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Review



Final Project
Presentation

• 6-7 mins per group (background, methodology, initial result)


• By group number


• 4 pages long report (addition content in appendix)


• Due on Dec 15



Final exam

• 90 mins


• Close-book



Review
Matrix derivate

• Chain rule: f is a function of Y, let Y=AXB, to get 


• 


• Since  as 


• So we get  
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Review
Matrix derivate

• Ex 1: , solve , where  is  vector,  is  matrix,  is  
vector


• Ex 2: , solve , where  is  vector,  is  matrix,  is  
vector


• Ex 3: , solve , where  is  vector,  is  matrix,  is 

 vector


•

f = aTXb
∂f
∂X

a m × 1 X m × n b n × 1

f = aTexp(Xb)
∂f
∂X

a m × 1 X m × n b n × 1

f = ∥Xw − y∥2 ∂f
∂w

y m × 1 X m × n w
n × 1



Review
Convexity

• A function  :  is a convex function


•  the function  is below any line segment between two points on :


• 


•

f ℝn → ℝ

⇔ f f

∀x1, x2, ∀t ∈ [0,1],

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)



Review
Convexity

• Another equivalent definition for differentiable function:


•  is convex if and only if f f(x) ≥ f(x0) + ∇f(x0)T(x − x0), ∀x, x0



Review
Convexity

• Convex function:


• (For differentiable function)  is a global minimum


• If  is twice differentiable 


• F is convex if and only if  is positive semi-definite 

• Example: linear regression, logistic regression, …

∇f(w*) = 0 ⇔ w*

f ⇒

∇2f(w)



Review
Lipchitz continuous/smooth

• A differential function  is said to be L-Lipschitz continuous:


• 


• A differential function  is said to be L-smooth: its gradient are Lipschitz continuous:


• 


• And we could get


• 


•

f

∥f(x1) − f(x2)∥2 ≤ L∥x1 − x2∥2

f

∥∇f(x1) − ∇f(x2)∥2 ≤ L∥x1 − x2∥2

∇2f(x) ⪯ LI

f(y) ≤ f(x) + ∇f(x)T(y − x) +
1
2

L∥y − x∥2



Review
Linear regression

• 


• : continuous, differentiable, convex


• Necessary condition of optimal :


•

minw f(w) = ∥Xw − y∥2

Etrain

w

∇f(w*) =

∂f
∂w0

(w*)

⋮
∂f

∂wd
(w*)

=
0
⋮
0



Review
Linear regression

•



•         

f(w) = ∥Xw − y∥2 = wTXTXw − 2wTXTy + yTy
∇f(w) = 2(XTXw − XTy)
∇f(w*) = 0 ⇒ XTXw* = XTy

normal equation
⇒ w* = (XTX)−1XTy



Review
Optimization

• Gradient descent


• Stochastic gradient descent


• Adagrad


• Momentum


• Adam



Review
Nonlinear mapping

• Can now freely do quadratic classification, quadratic regression


• Can easily extend to any degree of polynomial mappings


• E.g., 
ϕ(x) = (x1, x2, x3, x1x2, x1x3, x2x3, x1x2

2 , x1x2
3 , x1x2

2 , x2
2 x3, x2

2 x3, x3
1 , x3

2 , x3
3)



Review
Generalization bound

• 


• Given  and some , we have


• 


• i.e  for all 

P[¬∃h ∈ ℋ |Etr(h) − E(h) | > ϵ] = P[∀h ∈ ℋ |Etr(h) − E(h) | ≤ ϵ]

≥ 1 − 2 |ℋ |e−2ϵ2N

N δ

|Etr(h) − E(h) | ≤
1

2N
log

2 |ℋ |
δ

|Etr(h) − E(h) | ≤ γ h ∈ ℋ



Review
VC Dimension

• Given a set  (no relation to the training set) of points 
, we say that  shatters  if  can realize any labeling on . I.e, if 

for any set of labels , there exist some  so that 
 for all 


• If no data set of size  can be shattered by , then  is a break point for 


• 


• VC dimension for linear model

S = {x(i), …, x(d)}
x(i) ∈ 𝒳 ℋ S ℋ S

{y(i), …, y(d)} h ∈ ℋ
h(x(i)) = y(i) i = 1,…, d

k ℋ k ℋ

mℋ(k) < 2k



Review
Regularization

• Calling the regularizer , we minimize


• 


• In general,  can be any measurement for the “size” of 

Ω = Ω(h)

Ereg(h) = Etr(h) +
λ
N

Ω(h)

Ω(h) h



Review
Decision Tree

• The averaged entropy of a split 



• 


• Information gain: measure how 
good is the split


•

S → S1, S2

|S1 |
|S |

H(S1) +
|S2 |
|S |

H(S2)

H(S) − (( |S1 | / |S | )H(S1) + ( |S2 | / |S | )H(S2))



Review
Model ensemble

• Bagging


• Random Forest (Bootstrap ensemble for decision trees):


• Create  trees


• Learn each tree using a subsampled dataset  and subsampled feature set 


• Prediction: Average the results from all the  trees


• Boosting


• Direct loss minimization: at each stage , find the best function to minimize loss


• Solve 


• Update 

T

Si Di

T

m

fm = arg min
fm

N

∑
i=1

ℓ(yi, Fm−1(xi) + fm(xi))

Fm ← Fm−1 + fm



Neural networks

• Forward/ backward propagation


• Activation function


• Convolution neural networks: kernel, stride, padding, pooling


• Overfitting


• Gradient vanish/exploding



Exam

• 12-Dec-2023 12:30PM - 02:30PM


• Lecture Theater D


• SFQ before Nov 30


