bob" > 0.5 classify as "Alice"

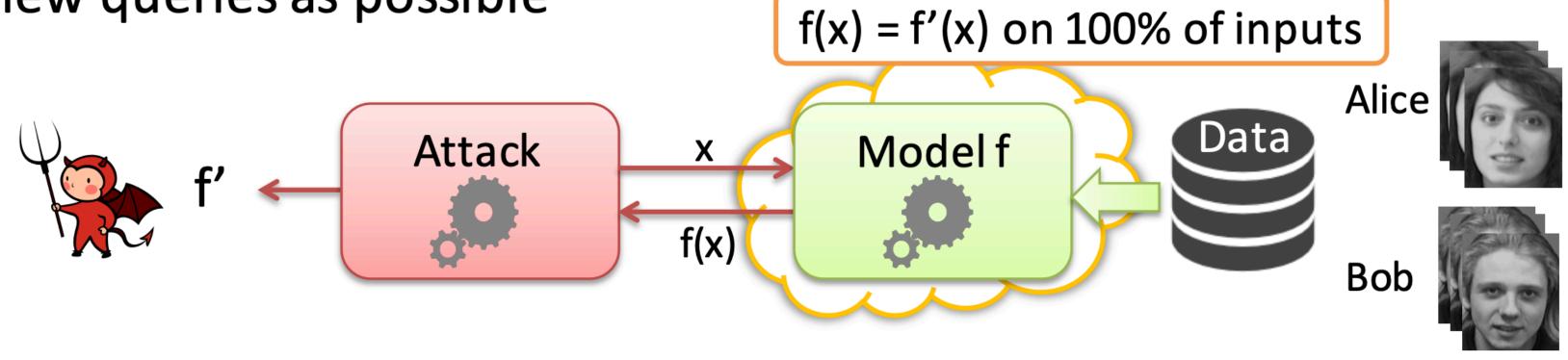


Feature vectors are pixel data e.g., n = 92 * 112 = 10,304

Generalize to c > 2 classes with multinomial logistic regression $f(x) = [p_1, p_2, ..., p_c]$ predict label as argmax_i p_i

Model extraction example: Logistic regression

Goal: Adversarial client learns close approximation of fusing as

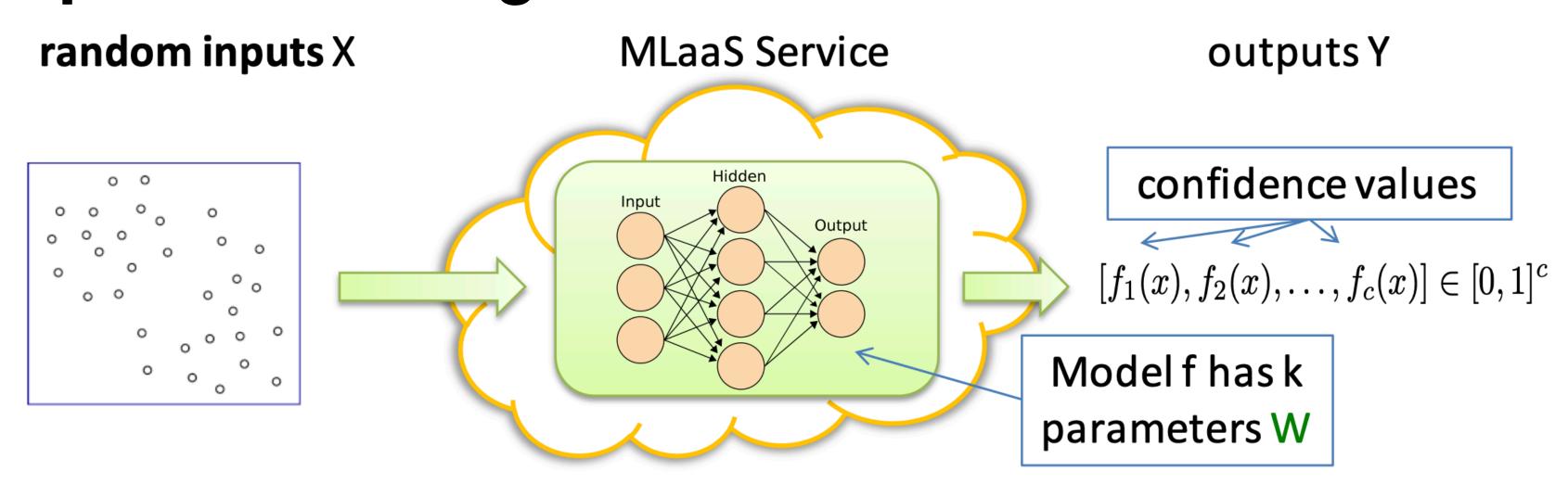


$$f(x) = 1/(1+e^{-(w*x+b)})$$

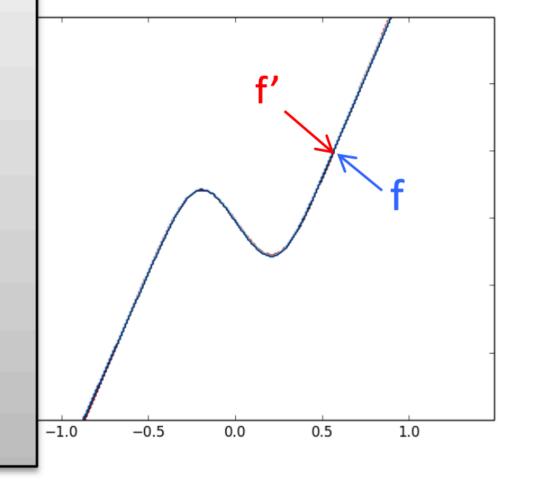
$$ln(\frac{f(x)}{1-f(x)}) = w*x + b$$
 Linear equation in n+1 unknowns w,b

Query n+1 random points \Rightarrow solve a linear system of n+1 equations

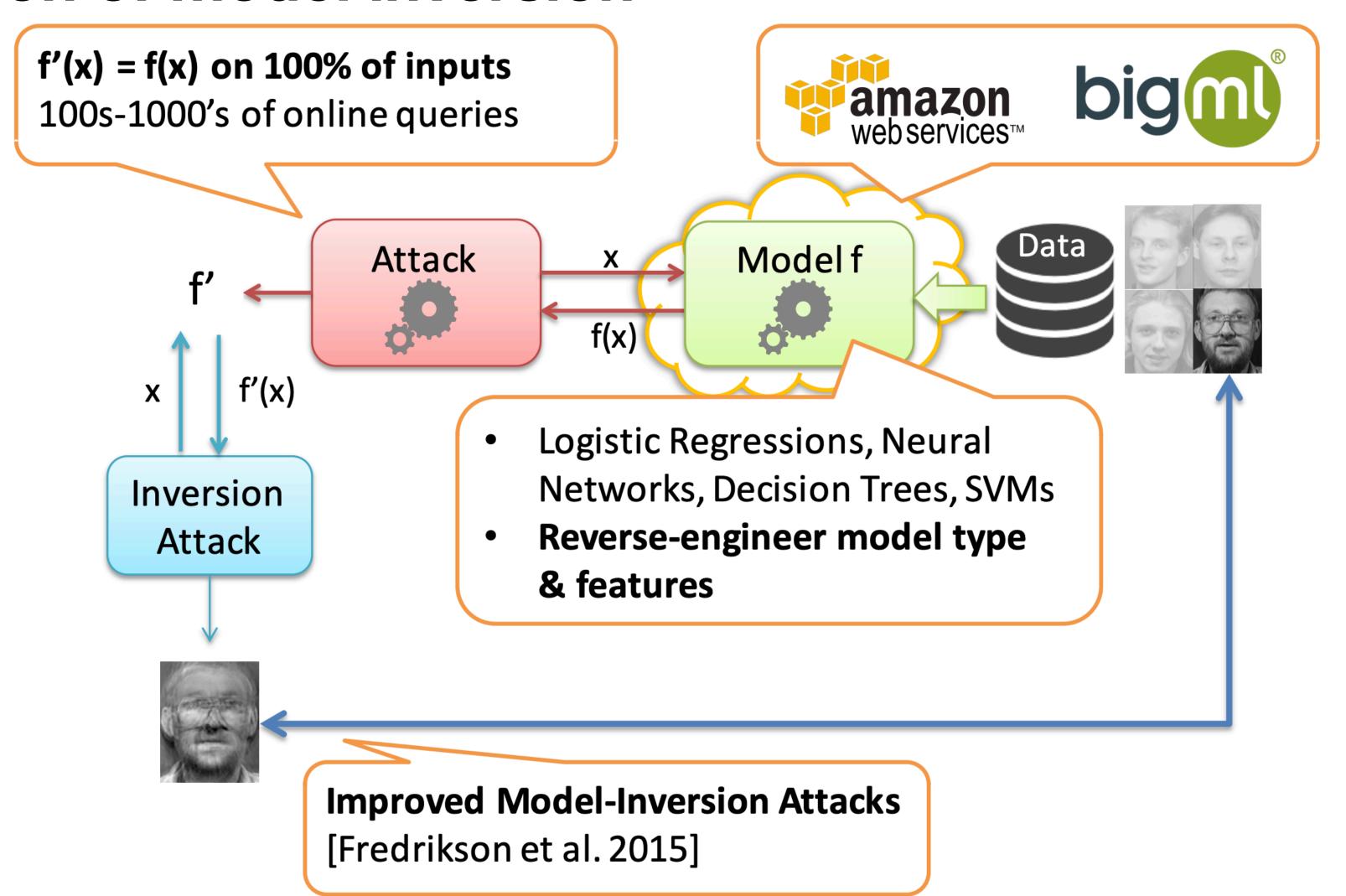
Generic equation-solving attack



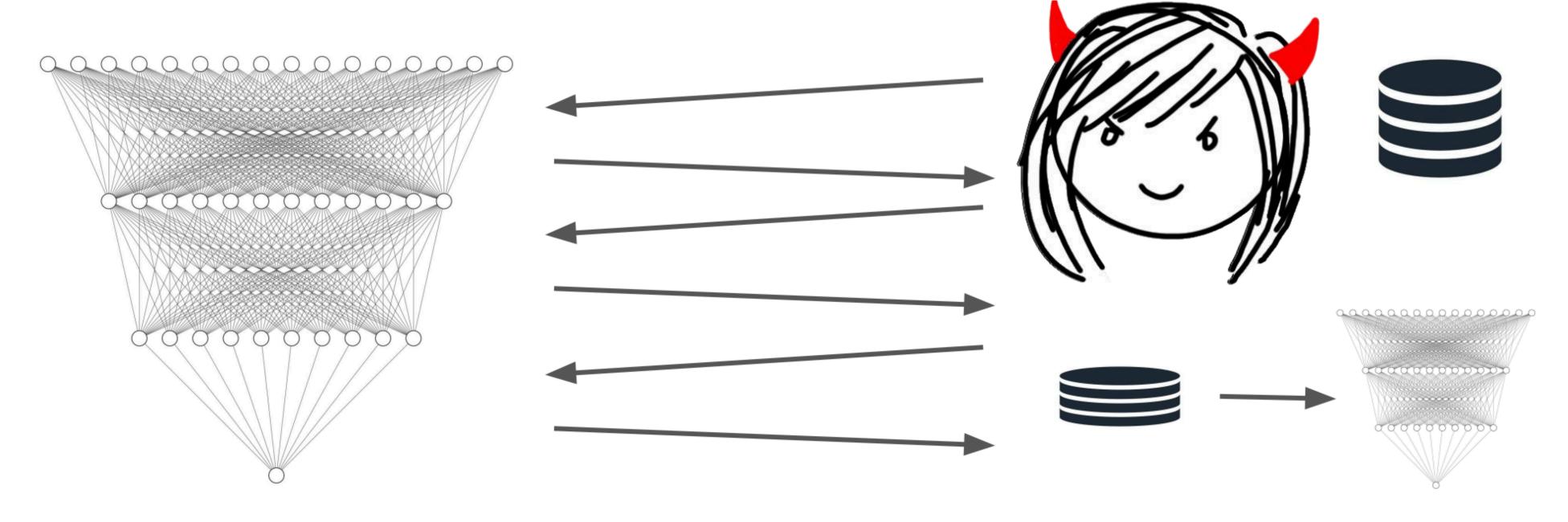
- Solve non-linear equation system in the weights W
 - Optimization problem + gradient descent
 - "Noiseless Machine Learning"
- Multinomial Regressions & Deep Neural Networks:
 - >99.9% agreement between f and f'
 - ≈ 1 query per model parameter of f
 - 100s 1,000s of queries / seconds to minutes



Combination of model inversion



Improvements: active learning



Active Learning: progressively growing a labeled dataset

Chandrasekharan et al: https://arxiv.org/abs/1811.02054

Improvements: semi-supervised learning

- Augments the model with rotation loss
 - Labeled data: The classifier
 - Unlabeled data: The rotation loss

$$L_R(X; f_{\theta}) = \frac{1}{4N} \sum_{i=0}^{N} \sum_{j=1}^{r} H(f_{\theta}(R_j(x_i)), j)$$

Results

- Semi-supervised learning
 - Scales to deep learning + complex datasets
 - Requires large unlabeled dataset
- Label efficient!

Dataset	Queries	Baseline Accuracy	SemiSup Accuracy
SVHN	250	79.25%	95.82%
CIFAR-10	250	53.35%	87.98%
ImageNet (top 5)	~140000	83.5%	86.17%

Limitations

- Yields high accuracy model but ...
- Not high fidelity
- High fidelity:
 - Both correct and wrong
 - Better to be used in substitute model
 - Adversarial attack
 - Model inversion attack

• ...

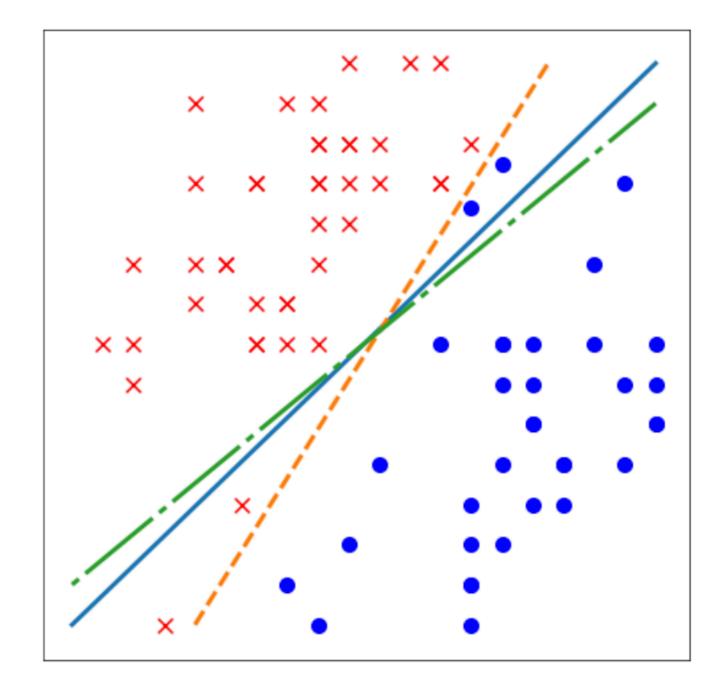
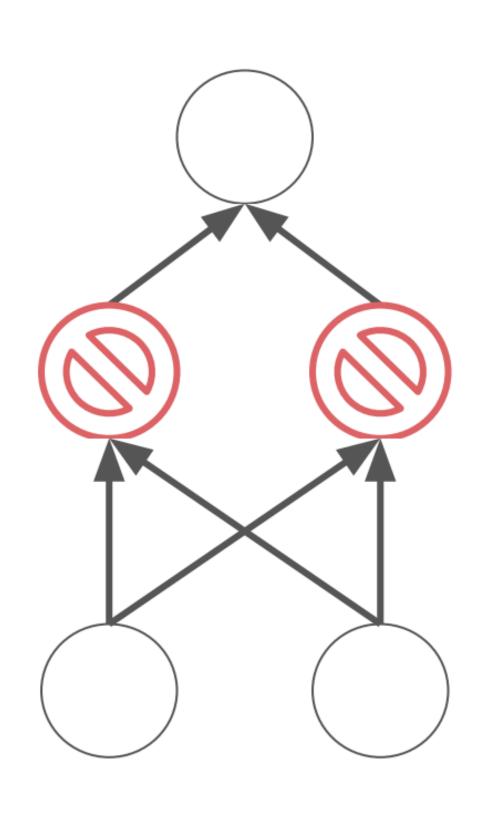
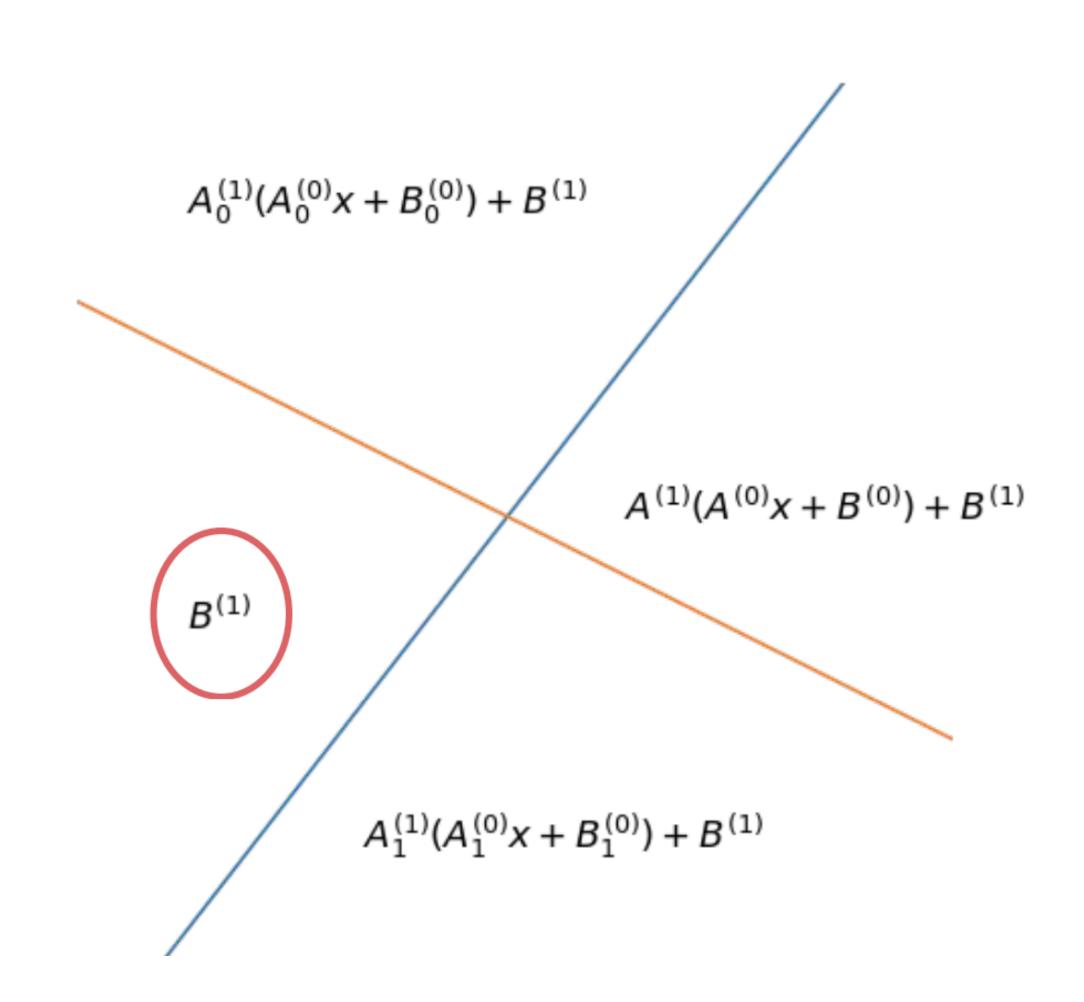
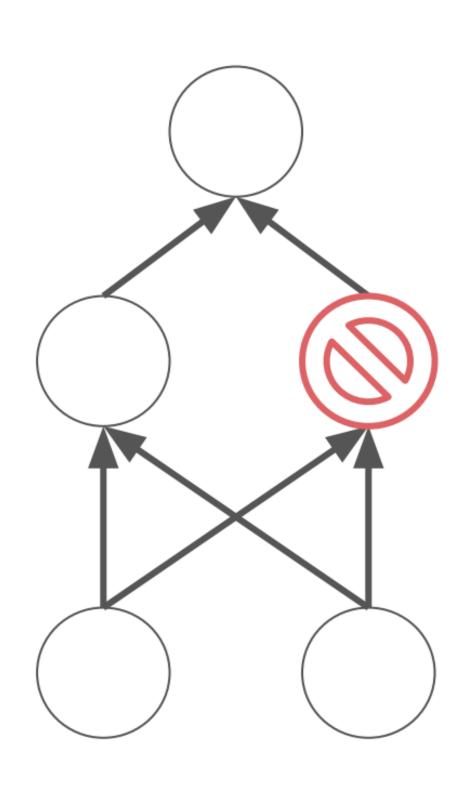
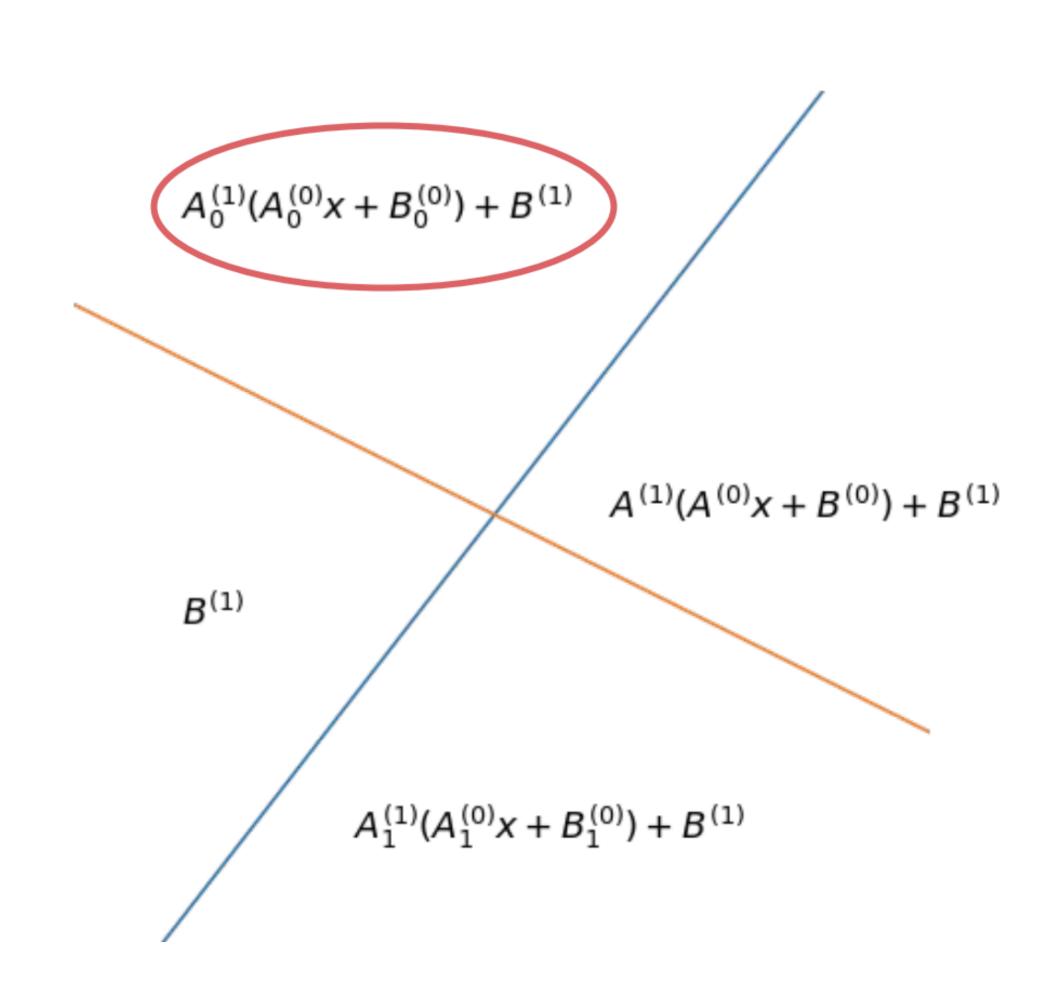


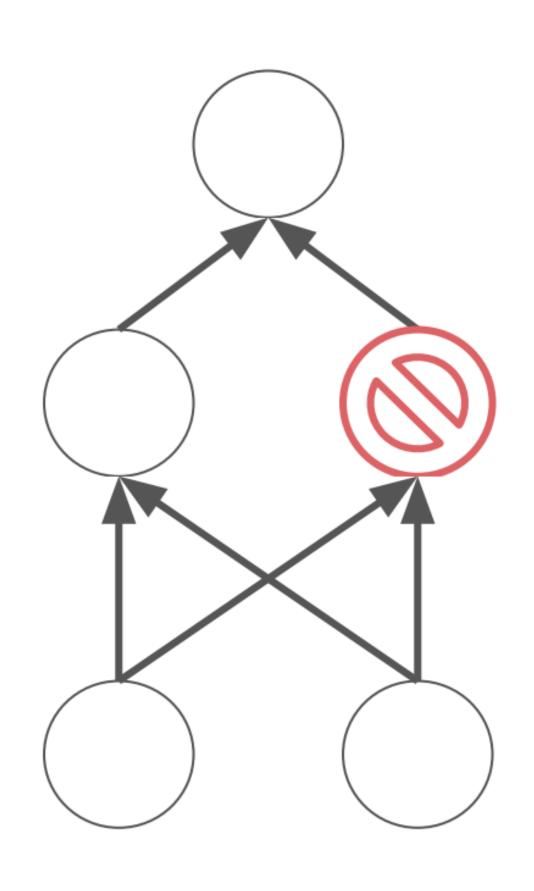
Figure 1: Illustrating fidelity vs. accuracy. The solid blue line is the oracle; functionally equivalent extraction recovers this exactly. The green dash-dot line achieves high fidelity: it matches the oracle on all data points. The orange dashed line achieves perfect accuracy: it classifies all points correctly.

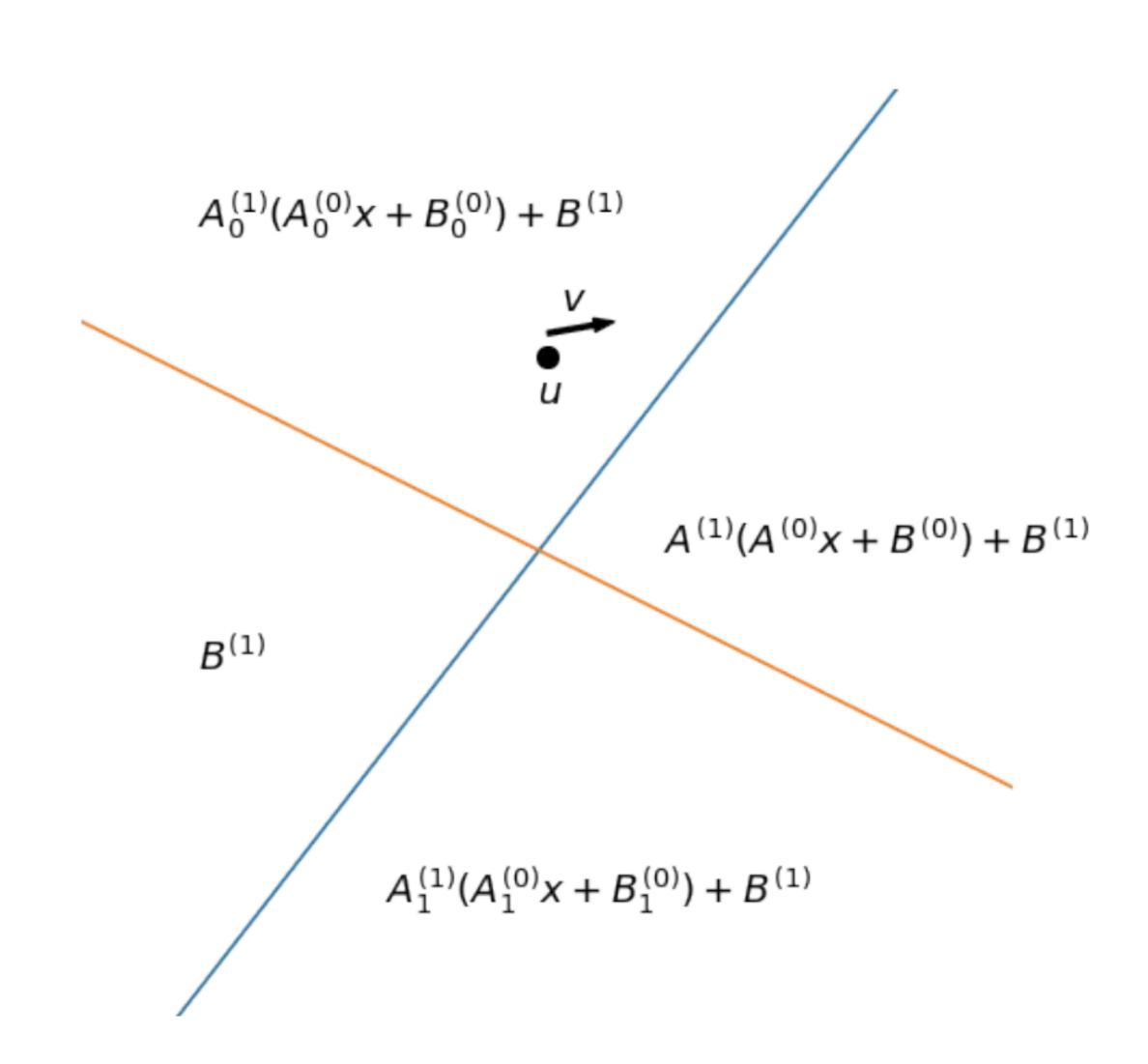


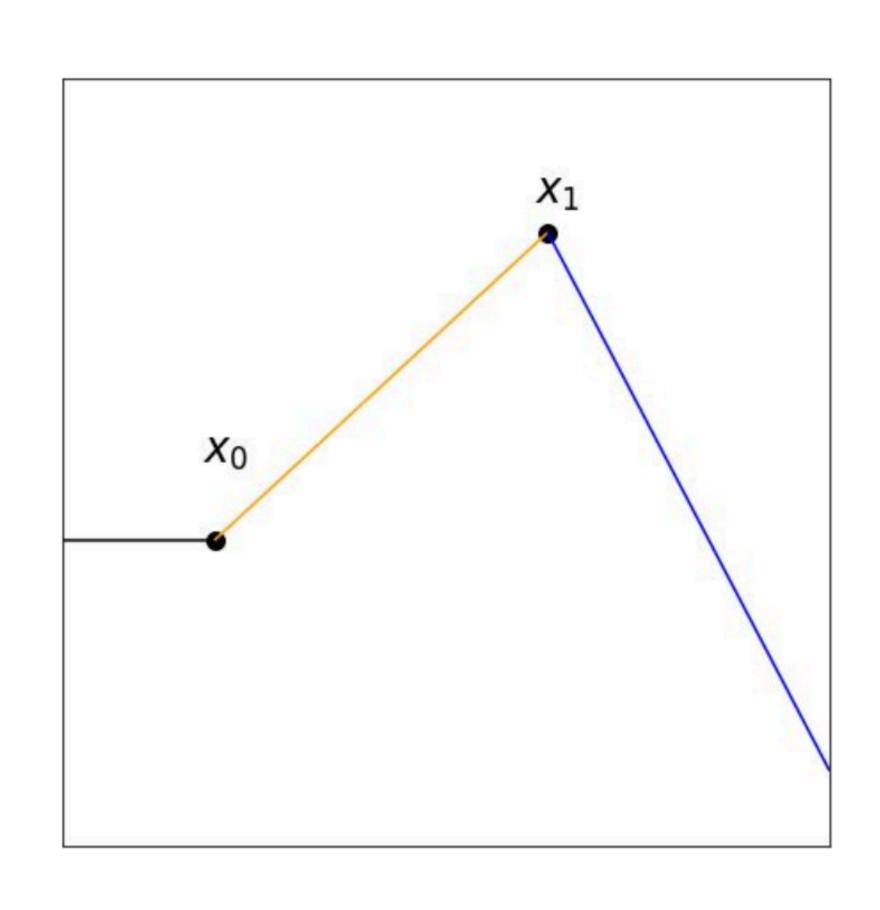


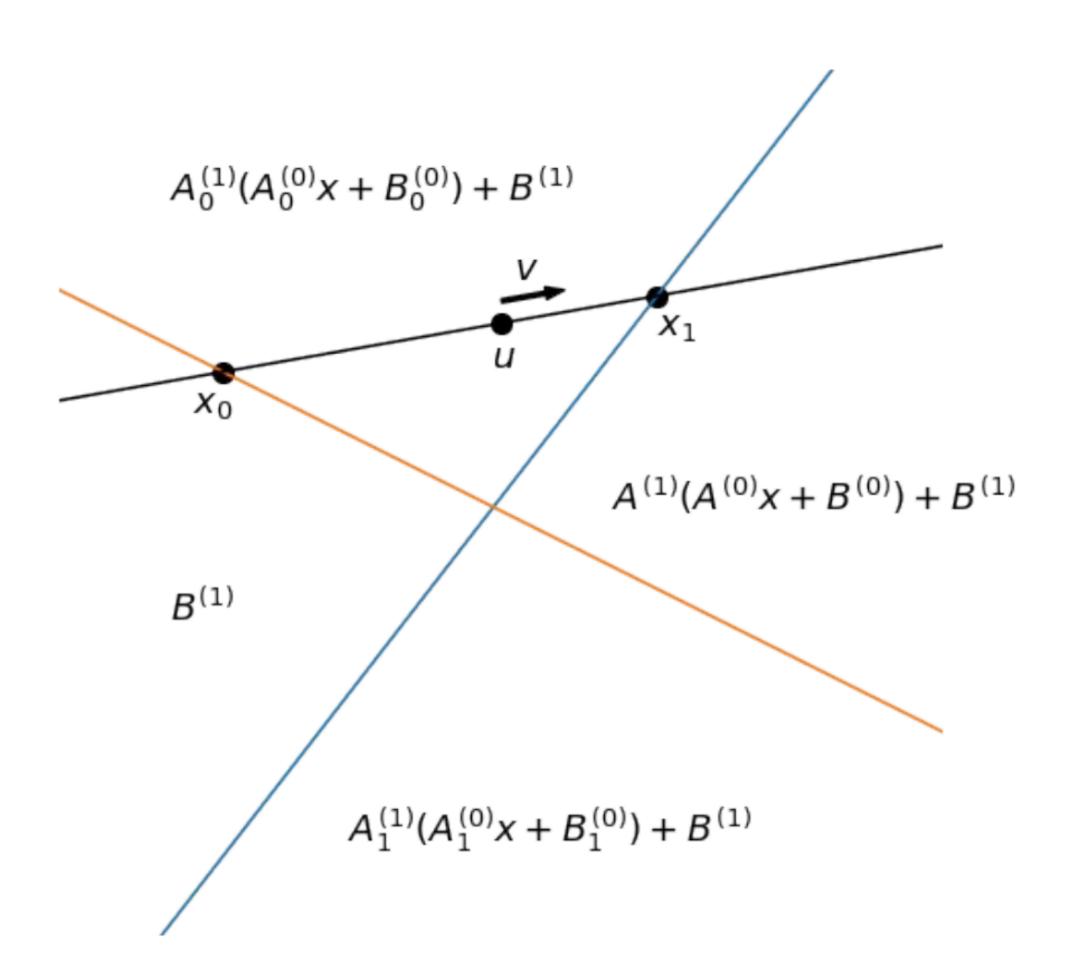




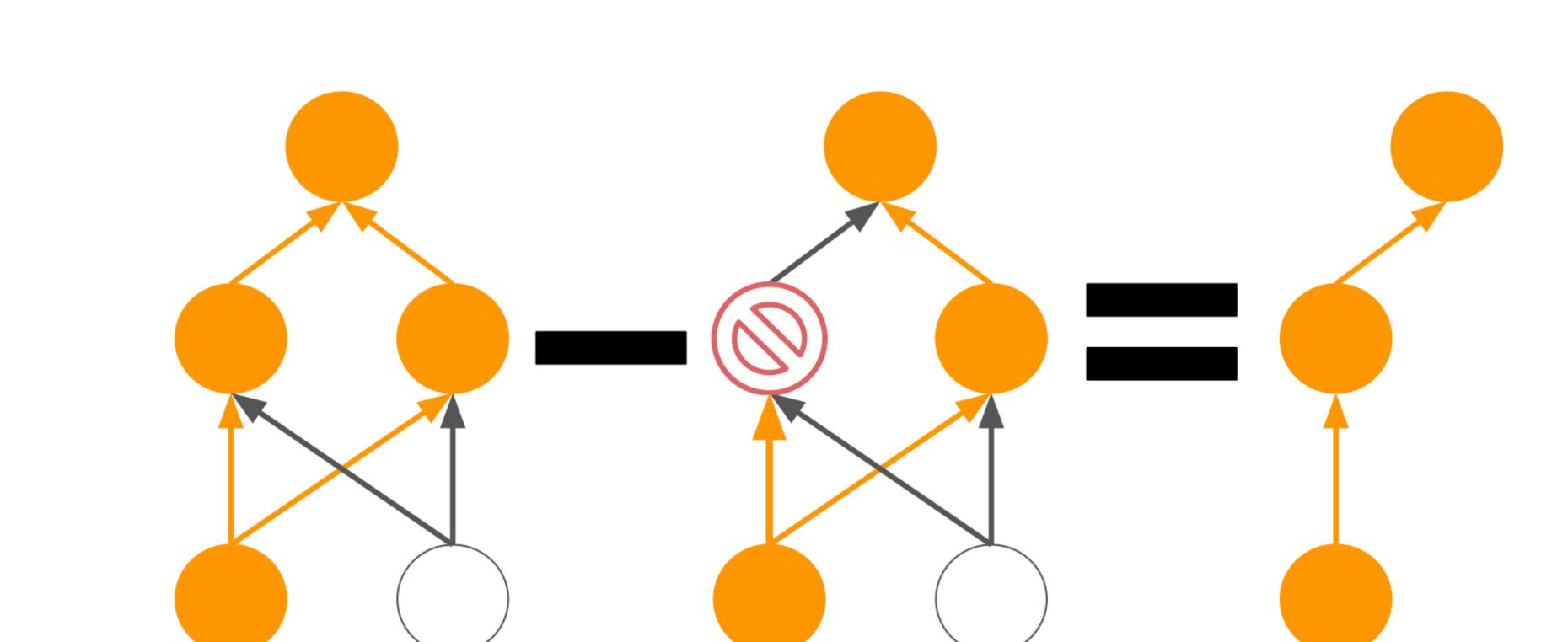








Function equivalent extraction Intuition



- Critical point search
 - Identify $\{x_i\}_{i=1}^n$ exactly one of the ReLU units is at a critical point
- Weight recovery
- Sign recovery
- Final layer extraction

Critical point search

- For two layer neural networks:
 - $O_L(x) = A^{(1)} \text{ReLU}(A^{(0)}x + B^{(0)}) + B^{(1)}$.
- To find a critical point

$$L(t; u, v, O_L) = O_L(u+tv).$$

- Not differential -> some ReLU change signs
- Problem: not efficient

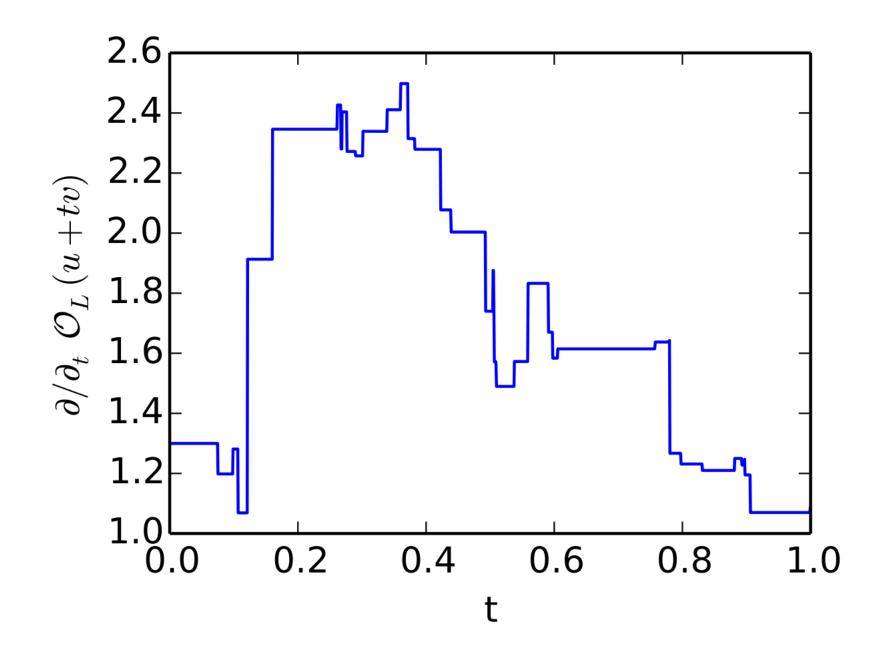


Figure 3: An example sweep for critical point search. Here we plot the partial derivative across t and see that $O_L(u+tv)$ is piecewise linear, enabling a binary search.

2-linear testing subroutine

- If the range is composed by two line segments
 - Identify the linear segment
 - Compute the intersection

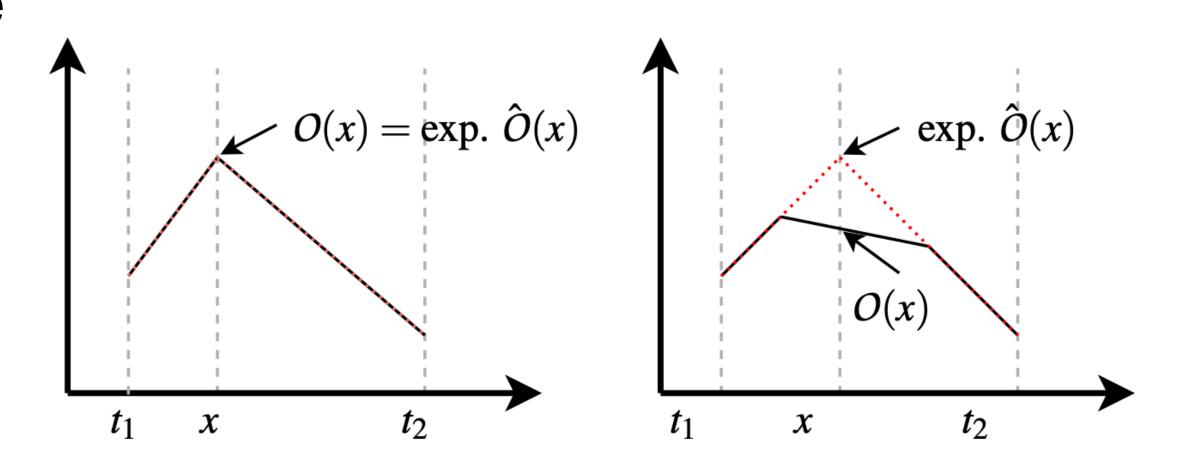


Figure 4: Efficient and accurate 2-linear testing subroutine in Algorithm 1. Left shows a successful case where the algorithm succeeds; right shows a potential failure case, where there are multiple nonlinearities. We detect this by observing the expected value of O(x) is not the observed (queried) value.

Function equivalent extraction Weight recovery

• For a critical point x_i , and a random input-space direction e_j

$$\begin{aligned} \frac{\partial^{2} O_{L}}{\partial e_{j}^{2}} \bigg|_{x_{i}} &= \frac{\partial O_{L}}{\partial e_{j}} \bigg|_{x_{i}+c \cdot e_{j}} - \frac{\partial O_{L}}{\partial e_{j}} \bigg|_{x_{i}-c \cdot e_{j}} \\ &= \sum_{k} A_{k}^{(1)} \mathbb{1} (A_{k}^{(0)} (x_{i}+c \cdot e_{j}) + B_{k}^{(0)} > 0) A_{kj}^{(0)} \\ &- \sum_{k} A_{k}^{(1)} \mathbb{1} (A_{k}^{(0)} (x_{i}-c \cdot e_{j}) + B_{k}^{(0)} > 0) A_{kj}^{(0)} \\ &= A_{i}^{(1)} \left(\mathbb{1} (A_{i}^{(0)} \cdot e_{j} > 0) - \mathbb{1} (-A_{i}^{(0)} \cdot e_{j} > 0) \right) A_{ji}^{(0)} \\ &= \pm (A_{ji}^{(0)} A_{i}^{(1)}) \end{aligned}$$

Weight recovery

- With e_1 and e_2 ,
 - We could compute $|A_{1i}^{(0)}A^{(1)}|$ and $|A_{2i}^{(0)}A^{(1)}|$
 - Then we could get $|A_{1i}^{(0)}/A_{2i}^{(0)}|$
- We can get $|A_{1i}^{(0)}/A_{ki}^{(0)}|$ for all k
- Just assign $A_{1i}^{(0)} = 1$

$$\begin{aligned} \frac{\partial^{2} O_{L}}{\partial e_{j}^{2}} \bigg|_{x_{i}} &= \frac{\partial O_{L}}{\partial e_{j}} \bigg|_{x_{i}+c \cdot e_{j}} - \frac{\partial O_{L}}{\partial e_{j}} \bigg|_{x_{i}-c \cdot e_{j}} \\ &= \sum_{k} A_{k}^{(1)} \mathbb{1} (A_{k}^{(0)} (x_{i}+c \cdot e_{j}) + B_{k}^{(0)} > 0) A_{kj}^{(0)} \\ &- \sum_{k} A_{k}^{(1)} \mathbb{1} (A_{k}^{(0)} (x_{i}-c \cdot e_{j}) + B_{k}^{(0)} > 0) A_{kj}^{(0)} \\ &= A_{i}^{(1)} \left(\mathbb{1} (A_{i}^{(0)} \cdot e_{j} > 0) - \mathbb{1} (-A_{i}^{(0)} \cdot e_{j} > 0) \right) A_{ji}^{(0)} \\ &= \pm (A_{ji}^{(0)} A_{i}^{(1)}) \end{aligned}$$

Weight sign recovery

• For a critical point x_i in the direction $e_j + e_k$

$$\left. \frac{\partial^2 O_L}{\partial (e_j + e_k)^2} \right|_{x_i} = \pm (A_{ji}^{(0)} A_i^{(1)} \pm A_{ki}^{(0)} A_i^{(1)}).$$

- As we know the scale,
 - Just to check the gradient is cancelled or compounded

Function equivalent extraction Last layer recover

- After got the first layer, the logit function is a linear transformation
- Recover by least square
 - With the critical point to save # of queries

Results

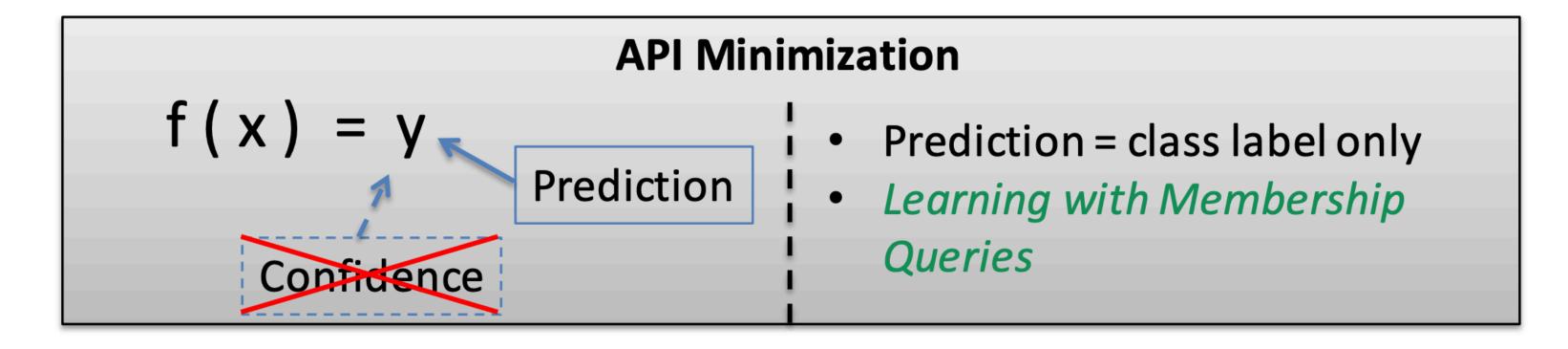
Parameters	25,000	50,000	100,000
Fidelity	100%	100%	99.98%
Queries	~150,000	~300,000	~600,000

Effectiveness of our Direct Recovery Attack

Counter measurements

Hard label output

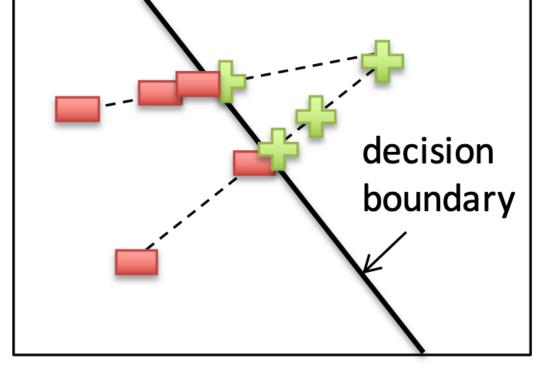
How to prevent extraction?



Attack on Linear Classifiers [Lowd, Meek – 2005]

classify as "+" if w*x + b > 0 and "-" otherwise \Rightarrow f(x) = sign(w*x + b)

- 1. Find points on decision boundary (w*x + b = 0)
 - Find a "+" and a "-"
 - Line search between the two points
- 2. Reconstruct w and b (up to scaling factor)



Counter measurements

- In the next class
 - Make the feature unlearnable
- DP will cover later in the course