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Logistics

• Programming Homework 1 is out 


• Due on Oct 18


• Term project proposal 


• Due on this Friday



Theory of Generalization
A simple solution

• For each particular ,


• 


• If we have a hypothesis set ,we want to derive the bound for 

h

P[ |Etr(h) − E(h) | > ϵ] ≤ 2e−2ϵ2N

ℋ
P[suph∈ℋ |Etr(h) − E(h) | > ϵ]



Where did the  come from?|ℋ |

• The Bad events :


•

ℬm

|Etr(hm) − E(hm) | > ϵ with probability ≤ 2e−2ϵ2N



Where did the  come from?|ℋ |

• The Bad events :


• 


• The union bound:


•

ℬm

|Etr(hm) − E(hm) | > ϵ with probability ≤ 2e−2ϵ2N

ℙ[ℬ1 or ℬ2 or  . . .  or ℬM] ≤ ℙ[ℬ1] + ℙ[ℬ2] + … + ℙ[ℬM]

consider worst case: no overlaps

≤ 2 |ℋ |e−2ϵ2N



Theory of Generalization
A simple solution

• For each particular ,


• 


• If we have a hypothesis set ,we want to derive the bound for 


•  or … or 


• 


• Because of union bound inequality 

h

P[ |Etr(h) − E(h) | > ϵ] ≤ 2e−2ϵ2N

ℋ P[suph∈ℋ |Etr(h) − E(h) | > ϵ]

P[ |Etr(h1) − E(h1) | > ϵ] P[ |Etr(h|ℋ|) − E(h|ℋ|) | > ϵ]

≤
ℋ

∑
m=1

P[ |Etr(hm) − E(hm) | > ϵ] ≤ 2 |ℋ |e−2ϵ2N

P(
∞

⋃
i=1

Ai) ≤
∞

∑
i=1

P(Ai)



Uniform convergence

• When our learning algorithm  picks the hypothesis :


• 


• Subtract both sides from 1


•

𝒜 g

P[∃h ∈ ℋ |Etr(h) − E(h) | > ϵ] ≤ 2 |ℋ |e−2ϵ2N

P[¬∃h ∈ ℋ |Etr(h) − E(h) | > ϵ] = P[∀h ∈ ℋ |Etr(h) − E(h) | ≤ ϵ]

≥ 1 − 2 |ℋ |e−2ϵ2N



What uniform convergence tell us?

• 


• Given  and some , how large must  be before we can guarantee that with 
probability at least , training error will be within  of generalization error?


• Set , solve N


•  


• The training set size N that a certain method or algorithm requires in order to achieve 
a certain level of performance is also called the algorithm’s sample complexity

P[¬∃h ∈ ℋ |Etr(h) − E(h) | > ϵ] = P[∀h ∈ ℋ |Etr(h) − E(h) | ≤ ϵ]

≥ 1 − 2 |ℋ |e−2ϵ2N

ϵ δ > 0 N
1 − δ ϵ

δ = 2 |ℋ |e−2ϵ2N

N ≥
1

2ϵ2
log

2 |ℋ |
δ



What uniform convergence tell us?

• 


• Given  and some , we have


• 


• i.e  for all 

P[¬∃h ∈ ℋ |Etr(h) − E(h) | > ϵ] = P[∀h ∈ ℋ |Etr(h) − E(h) | ≤ ϵ]

≥ 1 − 2 |ℋ |e−2ϵ2N

N δ

|Etr(h) − E(h) | ≤
1

2N
log

2 |ℋ |
δ

|Etr(h) − E(h) | ≤ γ h ∈ ℋ



What uniform convergence tell us?

• 


• Given  and some , we have


• 


• i.e  for all 


• What about the best hypothesis in training data? 

P[¬∃h ∈ ℋ |Etr(h) − E(h) | > ϵ] = P[∀h ∈ ℋ |Etr(h) − E(h) | ≤ ϵ]

≥ 1 − 2 |ℋ |e−2ϵ2N

N δ

|Etr(h) − E(h) | ≤
1

2N
log

2 |ℋ |
δ

|Etr(h) − E(h) | ≤ γ h ∈ ℋ



What uniform convergence tell us?

• Given  and some , we have


• 


• i.e  for all 


• What about the best hypothesis in training data? 


• Define the best hypothesis as 


• We have  

N δ

|Etr(h) − E(h) | ≤
1

2N
log

2 |ℋ |
δ

|Etr(h) − E(h) | ≤ γ h ∈ ℋ

ĥ = arg min
h∈ℋ

Etr(h)

h* = arg min
h∈ℋ

E(h)

E(ĥ) ≤ Etr(ĥ) + γ ≤ Etr(h*) + γ ≤ E(h*) + 2γ



What uniform convergence tell us?

• What about the best hypothesis in training data? 


• Define the best hypothesis as 


• We have 


• So we have


•  


• Connection with bias/variance tradeoff

ĥ = arg min
h∈ℋ

Etr(h)

h* = arg min
h∈ℋ

E(h)

E(ĥ) ≤ Etr(ĥ) + γ ≤ Etr(h*) + γ ≤ E(h*) + 2γ

E(ĥ) ≤ (min
h∈ℋ

E(h)) + 2
1

2N
log

2 |ℋ |
δ



What uniform convergence tell us?

• What about the best hypothesis in training data? 


• Define the best hypothesis as 


• We have 


• So we have


•  


• Connection with bias/variance tradeoff


• Further, given  and some , is suffices that


•

ĥ = arg min
h∈ℋ

Etr(h)

h* = arg min
h∈ℋ

E(h)

E(ĥ) ≤ Etr(ĥ) + γ ≤ Etr(h*) + γ ≤ E(h*) + 2γ

E(ĥ) ≤ (min
h∈ℋ

E(h)) + 2
1

2N
log

2 |ℋ |
δ

ϵ δ > 0

N ≥
1

2ϵ2
log

2 |ℋ |
δ

= O(
1
ϵ2

log
|ℋ |

δ
)



Can we improve on ?|ℋ |



Can we improve on ?|ℋ |



Can we improve on ?|ℋ |



Can we improve on ?|ℋ |

• The event that  and  are largely 
overlapped

|Etr(h1) − E(h1) | > ϵ |Etr(h2) − E(h2) | > ϵ



What can we replace  with?|ℋ |

• Instead of the whole input space



What can we replace  with?|ℋ |

• Instead of the whole input space


• Let’s consider a finite set of input points



What can we replace  with?|ℋ |

• Instead of the whole input space


• Let’s consider a finite set of input points


• How many patterns of colors can you get?



Dichotomies: mini-hypotheses

• A hypothesis: 


• A dichotomy: 

h : 𝒳 → {−1, + 1}

h : {x1, x2, …, xN} → {−1, + 1}



Dichotomies: mini-hypotheses

• A hypothesis: 


• A dichotomy: 


• Number of hypotheses  can be infinite


• Number of dichotomies  at most 

h : 𝒳 → {−1, + 1}

h : {x1, x2, …, xN} → {−1, + 1}

|ℋ |

|ℋ(x1, x2, …, xN) | 2N



Dichotomies: mini-hypotheses

• A hypothesis: 


• A dichotomy: 


• Number of hypotheses  can be infinite


• Number of dichotomies  at most 


•  Candidate for replacing 


• Why?

h : 𝒳 → {−1, + 1}

h : {x1, x2, …, xN} → {−1, + 1}

|ℋ |

|ℋ(x1, x2, …, xN) | 2N

⇒ |ℋ |



Theory of Generalization
Symmetrization lemma

• Imagine we have the ghost dataset  with also size N:


•

S′ 

P[SUPh∈ℋ |Etr(h) − E(h) | > ϵ] ≤ 2P[SUPh∈ℋ |Etr(h) − E′ tr(h) | >
ϵ
2

]



Theory of Generalization
Growth function

• Imagine we have the ghost dataset  with also size N:


• 


• By union bound:


•

S′ 

P[SUPh∈ℋ |Etr(h) − E(h) | > ϵ] ≤ 2P[SUPh∈ℋ |Etr(h) − E′ tr(h) | >
ϵ
2

]

P[SUPh∈ℋS∪S′ 
|Etr(h) − E′ tr(h) | >

ϵ
2

] ≤ |ℋS∪S′ 
|P[ |Etr(h) − E′ tr(h) | >

ϵ
2

]



Theory of Generalization
Growth function

• Imagine we have the ghost dataset  with also size N:


• 


• By union bound:


• 


• How to bound 

S′ 

P[SUPh∈ℋ |Etr(h) − E(h) | > ϵ] ≤ 2P[SUPh∈ℋ |Etr(h) − E′ tr(h) | >
ϵ
2

]

P[SUPh∈ℋS∪S′ 
|Etr(h) − E′ tr(h) | >

ϵ
2

] ≤ |ℋS∪S′ 
|P[ |Etr(h) − E′ tr(h) | >

ϵ
2

]

|ℋS∪S′ 
|



Theory of Generalization
Deduce the dimension

• Why do we need to consider every possible 
hypothesis?


• 


• If we omit one hypothesis, we might miss the 
biggest gap 


• However, are the events of each hypothesis having a 
big generalization gap are likely to be independent?


• No

P[SUPh∈ℋ |Etr(h) − E(h) | > ϵ]



The growth function

• The growth function counts the most dichotomies on any N points:


• mℋ(N) = max
x1,…,xN∈𝒳

|ℋ(x1, …, xN) |



The growth function

• The growth function counts the most dichotomies on any N points:


• 


• The growth function satisfies:


•

mℋ(N) = max
x1,…,xN∈𝒳

|ℋ(x1, …, xN) |

mℋ(N) ≤ 2N



Growth function for linear classifiers

• Compute  in 2-D space


• What’s ?

mℋ(3)

|ℋ(x1, x2, x3) |



Growth function for linear classifiers

• Compute  in 2-D space when  is perceptron (linear hyperplanes)mℋ(3) ℋ

mℋ(3) = 8



Growth function for linear classifiers

• Compute  in 2-D space when  is perceptron (linear hyperplanes)mℋ(3) ℋ



Growth function for linear classifiers

• Compute  in 2-D space when  is perceptron (linear hyperplanes)


• Doesn’t matter because we only counts the most dichotomies

mℋ(3) ℋ



Growth function for linear classifier

• What’s ?mℋ(4)



Growth function for linear classifier

• What’s ?


• (At least) missing two dichotomies:

mℋ(4)



Growth function for linear classifier

• What’s ?


• (At least) missing two dichotomies:


•

mℋ(4)

mℋ(4) = 14 < 24



Example I: positive rays



Example II: positive intervals



Example III: convex sets

•  is set of 


•  is convex


• How many dichotomies can we generate?

ℋ h : ℝ2 → {−1, + 1}

h(x) = + 1



Example III: convex sets

•  is set of 


•  is convex


• How many dichotomies can we generate?

ℋ h : ℝ2 → {−1, + 1}

h(x) = + 1



Example III: convex sets

•  is set of 


•  is convex


• How many dichotomies can we generate?

ℋ h : ℝ2 → {−1, + 1}

h(x) = + 1



Example III: convex sets

•  is set of 


•  is convex


•  for any   We say the  points are “shattered” by 

ℋ h : ℝ2 → {−1, + 1}

h(x) = + 1

mℋ(N) = 2N N ⇒ N h



Shattered

• Given a set  (no relation to the training set) of points 
, we say that  shatters  if  can realize any labeling on . I.e, if 

for any set of labels , there exist some  so that 
 for all 

S = {x(i), …, x(d)}
x(i) ∈ 𝒳 ℋ S ℋ S

{y(i), …, y(d)} h ∈ ℋ
h(x(i)) = y(i) i = 1,…, d



The 3 growth functions

•  is positive rays:


• 


•  is positive intervals:


• 


•  is convex sets:


•

ℋ

mℋ(N) = N + 1

ℋ

mℋ(N) =
1
2

N2 +
1
2

N + 1

ℋ

mℋ(N) = 2N



What’s next?

• Remember the inequality


• 


• What happens if we replace  by 


•  polynomial  Good!

ℙ[ |Ein − Eout | > ϵ] ≤ 2 |ℋ |e−2ϵ2N

|ℋ | mℋ(N)

mℋ(N) ⇒



What’s next?

• Remember the inequality


• 


• What happens if we replace  by 


•  polynomial  Good!


• Why?


• How to show  is polynomial?

ℙ[ |Etr − E | > ϵ] ≤ 2 |ℋ |e−2ϵ2N

|ℋ | mℋ(N)

mℋ(N) ⇒

mℋ(N)


