COMP5212: Machine Learning

Review

Minhao CHENG

Final Project

Presentation

- 6-7 mins per group (background, methodology, initial result)
- By group number
- 4 pages long report (addition content in appendix)
- Due on Dec 15

Final exam

- 90 mins
- Close-book

Review

Matrix derivate

- Chain rule: f is a function of Y , let $\mathrm{Y}=\mathrm{AXB}$, to get $\frac{\partial f}{\partial X}$
- $d f=\operatorname{tr}\left(\frac{\partial f^{T}}{\partial Y} d Y\right)=\operatorname{tr}\left({\frac{\partial f}{}{ }^{T}}_{\partial Y} A d X B\right)=\operatorname{tr}\left(B \frac{\partial f^{T}}{\partial Y} A d X\right)=\operatorname{tr}\left(\left(A^{T} \frac{\partial f}{\partial Y} B^{T}\right)^{T} d X\right)$
- Since $d Y=d(A) X B+A d X B+A X d B=A d X B$ as $d A=0, d B=0$
. So we get $\frac{\partial f}{\partial X}=A^{T} \frac{\partial f}{\partial Y} B^{T}$

Review

Matrix derivate

- Ex 1: $f=a^{T} X b$, solve $\frac{\partial f}{\partial X}$, where a is $m \times 1$ vector, X is $m \times n$ matrix, b is $n \times 1$ vector
- Ex 2: $f=a^{T} \exp (X b)$, solve $\frac{\partial f}{\partial X}$, where a is $m \times 1$ vector, X is $m \times n$ matrix, b is $n \times 1$ vector
- Ex 3: $f=\|X w-y\|^{2}$, solve $\frac{\partial f}{\partial w}$, where y is $m \times 1$ vector, X is $m \times n$ matrix, w is $n \times 1$ vector

Review

Convexity

- A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function
- \Leftrightarrow the function f is below any line segment between two points on f :
- $\forall x_{1}, x_{2}, \forall t \in[0,1]$,
- $f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)$

Review

Convexity

- Another equivalent definition for differentiable function:
- f is convex if and only if $f(x) \geq f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right), \forall x, x_{0}$

Review

Convexity

- Convex function:
- (For differentiable function) $\nabla f\left(w^{*}\right)=0 \Leftrightarrow w^{*}$ is a global minimum
- If f is twice differentiable \Rightarrow
- F is convex if and only if $\nabla^{2} f(w)$ is positive semi-definite
- Example: linear regression, logistic regression, ...

Review

Lipchitz continuous/smooth

- A differential function f is said to be L-Lipschitz continuous:
- $\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|_{2} \leq L\left\|x_{1}-x_{2}\right\|_{2}$
- A differential function f is said to be L-smooth: its gradient are Lipschitz continuous:
- $\left\|\nabla f\left(x_{1}\right)-\nabla f\left(x_{2}\right)\right\|_{2} \leq L\left\|x_{1}-x_{2}\right\|_{2}$
- And we could get
- $\nabla^{2} f(x) \leq L I$
- $f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2} L\|y-x\|^{2}$

Review

Linear regression

- $\min _{w} f(w)=\|X w-y\|^{2}$
- $E_{\text {train }}$ continuous, differentiable, convex
- Necessary condition of optimal w :
- $\nabla f\left(w^{*}\right)=\left[\begin{array}{c}\frac{\partial f}{\partial w_{0}}\left(w^{*}\right) \\ \vdots \\ \frac{\partial f}{\partial w_{d}}\left(w^{*}\right)\end{array}\right]=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$

Review

Linear regression

$$
\begin{gathered}
f(w)=\|X w-y\|^{2}=w^{T} X^{T} X w-2 w^{T} X^{T} y+y^{T} y \\
\nabla f(w)=2\left(X^{T} X w-X^{T} y\right) \\
\nabla f\left(w^{*}\right)=0 \Rightarrow \underbrace{X^{T} X w^{*}=X^{T} y}_{\text {normal equation }}
\end{gathered}
$$

- $\Rightarrow w^{*}=\left(X^{T} X\right)^{-1} X^{T} y$

Review

Optimization

- Gradient descent
- Stochastic gradient descent
- Adagrad
- Momentum
- Adam

Review

Nonlinear mapping

- Can now freely do quadratic classification, quadratic regression
- Can easily extend to any degree of polynomial mappings
- E.g.,

$$
\phi(x)=\left(x_{1}, x_{2}, x_{3}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, x_{1} x_{2}^{2}, x_{1} x_{3}^{2}, x_{1} x_{2}^{2}, x_{2}^{2} x_{3}, x_{2}^{2} x_{3}, x_{1}^{3}, x_{2}^{3}, x_{3}^{3}\right)
$$

Review

Generalization bound

$$
\bullet
$$

$$
\begin{aligned}
P\left[\neg \exists h \in \mathscr{H}\left|E_{t r}(h)-E(h)\right|>\epsilon\right] & =P\left[\forall h \in \mathscr{H}\left|E_{t r}(h)-E(h)\right| \leq \epsilon\right] \\
& \geq 1-2|\mathscr{H}| e^{-2 \epsilon^{2} N}
\end{aligned}
$$

- Given N and some δ, we have
- $\left|E_{t r}(h)-E(h)\right| \leq \sqrt{\frac{1}{2 N} \log \frac{2|\mathscr{H}|}{\delta}}$
- i.e $\left|E_{t r}(h)-E(h)\right| \leq \gamma$ for all $h \in \mathscr{H}$

Review

VC Dimension

- Given a set $S=\left\{x^{(i)}, \ldots, x^{(d)}\right\}$ (no relation to the training set) of points $x^{(i)} \in \mathscr{X}$, we say that \mathscr{H} shatters S if \mathscr{H} can realize any labeling on S. I.e, if for any set of labels $\left\{y^{(i)}, \ldots, y^{(d)}\right\}$, there exist some $h \in \mathscr{H}$ so that $h\left(x^{(i)}\right)=y^{(i)}$ for all $i=1, \ldots, d$
- If no data set of size k can be shattered by \mathscr{H}, then k is a break point for \mathscr{H}
- $m_{\mathscr{H}}(k)<2^{k}$
- VC dimension for linear model

Review

Regularization

- Calling the regularizer $\Omega=\Omega(h)$, we minimize
- $E_{\mathrm{reg}}(h)=E_{\mathrm{tr}}(h)+\frac{\lambda}{N} \Omega(h)$
- In general, $\Omega(h)$ can be any measurement for the "size" of h

Review

Decision Tree

- The averaged entropy of a split $S \rightarrow S_{1}, S_{2}$
- $\frac{\left|S_{1}\right|}{|S|} H\left(S_{1}\right)+\frac{\left|S_{2}\right|}{|S|} H\left(S_{2}\right)$
- Information gain: measure how good is the split

$$
\text { Entropy = } 1.58
$$

Averaged entropy: 1.51
Information gain: 1.58-1.51 $=0.07$

- $H(S)-\left(\left(\left|S_{1}\right| /|S|\right) H\left(S_{1}\right)+\left(\left|S_{2}\right| /|S|\right) H\left(S_{2}\right)\right)$

Review

Model ensemble

- Bagging
- Random Forest (Bootstrap ensemble for decision trees):
- Create T trees
- Learn each tree using a subsampled dataset S_{i} and subsampled feature set D_{i}
- Prediction: Average the results from all the T trees
- Boosting
- Direct loss minimization: at each stage m, find the best function to minimize loss
. Solve $f_{m}=\arg \min _{f_{m}} \sum_{i=1}^{N} \ell\left(y_{i}, F_{m-1}\left(x_{i}\right)+f_{m}\left(x_{i}\right)\right)$
- Update $F_{m} \leftarrow F_{m-1}+f_{m}$

Neural networks

- Forward/ backward propagation
- Activation function
- Convolution neural networks: kernel, stride, padding, pooling
- Overfitting
- Gradient vanish/exploding

Exam

- 12-Dec-2023 12:30PM - 02:30PM
- Lecture Theater D
- SFQ before Nov 30

