COMP5212: Machine Learning Review

Minhao CHENG

Final Project Presentation

- 6-7 mins per group (background, methodology, initial result)
 - By group number
- 4 pages long report (addition content in appendix)
 - Due on Dec 15

Final exam

- 90 mins
- Close-book

Review Matrix derivate

Chain rule: f is a function of Y, let Y=AXB, to get
$$\frac{\partial f}{\partial X}$$

• $df = tr(\frac{\partial f}{\partial Y}^T dY) = tr(\frac{\partial f}{\partial Y}^T A dXB) = tr(B\frac{\partial f}{\partial Y}^T A dX) = tr((A^T \frac{\partial f}{\partial Y}B^T)^T dX)$
• Since $dY = d(A)YB + A dYB + AYdB = A dYB$ as $dA = 0 dB = 0$

• Since $a_I = a(A)XB + AaXB + AXaB = AaXB$ as aA = 0, aB = 0

• So we get
$$\frac{\partial f}{\partial X} = A^T \frac{\partial f}{\partial Y} B^T$$

Review Matrix derivate

- Ex 1: $f = a^T X b$, solve $\frac{\partial f}{\partial X}$, where a is $m \times 1$ vector, X is $m \times n$ matrix, b is $n \times 1$ vector
- vector
- Ex 3: $f = ||Xw y||^2$, solve $\frac{\partial f}{\partial w}$, where y is $m \times 1$ vector, X is $m \times n$ matrix, w is $n \times 1$ vector

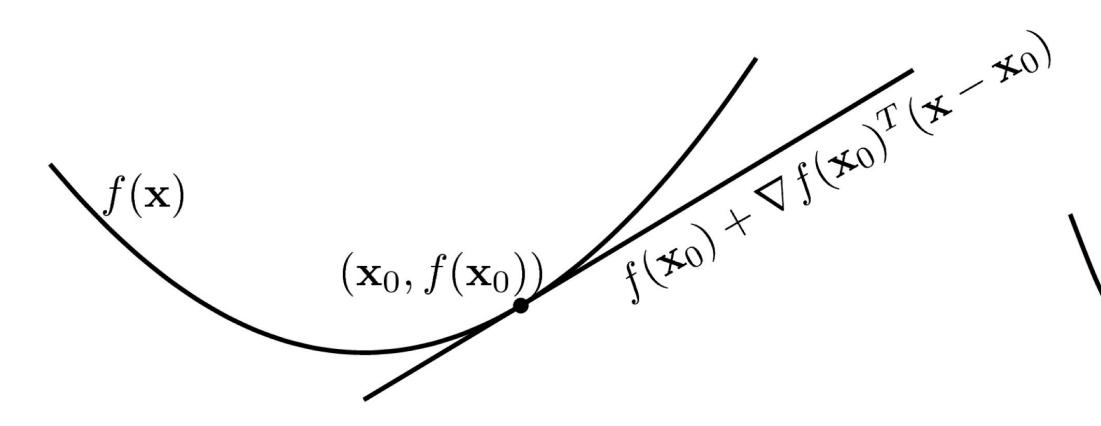
• Ex 2: $f = a^T exp(Xb)$, solve $\frac{\partial f}{\partial X}$, where *a* is $m \times 1$ vector, *X* is $m \times n$ matrix, *b* is $n \times 1$

Review Convexity

- A function $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function
- \Leftrightarrow the function f is below any line segment between two points on f:
 - $\forall x_1, x_2, \forall t \in [0,1],$
 - $f(tx_1 + (1 t)x_2) \le tf(x_1) + (1 t)f(x_2)$

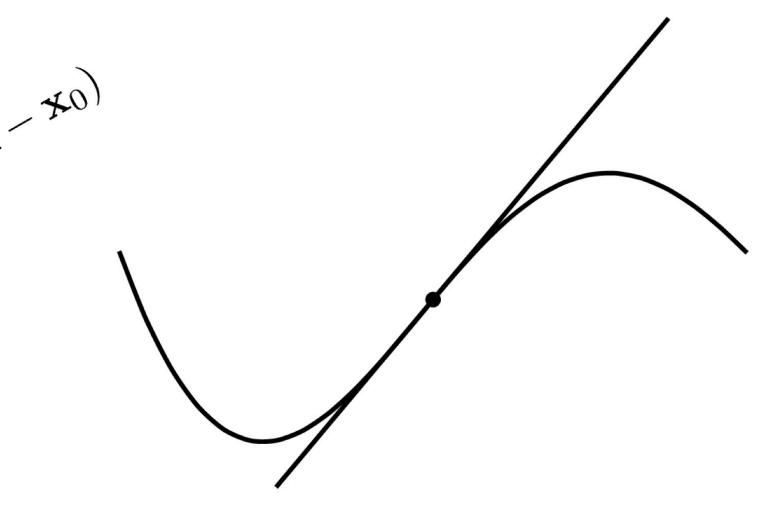
Review Convexity

- Another equivalent definition for differentiable function:
 - f is convex if and only if $f(x) \ge f(x)$



convex function

$$(x_0) + \nabla f(x_0)^T (x - x_0), \forall x, x_0$$

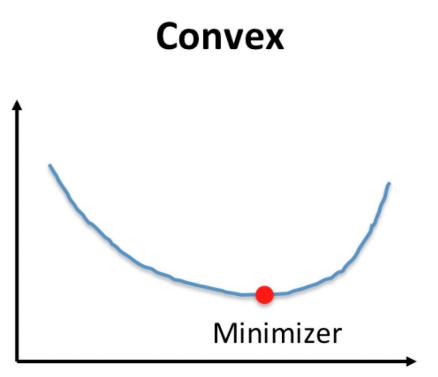


nonconvex function

Review Convexity

- Convex function:

 - If f is twice differentiable \Rightarrow
 - F is convex if and only if $\nabla^2 f(w)$ is **positive semi-definite**
 - Example: linear regression, logistic regression, ...



• (For differentiable function) $\nabla f(w^*) = 0 \Leftrightarrow w^*$ is a global minimum

Review Lipchitz continuous/smooth

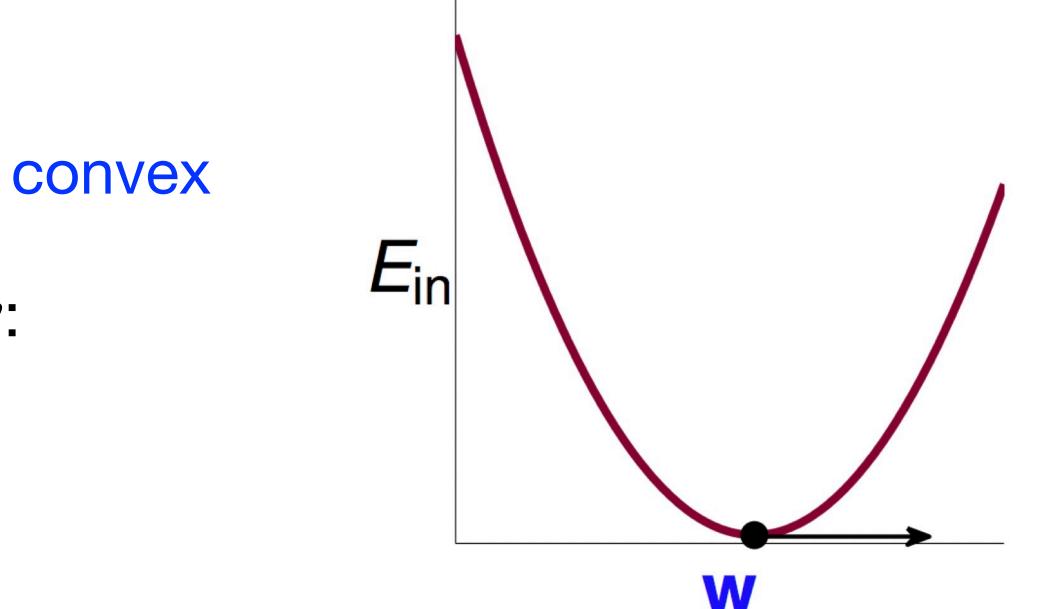
- A differential function f is said to be L-Lipschitz continuous:
 - $||f(x_1) f(x_2)||_2 \le L||x_1 x_2||_2$
- A differential function f is said to be L-smooth: its gradient are Lipschitz continuous:
 - $\|\nabla f(x_1) \nabla f(x_2)\|_2 \le L \|x_1 x_2\|_2$
 - And we could get
 - $\nabla^2 f(x) \leq LI$
 - $f(y) \le f(x) + \nabla f(x)^T (y x) + \frac{1}{2}L\|_2^2$

$$|y - x||^2$$

Review Linear regression

- $min_w f(w) = ||Xw y||^2$
 - E_{train} : continuous, differentiable, convex
 - Necessary condition of optimal w:

$$\nabla f(w^*) = \begin{bmatrix} \frac{\partial f}{\partial w_0}(w^*) \\ \vdots \\ \frac{\partial f}{\partial w_d}(w^*) \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$



Review Linear regression

$$f(w) = ||Xw - y||^2 = w^T X^T Xw - \nabla f(w) = 2(X^T Xw - X^T y)$$
$$\nabla f(w^*) = 0 \Rightarrow X^T Xw^* = X^T$$

normal equation

• $\Rightarrow w^* = (X^T X)^{-1} X^T y$

 $2w^T X^T y + y^T y$

ReviewOptimization

- Gradient descent
- Stochastic gradient descent
- Adagrad
- Momentum
- Adam

Review **Nonlinear mapping**

- Can now freely do quadratic classification, quadratic regression
- Can easily extend to any degree of polynomial mappings

• E.g.,

$$\phi(x) = (x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3)$$

 $(x_3, x_1x_2^2, x_1x_3^2, x_1x_2^2, x_2^2x_3, x_2^2x_3, x_2^2x_3, x_1^3, x_2^3, x_3^3)$

Review **Generalization bound**

• Given N and some δ , we have

•
$$|E_{tr}(h) - E(h)| \le \sqrt{\frac{1}{2N} \log \frac{1}{2N}}$$

• i.e $|E_{tr}(h) - E(h)| \leq \gamma$ for all $h \in \mathcal{H}$

$P[\neg \exists h \in \mathcal{H} | E_{tr}(h) - E(h) | > \epsilon] = P[\forall h \in \mathcal{H} | E_{tr}(h) - E(h) | \le \epsilon]$ $\geq 1 - 2 |\mathcal{H}| e^{-2\epsilon^2 N}$

 $2|\mathcal{H}|$ δ

1

ReviewVC Dimension

- Given a set $S = \{x^{(i)}, \dots, x^{(d)}\}$ (no relation to the training set) of points $x^{(i)} \in \mathcal{X}$, we say that \mathcal{H} shatters S if \mathcal{H} can realize any labeling on S. I.e, if for any set of labels $\{y^{(i)}, \dots, y^{(d)}\}$, there exist some $h \in \mathcal{H}$ so that $h(x^{(i)}) = y^{(i)}$ for all $i = 1, \dots, d$
- If no data set of size k can be shattered by \mathcal{H} , then k is a break point for \mathcal{H}

•
$$m_{\mathcal{H}}(k) < 2^k$$

• VC dimension for linear model

Review Regularization

• Calling the regularizer $\Omega = \Omega(h)$, we minimize

•
$$E_{\text{reg}}(h) = E_{\text{tr}}(h) + \frac{\lambda}{N}\Omega(h)$$

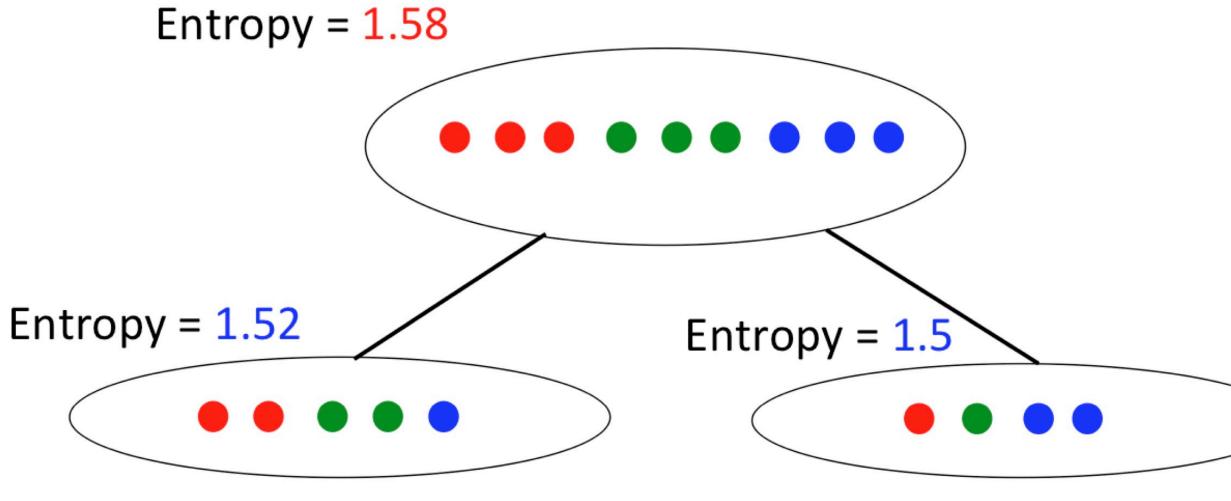
• In general, $\Omega(h)$ can be any measurement for the "size" of h

Review **Decision Tree**

• The averaged entropy of a split $S \rightarrow S_1, S_2$

•
$$\frac{|S_1|}{|S|}H(S_1) + \frac{|S_2|}{|S|}H(S_2)$$

- Information gain: measure how good is the split
 - $H(S) ((|S_1|/|S|)H(S_1) + (|S_2|/|S|)H(S_2))$



Averaged entropy: 1.51 Information gain: 1.58 – 1.51 = 0.07

Review **Model ensemble**

- Bagging
 - Random Forest (Bootstrap ensemble for decision trees):
 - Create *T* trees
 - Learn each tree using a subsampled dataset S_i and subsampled feature set D_i
 - Prediction: Average the results from all the T trees
- Boosting
 - Direct loss minimization: at each stage *m*, find the best function to minimize loss

• Solve
$$f_m = \arg \min_{f_m} \sum_{i=1}^N \ell(y_i, F_{m-1}(x_i) + f_m(x_i))$$

• Update $F_m \leftarrow F_{m-1} + f_m$

Neural networks

- Forward/ backward propagation
- Activation function
- Convolution neural networks: kernel, stride, padding, pooling
- Overfitting
- Gradient vanish/exploding

Exam

• 12-Dec-2023 12:30PM - 02:30PM

- Lecture Theater D
- SFQ before Nov 30