COMP5212: Machine Learning
 Lecture 8

Minhao Cheng

Logistics

- Programming Homework 1 is out
- Due on Oct 18
- Term project proposal
- Due on this Friday

Theory of Generalization

A simple solution

- For each particular h,
- $P\left[\left|E_{t r}(h)-E(h)\right|>\epsilon\right] \leq 2 e^{-2 \epsilon^{2} N}$
- If we have a hypothesis set \mathscr{H}, we want to derive the bound for $P\left[\sup _{h \in \mathscr{H}}\left|E_{t r}(h)-E(h)\right|>\epsilon\right]$

Where did the $|\mathscr{H}|$ come from?

- The Bad events \mathscr{B}_{m} :
- $\left|E_{\mathrm{tr}}\left(h_{m}\right)-E\left(h_{m}\right)\right|>\epsilon \quad$ with probability $\leq 2 e^{-2 \epsilon^{2} N}$

Where did the $|\mathscr{H}|$ come from?

- The Bad events \mathscr{B}_{m} :
- $\left|E_{\mathrm{tr}}\left(h_{m}\right)-E\left(h_{m}\right)\right|>\epsilon \quad$ with probability $\leq 2 e^{-2 \epsilon^{2} N}$
- The union bound:
. $\mathbb{P}\left[\mathscr{B}_{1}\right.$ or \mathscr{B}_{2} or \ldots or $\left.\mathscr{B}_{M}\right] \leq \mathbb{P}\left[\mathscr{B}_{1}\right]+\mathbb{P}\left[\mathscr{B}_{2}\right]+\ldots+\mathbb{P}\left[\mathscr{B}_{M}\right] \leq 2|\mathscr{H}| e^{-2 \epsilon^{2} N}$

No overlap: bound is tight

Large overlap

Theory of Generalization

A simple solution

- For each particular h,
- $P\left[\left|E_{t r}(h)-E(h)\right|>\epsilon\right] \leq 2 e^{-2 \epsilon^{2} N}$
- If we have a hypothesis set \mathscr{H}, we want to derive the bound for $P\left[\sup _{h \in \mathscr{H}}\left|E_{t r}(h)-E(h)\right|>\epsilon\right]$
- $P\left[\left|E_{t r}\left(h_{1}\right)-E\left(h_{1}\right)\right|>\epsilon\right]$ or \ldots or $P\left[\left|E_{t r}\left(h_{|\mathscr{H}|}\right)-E\left(h_{\mid \mathscr{H}}\right)\right|>\epsilon\right]$
. $\leq \sum_{m=1}^{\mathscr{H}} P\left[\left|E_{t r}\left(h_{m}\right)-E\left(h_{m}\right)\right|>\epsilon\right] \leq 2|\mathscr{H}| e^{-2 \epsilon^{2} N}$
. Because of union bound inequality $P\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} P\left(A_{i}\right)$

Uniform convergence

- When our learning algorithm \mathscr{A} picks the hypothesis g :
- $P\left[\exists h \in \mathscr{H}\left|E_{t r}(h)-E(h)\right|>\epsilon\right] \leq 2|\mathscr{H}| e^{-2 \epsilon^{2} N}$
- Subtract both sides from 1

$$
\bullet
$$

$$
\begin{aligned}
P\left[\neg \exists h \in \mathscr{H}\left|E_{t r}(h)-E(h)\right|>\epsilon\right] & =P\left[\forall h \in \mathscr{H}\left|E_{t r}(h)-E(h)\right| \leq \epsilon\right] \\
& \geq 1-2|\mathscr{H}| e^{-2 \epsilon^{2} N}
\end{aligned}
$$

What uniform convergence tell us?

$$
\begin{aligned}
P\left[\neg \exists h \in \mathscr{H}\left|E_{t r}(h)-E(h)\right|>\epsilon\right] & =P\left[\forall h \in \mathscr{H}\left|E_{t r}(h)-E(h)\right| \leq \epsilon\right] \\
& \geq 1-2|\mathscr{H}| e^{-2 \epsilon^{2} N}
\end{aligned}
$$

- Given ϵ and some $\delta>0$, how large must N be before we can guarantee that with probability at least $1-\delta$, training error will be within ϵ of generalization error?
- Set $\delta=2|\mathscr{H}| e^{-2 \epsilon^{2} N}$, solve N
. $N \geq \frac{1}{2 \epsilon^{2}} \log \frac{2|\mathscr{H}|}{\delta}$
- The training set size N that a certain method or algorithm requires in order to achieve a certain level of performance is also called the algorithm's sample complexity

What uniform convergence tell us?

$$
\bullet
$$

$$
\begin{aligned}
P\left[\neg \exists h \in \mathscr{H}\left|E_{t r}(h)-E(h)\right|>\epsilon\right] & =P\left[\forall h \in \mathscr{H}\left|E_{t r}(h)-E(h)\right| \leq \epsilon\right] \\
& \geq 1-2|\mathscr{H}| e^{-2 \epsilon^{2} N}
\end{aligned}
$$

- Given N and some δ, we have
- $\left|E_{t r}(h)-E(h)\right| \leq \sqrt{\frac{1}{2 N} \log \frac{2|\mathscr{H}|}{\delta}}$
- i.e $\left|E_{t r}(h)-E(h)\right| \leq \gamma$ for all $h \in \mathscr{H}$

What uniform convergence tell us?

$$
\bullet
$$

$$
\begin{aligned}
P\left[\neg \exists h \in \mathscr{H}\left|E_{t r}(h)-E(h)\right|>\epsilon\right] & =P\left[\forall h \in \mathscr{H}\left|E_{t r}(h)-E(h)\right| \leq \epsilon\right] \\
& \geq 1-2|\mathscr{H}| e^{-2 \epsilon^{2} N}
\end{aligned}
$$

- Given N and some δ, we have
- $\left|E_{t r}(h)-E(h)\right| \leq \sqrt{\frac{1}{2 N} \log \frac{2|\mathscr{H}|}{\delta}}$
- i.e $\left|E_{t r}(h)-E(h)\right| \leq \gamma$ for all $h \in \mathscr{H}$
- What about the best hypothesis in training data?

What uniform convergence tell us?

- Given N and some δ, we have
- $\left|E_{t r}(h)-E(h)\right| \leq \sqrt{\frac{1}{2 N} \log \frac{2|\mathscr{H}|}{\delta}}$
- i.e $\left|E_{t r}(h)-E(h)\right| \leq \gamma$ for all $h \in \mathscr{H}$
- What about the best hypothesis in training data? $\hat{h}=\arg \min _{h \in \mathscr{H}} E_{t r}(h)$
- Define the best hypothesis as $h^{*}=\arg \min _{h \in \mathscr{H}} E(h)$
- We have $E(\hat{h}) \leq E_{t r}(\hat{h})+\gamma \leq E_{t r}\left(h^{*}\right)+\gamma \leq E\left(h^{*}\right)+2 \gamma$

What uniform convergence tell us?

- What about the best hypothesis in training data? $\hat{h}=\arg \min _{h \in \mathscr{H}} E_{t r}(h)$
- Define the best hypothesis as $h^{*}=\arg \min _{h \in \mathscr{H}} E(h)$
- We have $E(\hat{h}) \leq E_{t r}(\hat{h})+\gamma \leq E_{t r}\left(h^{*}\right)+\gamma \leq E\left(h^{*}\right)+2 \gamma$
- So we have
. $E(\hat{h}) \leq\left(\min _{h \in \mathscr{H}} E(h)\right)+2 \sqrt{\frac{1}{2 N} \log \frac{2|\mathscr{H}|}{\delta}}$
- Connection with bias/variance tradeoff

What uniform convergence tell us?

- What about the best hypothesis in training data? $\hat{h}=\arg \min _{h \in \mathscr{H}} E_{t r}(h)$
- Define the best hypothesis as $h^{*}=\arg \min _{h \in \mathscr{H}} E(h)$
- We have $E(\hat{h}) \leq E_{t r}(\hat{h})+\gamma \leq E_{t r}\left(h^{*}\right)+\gamma \leq E\left(h^{*}\right)+2 \gamma$
- So we have
. $E(\hat{h}) \leq\left(\min _{h \in \mathscr{H}} E(h)\right)+2 \sqrt{\frac{1}{2 N} \log \frac{2|\mathscr{H}|}{\delta}}$
- Connection with bias/variance tradeoff
- Further, given ϵ and some $\delta>0$, is suffices that
. $N \geq \frac{1}{2 \epsilon^{2}} \log \frac{2|\mathscr{H}|}{\delta}=O\left(\frac{1}{\epsilon^{2}} \log \frac{|\mathscr{H}|}{\delta}\right)$

Can we improve on $|\mathscr{H}| ?$

Can we improve on $|\mathscr{H}|$?

Can we improve on $|\mathscr{H}|$?

Can we improve on $|\mathscr{H}| ?$

- The event that $\left|E_{\operatorname{tr}}\left(h_{1}\right)-E\left(h_{1}\right)\right|>\epsilon$ and $\left|E_{\operatorname{tr}}\left(h_{2}\right)-E\left(h_{2}\right)\right|>\epsilon$ are largely overlapped

What can we replace $|\mathscr{H}|$ with?

- Instead of the whole input space

What can we replace $|\mathscr{H}|$ with?

- Instead of the whole input space
- Let's consider a finite set of input points

What can we replace $|\mathscr{H}|$ with?

- Instead of the whole input space
- Let's consider a finite set of input points
- How many patterns of colors can you get?

Dichotomies: mini-hypotheses

- A hypothesis: $h: \mathscr{X} \rightarrow\{-1,+1\}$
- A dichotomy: $h:\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \rightarrow\{-1,+1\}$

Dichotomies: mini-hypotheses

- A hypothesis: $h: \mathscr{X} \rightarrow\{-1,+1\}$
- A dichotomy: $h:\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \rightarrow\{-1,+1\}$
- Number of hypotheses $|\mathscr{H}|$ can be infinite
- Number of dichotomies $\left|\mathscr{H}\left(x_{1}, x_{2}, \ldots, x_{N}\right)\right|$ at most 2^{N}

Dichotomies: mini-hypotheses

- A hypothesis: $h: \mathscr{X} \rightarrow\{-1,+1\}$
- A dichotomy: $h:\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \rightarrow\{-1,+1\}$
- Number of hypotheses $|\mathscr{H}|$ can be infinite
- Number of dichotomies $\left|\mathscr{H}\left(x_{1}, x_{2}, \ldots, x_{N}\right)\right|$ at most 2^{N}
- \Rightarrow Candidate for replacing $|\mathscr{H}|$
- Why?

Theory of Generalization

Symmetrization lemma

- Imagine we have the ghost dataset S^{\prime} with also size N :
. $P\left[\mathrm{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E(h)\right|>\epsilon\right] \leq 2 P\left[\mathrm{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E_{t r}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]$

Theory of Generalization

Growth function

- Imagine we have the ghost dataset S^{\prime} with also size N :
. $P\left[\operatorname{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E(h)\right|>\epsilon\right] \leq 2 P\left[\operatorname{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E_{t r}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]$
- By union bound:
. $P\left[\mathrm{SUP}_{h \in \mathscr{H}_{s u s^{\prime}}}\left|E_{t r}(h)-E_{t r}^{\prime}(h)\right|>\frac{\epsilon}{2}\right] \leq\left|\mathscr{H}_{S \cup S^{\prime}}\right| P\left[\left|E_{t r}(h)-E_{t r}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]$

Theory of Generalization

Growth function

- Imagine we have the ghost dataset S^{\prime} with also size N :
. $P\left[\operatorname{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E(h)\right|>\epsilon\right] \leq 2 P\left[\operatorname{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E_{t r}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]$
- By union bound:
- $P\left[\operatorname{SUP}_{h \in \mathscr{H}_{s \cup S^{\prime}}}\left|E_{t r}(h)-E_{t r}^{\prime}(h)\right|>\frac{\epsilon}{2}\right] \leq\left|\mathscr{H}_{S \cup S^{\prime}}\right| P\left[\left|E_{t r}(h)-E_{t r}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]$
- How to bound $\left|\mathscr{H}_{S \cup S^{\prime}}\right|$

Theory of Generalization

Deduce the dimension

- Why do we need to consider every possible hypothesis?
- $P\left[\mathrm{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E(h)\right|>\epsilon\right]$
- If we omit one hypothesis, we might miss the biggest gap
- However, are the events of each hypothesis having a big generalization gap are likely to be independent?
- No

The growth function

- The growth function counts the most dichotomies on any N points:
- $m_{\mathscr{H}}(N)=\max _{x_{1}, \ldots, x_{N} \in \mathscr{X}}\left|\mathscr{H}\left(x_{1}, \ldots, x_{N}\right)\right|$

The growth function

- The growth function counts the most dichotomies on any N points:
- $m_{\mathscr{H}}(N)=\max _{x_{1}, \ldots, x_{N} \in \mathscr{X}}\left|\mathscr{H}\left(x_{1}, \ldots, x_{N}\right)\right|$
- The growth function satisfies:
- $m_{\mathscr{H}}(N) \leq 2^{N}$

Growth function for linear classifiers

- Compute $m_{\mathscr{H}}(3)$ in 2-D space

- What's $\left|\mathscr{H}\left(x_{1}, x_{2}, x_{3}\right)\right|$?

Growth function for linear classifiers

- Compute $m_{\mathscr{H}}(3)$ in 2-D space when \mathscr{H} is perceptron (linear hyperplanes)

Growth function for linear classifiers

- Compute $m_{\mathscr{H}}(3)$ in 2-D space when \mathscr{H} is perceptron (linear hyperplanes)

Growth function for linear classifiers

- Compute $m_{\mathscr{H}}(3)$ in 2-D space when \mathscr{H} is perceptron (linear hyperplanes)

- Doesn't matter because we only counts the most dichotomies

Growth function for linear classifier

- What's $m_{\mathscr{H}}(4)$?

Growth function for linear classifier

- What's $m_{\mathscr{H}}(4)$?
- (At least) missing two dichotomies:

Growth function for linear classifier

- What's $m_{\mathscr{H}}(4)$?
- (At least) missing two dichotomies:

- $m_{\mathscr{H}}(4)=14<2^{4}$

Example I: positive rays

Example II: positive intervals

$$
\mathcal{H} \text { is set of } h: \mathbb{R} \rightarrow\{-1,+1\}
$$

Place interval ends in two of $N+1$ spots

$$
m_{\mathcal{H}}(N)=\binom{N+1}{2}+1=\frac{1}{2} N^{2}+\frac{1}{2} N+1
$$

Example III: convex sets

- \mathscr{H} is set of $h: \mathbb{R}^{2} \rightarrow\{-1,+1\}$
- $h(x)=+1$ is convex
- How many dichotomies can we generate?

Example III: convex sets

- \mathscr{H} is set of $h: \mathbb{R}^{2} \rightarrow\{-1,+1\}$
- $h(x)=+1$ is convex
- How many dichotomies can we generate?

Example III: convex sets

- \mathscr{H} is set of $h: \mathbb{R}^{2} \rightarrow\{-1,+1\}$
- $h(x)=+1$ is convex
- How many dichotomies can we generate?

Example III: convex sets

- \mathscr{H} is set of $h: \mathbb{R}^{2} \rightarrow\{-1,+1\}$
- $h(x)=+1$ is convex
- $m_{\mathscr{H}}(N)=2^{N}$ for any $N \Rightarrow$ We say the N points are "shattered" by h

Shattered

- Given a set $S=\left\{x^{(i)}, \ldots, x^{(d)}\right\}$ (no relation to the training set) of points $x^{(i)} \in \mathscr{X}$, we say that \mathscr{H} shatters S if \mathscr{H} can realize any labeling on S. I.e, if for any set of labels $\left\{y^{(i)}, \ldots, y^{(d)}\right\}$, there exist some $h \in \mathscr{H}$ so that $h\left(x^{(i)}\right)=y^{(i)}$ for all $i=1, \ldots, d$

The 3 growth functions

- \mathscr{H} is positive rays:
- $m_{\mathscr{H}}(N)=N+1$
- \mathscr{H} is positive intervals:
- $m_{\mathscr{H}}(N)=\frac{1}{2} N^{2}+\frac{1}{2} N+1$
- \mathscr{H} is convex sets:
- $m_{\mathscr{H}}(N)=2^{N}$

What's next?

- Remember the inequality
- $\mathbb{P}\left[\left|E_{\text {in }}-E_{\text {out }}\right|>\epsilon\right] \leq 2|\mathscr{H}| e^{-2 \epsilon^{2} N}$
- What happens if we replace $|\mathscr{H}|$ by $m_{\mathscr{H}}(N)$
- $m_{\mathscr{H}}(N)$ polynomial \Rightarrow Good!

What's next?

- Remember the inequality
- $\mathbb{P}\left[\left|E_{\mathrm{tr}}-E\right|>\epsilon\right] \leq 2|\mathscr{H}| e^{-2 \epsilon^{2} N}$
- What happens if we replace $|\mathscr{H}|$ by $m_{\mathscr{H}}(N)$
- $m_{\mathscr{H}}(N)$ polynomial \Rightarrow Good!
- Why?
- How to show $m_{\mathscr{H}}(N)$ is polynomial?

