COMP5212: Machine Learning
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Logistics

 Programming Homework 1 Is out
e Due on Oct 18
* [erm project proposal

 Due on this Friday



Theory of Generalization

A simple solution

» For each particular A,
o P[|E (h)—E(h)| > €] <2e %N

» If we have a hypothesis set # ,we want to derive the bound for
Plsup,cs | E,(h) — E(h)| > €]



Where did the |77 | come from?

» The Bad events &, :

e |Ey(h)—E(h, )| > ¢ with probability < 2e~2¢N



Where did the |77 | come from?

 The Bad events %, :
e |Ey(h,)— E(h )| > € with probability < 2e~2N
e The union bound:

P[B, or Byor ... ot Byl <P[B,]+P[By] + ... + P[By,] <2|H |e 2N

consider worst case: no overlaps

No overlap: bound is tight Large overlap



Theory of Generalization

A simple solution

» For each particular A,
. P[|E,(h) — E(h)| > €] <2e72N
- If we have a hypothesis set #',we want to derive the bound for P[sup, o, | E,(h) — E(h) | > €]

» PL|E,(h) — E(h)| > €]or...or P[|E,(Iyg) — E(lyg) | > €]

H
. < ) PLIE,h,) - Eh,)| > el <2||e72N
m=1

o0 0
Because of union bound inequality P(UAZ-) < Z P(A))
i=1 i=1



Uniform convergence

» When our learning algorithm &f picks the hypothesis g:
. P[3he X |E (h)—Eh)| > e] <2| 7 |e 2N
» Subtract both sides from 1
P[-3he X |E (h)— Eh)| >¢c]=P[Vhe I |E, (h) —Eh)| <¢]
‘ >1=2|%|e 2N



What uniform convergence tell us?

P[-3h e I |E,(h) — Eh)| > €] = P[Vh € I |E,(h) — E(h)| < €]
‘ >1=2|%|e 2N

» Given € and some 0 > 0, how large must NV be before we can guarantee that with
probability at least 1 — 9, training error will be within € of generalization error?

e Setd =2] %\e‘zezN, solve N

N> jog 217
. N> 0
De? 5 %)

* The training set size N that a certain method or algorithm requires in order to achieve
a certain level of performance is also called the algorithm’s sample complexity




What uniform convergence tell us?

P[-3h e I |E (h)— Eh)| > ¢] = P[Vh € # |E,(h) — Eh)| < €]
‘ >1—2|F|e 2N

« Given /N and some 0, we have

|E. (h) — E(h)] < : | 217
— — 10
© ~— \| 2N 5 S

e iie |E,(h) —ECh)| <yforallhe X



What uniform convergence tell us?

P[-3h e I |E (h)— Eh)| > ¢] = P[Vh € # |E,(h) — Eh)| < €]
‘ >1—2|F|e 2N

« Given /N and some 0, we have

|E. (h) — E(h)] < : | 217
— — 10
© ~— \| 2N 5 S

e iie |E,(h) —ECh)| <yforallhe X

 What about the best hypothesis in training data?



What uniform convergence tell us?

e Given N and some 0, we have

2| |
. | E,(h) —E(h)] < \/—log

e iie |E,(h)—E(h)| Lyforalhe X

. What about the best hypothesis in training data? h = arg min £, (h)
heX

. Define the best hypothesis as 4* = arg min E(h)
heA

. We have E(h) < En,(iz) +y < E, (h*)+y < E(h*)+ 2y



What uniform convergence tell us?

. What about the best hypothesis in training data? h = arg min E, (h)
heA

. Define the best hypothesis as 4* = arg min E(h)
heA

. We have E(h) < Etr(fz) +y < E (h*)+y < E(h*)+2y
* SO we have

E(h) < (min E(h)) + 2 Ly 217
ImMin — 10
R e N 2T s

e Connection with bias/variance tradeoff




What uniform convergence tell us?

. What about the best hypothesis in training data? h = arg min £, (h)
he#

. Define the best hypothesis as 4* = arg min E(/)
he#

. We have E(h) < E, (h) + y < E (h*) + y < E(h*) + 2y

e So we have

E(h) < (mi E(h))+2\/1 | 217
min — 10
’  heH 2N 5 )

 Connection with bias/variance tradeoff

 Further, given € and some 6 > 0, is suffices that

N> 11 21 | 0(11 \%\)
. N>—1o = O(—1lo
2¢e? 5 %) €2 5 %)




Can we improve on |7 |?




Can we improve on |7 |?




Can we improve on |7 |?

tr



Can we improve on | 7| ?

Etr

 The event that | Ey(h,) — E(hy)| > € and | Ey(h,) — E(h,)| > € are largely
overlapped



What can we replace | 77| with?

* |nstead of the whole input space




What can we replace | 77| with?

* |nstead of the whole input space

* |et’s consider a finite set of input points




What can we replace | 77| with?

* |nstead of the whole input space
e Let’s consider a finite set of input points

 How many patterns of colors can you get?




Dichotomies: mini-hypotheses

 Ahypothesis:h : X — {—1,+ 1}

» Adichotomy: h : (X, X5, ..., xn} = {—1,+ 1}



Dichotomies: mini-hypotheses

e Ahypothesis:h: X — {—1,+ 1}
» Adichotomy: h : (X, X5, ..., xn} = {—1,+ 1}
« Number of hypotheses | # | can be infinite

» Number of dichotomies | Z (x;, x,, ..., Xy) | at most N



Dichotomies: mini-hypotheses

e Ahypothesis:h: X — {—1,+ 1}
» Adichotomy: h : (X, X5, ..., xn} = {—1,+ 1}
« Number of hypotheses | # | can be infinite

» Number of dichotomies | Z (x;, x,, ..., Xy) | at most N

« = Candidate for replacing | 7 |
e Why?



Theory of Generalization

Symmetrization lemma

» Imagine we have the ghost dataset S’ with also size N:

€
. P[SUP,co | E, (h) — E(h)| > €] < 2P[SUPey | E,(h) — E,(h)| > 5]



Theory of Generalization

Growth function

» Imagine we have the ghost dataset S’ with also size N:
€
. P[SUP,c# | E, (h) — E(h)| > €] < 2P[SUPc | E, (h) — E/(h)| > >
* By union bound:

€ €
. P[SUPyeo I E(h) — E (h)] > 5] <|#sus'| Pl E(h) = E ()| > 5]



Theory of Generalization

Growth function

» Imagine we have the ghost dataset S’ with also size N:
€
. P[SUP,c# | E, (h) — E(h)| > €] < 2P[SUPc | E, (h) — E/(h)| > >
* By union bound:

€ €
. P[SUPyeo I E(h) — E (h)] > 5] <|#sus'| Pl E(h) = E ()| > 5]



Theory of Generalization

Deduce the dimension

 Why do we need to consider every possible
hypothesis?

» P[SUPyeo | E,(h) — E(h)| > €]

* |f we omit one hypothesis, we might miss the
biggest gap

- However, are the events of each hypothesis havinga bo

big generalization gap are likely to be independent?

e No




The growth function

* The growth function counts the most dichotomies on any N points:

mey(N) = max |Z(x,...,Xy)]
Xise . XNEL



The growth function

* The growth function counts the most dichotomies on any N points:

mey(N) = max |Z(x,...,Xy)]
Xise . XNEL

* The growth function satisfies:



Growth function for linear classifiers

» Compute mgq,(3) in 2-D space

» What's | #Z (x{, X, X3) | ?



Growth function for linear classifiers

» Compute mq,(3) in 2-D space when # is perceptron (linear hyperplanes)

o = e
AN

Mep(3) = 8




Growth function for linear classifiers

» Compute mq,(3) in 2-D space when # is perceptron (linear hyperplanes)

o] e[ [oee
o] lope]leep oo

X



Growth function for linear classifiers

» Compute mg,(3) in 2-D space when # is perceptron (linear hyperplanes)

o] e[ [oee
[ 3| ER

X

 Doesn’t matter because we only counts the most dichotomies



Growth function for linear classifier

® What ,S m%(4)?



Growth function for linear classifier

® What ,S m%(4)?

* (At least) missing two dichotomies:




Growth function for linear classifier

® What ,S m%(4)?

* (At least) missing two dichotomies:

. mop(4) = 14 < 2°



Example I: positive rays

H issetof h:R— {—1,41}
h(x) = sign(z — a)

my(N) =N +1



Example ll: positive intervals

h(x)=—1 h(x) =+1 " h(z)=—1
L e e ¥ S G T & S ¢ S« N L e
T Lo T3 LN

H issetof h: R — {—1,+1}

Place interval ends in two of N + 1 spots

my(N) = (N;rl) -+ = %NQ + %N +1



Example lll: convex sets

e Hissetofh:R* - {—1,+ 1}

e h(x) = + 1 is convex

 How many dichotomies can we generate”?
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Example lll: convex sets

e Hissetofh:R* - {—1,+ 1}

e h(x) = + 1 is convex

 How many dichotomies can we generate”?




Example lll: convex sets

e Hissetofh:R* - {—1,+ 1}

e h(x) = + 1 is convex

e Moy(N) = 2V for any N = We say the N points are “shattered” by A



Shattered

* Given a set S = {x(i), ...,x(d)} (no relation to the training set) of points
xW e I, we say that # shatters S if Z can realize any labeling on §. l.e, if
for any set of labels {y, ..., v}, there exist some h € F so that

h(xY) =yWDforalli=1,...,d



The 3 growth functions

« /A is positive rays:
o # is positive intervals:

(N) 1N2+1N+1
. M = — —
< 2 2

o« # is convex sets:

. moy(N) =2V



What’s next?

» Remember the inequality

o P[|Eip— Eout| > €] < 2|7 |e72N

» What happens if we replace | #Z | by mg,(N)

» Mg(IN) polynomial = Good!



What’s next?

» Remember the inequality

e P[|Ey—E| > el <2| % |e” %N

» What happens if we replace | #Z | by mg,(N)

» Mgy(IN) polynomial = Good!
e Why?

» How to show mg,(N) is polynomial?



