COMP5212: Machine Learning
 Lecture 9

From last time

Shattered

- Given a set $S=\left\{x^{(i)}, \ldots, x^{(d)}\right\}$ (no relation to the training set) of points $x^{(i)} \in \mathscr{X}$, we say that \mathscr{H} shatters S if \mathscr{H} can realize any labeling on S. I.e, if for any set of labels $\left\{y^{(i)}, \ldots, y^{(d)}\right\}$, there exist some $h \in \mathscr{H}$ so that $h\left(x^{(i)}\right)=y^{(i)}$ for all $i=1, \ldots, d$

Break point of \mathscr{H}

- If no data set of size k can be shattered by \mathscr{H}, then k is a break point for \mathscr{H}
- $m_{\mathscr{H}}(k)<2^{k}$
- VC dimension of $\mathscr{H}: k-1$ (the most points \mathscr{H} can shatter)

Break point of \mathscr{H}

- If no data set of size k can be shattered by \mathscr{H}, then k is a break point for \mathscr{H}
- $m_{\mathscr{H}}(k)<2^{k}$
- VC dimension of $\mathscr{H}: k-1$ (the most points \mathscr{H} can shatter)
- For 2-D perceptron: $k=4$, VC dimension $=3$

Can't generate

Break point - examples

- Positive rays: $m_{\mathscr{H}}(N)=N+1$
- Break point $k=2, d_{V C}=1$

Break point - examples

- Positive rays: $m_{\mathscr{H}}(N)=N+1$
- Break point $k=2, d_{V C}=1$
- Positive intervals: $m_{\mathscr{H}}(N)=\frac{1}{2} N^{2}+\frac{1}{2} N+1$
- Break point $k=3, d_{V C}=2$

Break point - examples

- Positive rays: $m_{\mathscr{H}}(N)=N+1$
- Break point $k=2, d_{V C}=1$
- Positive intervals: $m_{\mathscr{H}}(N)=\frac{1}{2} N^{2}+\frac{1}{2} N+1$
- Break point $k=3, d_{V C}=2$
- Convex set: $m_{\mathscr{H}}(N)=2^{N}$
- Break point $k=\infty, d_{V C}=\infty$
- Connection to \# of parameters

We will show

- No break point $\Rightarrow m_{\mathscr{H}}(N)=2^{N}$
- Any break point $\Rightarrow m_{\mathscr{H}}(N)$ is polynomial in N

Puzzle

- Break point is $k=2$

Puzzle

- Break point is $k=2$

$$
\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
\hline O & O & O \\
O & O & 0 \\
O & 0 & O \\
O & O & 0
\end{array}
$$

Puzzle

- Break point is $k=2$

Bounding $m_{\mathscr{H}}(N)$

- Key quantity:
- $B(N, k)$: Maximum number of dichotomies on N points, with break k

Bounding $m_{\mathscr{H}}(N)$

- Key quantity:
- $B(N, k)$: Maximum number of dichotomies on N points, with break k
- If the hypothesis space has break point k, then
- $m_{\mathscr{H}}(N) \leq B(N, k)$

Recursive bound on $B(N, k)$

- For any "valid" set of dichotomies, reorganize rows by
- S_{1} : pattern of x_{1}, \ldots, x_{N-1} only appears once
- S_{2}^{+}, S_{2}^{-}: pattern of x_{1}, \ldots, x_{N-1} only appears twice

Recursive bound on $B(N, k)$

- Focus on x_{1}, \ldots, x_{N-1} columns:
- $\alpha+\beta \leq B(N-1, k)$

Recursive bound on $B(N, k)$

- Now focus on the $S_{2}=S_{2}^{+} \cup S_{2}^{-}$:
- $\beta \leq B(N-1, k-1)$

Recursive bound on $B(N, k)$

$$
\begin{aligned}
B(N, k) & =\alpha+\beta+\beta \\
& \leq B(N-1, k)+B(N-1, k-1)
\end{aligned}
$$

- What's the upper bound for $B(N, k)$?

Recursive bound on $B(N, k)$

$$
\begin{aligned}
B(N, k) & =\alpha+\beta+\beta \\
& \leq B(N-1, k)+B(N-1, k-1)
\end{aligned}
$$

Recursive bound on $B(N, k)$

$$
\begin{aligned}
B(N, k) & =\alpha+\beta+\beta \\
& \leq B(N-1, k)+B(N-1, k-1)
\end{aligned}
$$

Recursive bound on $B(N, k)$

$$
\begin{aligned}
B(N, k) & =\alpha+\beta+\beta \\
& \leq B(N-1, k)+B(N-1, k-1)
\end{aligned}
$$

Recursive bound on $B(N, k)$

$$
\begin{aligned}
B(N, k) & =\alpha+\beta+\beta \\
& \leq B(N-1, k)+B(N-1, k-1)
\end{aligned}
$$

		k					
	1	2	3	4	5	$\ldots \ldots$	
	N	1	2	2	2	2	$\ldots \ldots$
	2	1	3				
	3	1					
	4	1					
	5	1					

Recursive bound on $B(N, k)$

$$
\begin{aligned}
B(N, k) & =\alpha+\beta+\beta \\
& \leq B(N-1, k)+B(N-1, k-1)
\end{aligned}
$$

Recursive bound on $B(N, k)$

$$
\begin{aligned}
B(N, k) & =\alpha+\beta+\beta \\
& \leq B(N-1, k)+B(N-1, k-1)
\end{aligned}
$$

Analytic solution for $B(N, k)$ bound

- $B(N, k)$ is upper bounded by $C(N, k)$
- $C(N, 1)=1, N=1,2, \ldots$
- $C(1, k)=2, k=2,3, \ldots$
- $C(N, k)=C(N-1, k)+C(N-1, k-1)$
. Theorem: $C(N, k)=\sum_{i=0}^{k=1}\binom{N}{i}$

Analytic solution for $B(N, k)$ bound

- $B(N, k)$ is upper bounded by $C(N, k)$
- $C(N, 1)=1, N=1,2, \ldots$
- $C(1, k)=2, k=2,3, \ldots$
- $C(N, k)=C(N-1, k)+C(N-1, k-1)$
. Sauer's Lemma: $C(N, k)=\sum_{i=0}^{k=1}\binom{N}{i}$
- Boundary conditions: (easy to check)

Analytic solution for $B(N, k)$ bound

- $B(N, k)$ is upper bounded by $C(N, k)$
- $C(N, 1)=1, N=1,2, \ldots$
- $C(1, k)=2, k=2,3, \ldots$
- $C(N, k)=C(N-1, k)+C(N-1, k-1)$
. Sauer's Theorem: $C(N, k)=\sum_{i=0}^{k-1}\binom{N}{i}$
- Boundary conditions: (easy to check)
- Induction:

$$
\text { - } \underbrace{\sum_{i=0}^{k-1}\binom{N}{i}}_{\text {select }<k \text { from } N \text { items }}=\underbrace{\sum_{i=0}^{k-1}\binom{N-1}{i}}_{N \text {-th item not chosen }}+\underbrace{\sum_{i=0}^{k-2}\binom{N-1}{i}}_{N \text {-th item chosen }}
$$

It is polynomial!

- For a given \mathscr{H}, the break point k is fixed:

$$
m_{\mathscr{H}}(N) \leq \quad \sum_{i=0}^{k-1}\binom{N}{i}
$$

Polynomial with degree $k-1$

It is polynomial!

- For a given \mathscr{H}, the break point k is fixed:
$m_{\mathscr{H}}(N) \leq \quad \sum_{i=0}^{k-1}\binom{N}{i}$
Polynomial with degree $k-1$
- \mathscr{H} is positive rays: (break point $k=2$)
- $m_{\mathscr{H}}(N)=N+1$

It is polynomial!

- For a given \mathscr{H}, the break point k is fixed:
$m_{\mathscr{H}}(N) \leq \quad \sum_{i=0}^{k-1}\binom{N}{i}$
Polynomial with degree $k-1$
- \mathscr{H} is 2D perceptrons: (break point $k=4$)
- $m_{\mathscr{H}}(N)=$?

It is polynomial!

- For a given \mathscr{H}, the break point k is fixed:

$$
m_{\mathscr{H}}(N) \leq \quad \sum_{i=0}^{k-1}\binom{N}{i}
$$

Polynomial with degree $k-1$

- \mathscr{H} is 2D perceptrons: (break point $k=4$)
- $m_{\mathscr{H}}(N) \leq \frac{1}{6} N^{3}+\frac{5}{6} N+1$

Replace M by $m_{\mathscr{H}}(N)$

- Original bound:
- $\mathbb{P}\left[\exists h \in \mathscr{H}\right.$ s.t. $\left.\left|E_{\mathrm{tr}}(h)-E(h)\right|>\epsilon\right] \leq 2 M e^{-2 \epsilon^{2} N}$
- Replace M by $m_{\mathscr{H}}(N)$

$$
\underbrace{\mathbb{P}\left[\exists h \in \mathscr{H} \text { s.t. }\left|E_{\mathrm{tr}}(h)-E(h)\right|>\epsilon\right]}_{B A D} \leq 2 \cdot 2 m_{\mathscr{H}}(2 N) \cdot e^{-\frac{1}{8} \epsilon^{2} N}
$$

- Vapnik-Chervonenkis (VC) bound

VC dimension

Definition

- The VC dimension of a hypothesis set \mathscr{H}, denoted by $d_{\mathrm{VC}}(\mathscr{H})$, is the largest value of N for which $m_{\mathscr{H}}(N)=2^{N}$
- "The most points \mathscr{H} can shatter"

VC dimension

Definition

- The VC dimension of a hypothesis set \mathscr{H}, denoted by $d_{\mathrm{VC}}(\mathscr{H})$, is the largest value of N for which $m_{\mathscr{H}}(N)=2^{N}$
- "The most points \mathscr{H} can shatter"
- $N \leq d_{\mathrm{VC}}(\mathscr{H}) \Rightarrow \mathscr{H}$ can shatter N points

VC dimension

Definition

- The VC dimension of a hypothesis set \mathscr{H}, denoted by $d_{\mathrm{VC}}(\mathscr{H})$, is the largest value of N for which $m_{\mathscr{H}}(N)=2^{N}$
- "The most points \mathscr{H} can shatter"
- $N \leq d_{\mathrm{VC}}(\mathscr{H}) \Rightarrow \mathscr{H}$ can shatter N points
- $k>d_{\mathrm{VC}}(\mathscr{H}) \Rightarrow \mathscr{H}$ cannot be shattered
- The smallest break point is 1 above VC-dimension

VC dimension

The growth function

- In terms of a break point k :
. $m_{\mathscr{H}}(N) \leq \sum_{i=0}^{k-1}\binom{N}{i}$
- In terms of the VC dimension d_{VC} :
- $m_{\mathscr{H}}(N) \leq \sum_{i=0}^{d \vee C}\binom{N}{i}$

VC dimension

VC dimension of linear classifier

- For $d=2, d_{\mathrm{VC}}=3$

VC dimension
 VC dimension of linear classifier

- For $d=2, d_{\mathrm{VC}}=3$
- What if $d>2$?

VC dimension
 VC dimension of linear classifier

- For $d=2, d_{\mathrm{VC}}=3$
- What if $d>2$?
- In general,
- $d_{\mathrm{VC}}=d+1$

VC dimension
 VC dimension of linear classifier

- For $d=2, d_{\mathrm{VC}}=3$
- What if $d>2$?
- In general,
- $d_{\mathrm{VC}}=d+1$
- We will prove $d_{\mathrm{VC}} \geq d+1$ and $d_{\mathrm{VC}} \leq d+1$

