COMP5212: Machine Learning Lecture 8

Minhao Cheng

Logistics

- Programming Homework 1 is out
 - Due on Oct 18
- Term project proposal
 - Due on this Friday

Theory of Generalization A simple solution

- For each particular h,
 - $P[|E_{tr}(h) E(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$
- If we have a hypothesis set \mathcal{H} , we want to derive the bound for $P[\sup_{h \in \mathscr{H}} |E_{tr}(h) - E(h)| > \epsilon]$

Where did the \mathcal{H} come from?

- The Bad events \mathscr{B}_m :
 - $|E_{tr}(h_m) E(h_m)| > \epsilon$ with probability $\leq 2e^{-2\epsilon^2 N}$

Where did the \mathcal{H} come from?

- The Bad events \mathscr{B}_m :
 - $|E_{tr}(h_m) E(h_m)| > \epsilon$ with probability $\leq 2e^{-2\epsilon^2 N}$
- The union bound:

 \bullet

 $\mathbb{P}[\mathscr{B}_1 \text{ or } \mathscr{B}_2 \text{ or } \dots \text{ or } \mathscr{B}_M] \leq \mathbb{P}[\mathscr{B}_1] + \mathbb{P}[\mathscr{B}_2] + \dots + \mathbb{P}[\mathscr{B}_M] \leq 2|\mathscr{H}|e^{-2\epsilon^2 N}$

consider worst case: no overlaps

No overlap: bound is tight

Large overlap

Theory of Generalization A simple solution

- For each particular h,
 - $P[|E_{tr}(h) E(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$
- - $P[|E_{tr}(h_1) E(h_1)| > \epsilon]$ or ... or $P[|E_{tr}(h_{|\mathcal{H}|}) E(h_{|\mathcal{H}|})| > \epsilon]$
 - $\leq \sum_{n=1}^{\infty} P[|E_{tr}(h_m) E(h_m)| > \epsilon] \leq 2|\mathcal{H}|e^{-2\epsilon^2 N}$ m=1

Because of union bound inequality P(

• If we have a hypothesis set \mathscr{H} , we want to derive the bound for $P[\sup_{h \in \mathscr{H}} | E_{tr}(h) - E(h) | > \epsilon]$

$$\int_{i=1}^{\infty} A_i \leq \sum_{i=1}^{\infty} P(A_i)$$

Uniform convergence

- When our learning algorithm \mathscr{A} picks the hypothesis g:
 - $P[\exists h \in \mathcal{H} | E_t(h) E(h) | > \epsilon] \le 2 | \mathcal{H} | e^{-2\epsilon^2 N}$
- Subtract both sides from 1

 $P[\neg \exists h \in \mathcal{H} \mid E_{tr}(h) - E(h) \mid > \epsilon] = P[\forall h \in \mathcal{H} \mid E_{tr}(h) - E(h) \mid \le \epsilon]$ $\geq 1 - 2 |\mathcal{H}| e^{-2\epsilon^2 N}$

 $P[\neg \exists h \in \mathcal{H} | E_{tr}(h) - E(h) | > \epsilon] = P[\forall h \in \mathcal{H} | E_{tr}(h) - E(h) | \le \epsilon]$

• Given ϵ and some $\delta > 0$, how large must N be before we can guarantee that with probability at least $1 - \delta$, training error will be within ϵ of generalization error?

• Set
$$\delta = 2 |\mathcal{H}| e^{-2\epsilon^2 N}$$
, solve N

•
$$N \ge \frac{1}{2\epsilon^2} \log \frac{2|\mathcal{H}|}{\delta}$$

The training set size N that a certain method or algorithm requires in order to achieve a certain level of performance is also called the algorithm's sample complexity

 $\geq 1 - 2 |\mathcal{H}| e^{-2\epsilon^2 N}$

• Given N and some δ , we have

•
$$|E_{tr}(h) - E(h)| \le \sqrt{\frac{1}{2N}} \log \frac{1}{2N}$$

• i.e $|E_{tr}(h) - E(h)| \leq \gamma$ for all $h \in \mathcal{H}$

$P[\neg \exists h \in \mathcal{H} | E_{tr}(h) - E(h) | > \epsilon] = P[\forall h \in \mathcal{H} | E_{tr}(h) - E(h) | \le \epsilon]$ $\geq 1 - 2 |\mathcal{H}| e^{-2\epsilon^2 N}$

 $2|\mathcal{H}|$ δ

• Given N and some δ , we have

•
$$|E_{tr}(h) - E(h)| \le \sqrt{\frac{1}{2N}} \log \frac{1}{2N}$$

- i.e $|E_{tr}(h) E(h)| \leq \gamma$ for all $h \in \mathcal{H}$
- What about the best hypothesis in training data?

$P[\neg \exists h \in \mathcal{H} \mid E_{tr}(h) - E(h) \mid > \epsilon] = P[\forall h \in \mathcal{H} \mid E_{tr}(h) - E(h) \mid \le \epsilon]$ $\geq 1 - 2 |\mathcal{H}| e^{-2\epsilon^2 N}$

• Given N and some δ , we have

•
$$|E_{tr}(h) - E(h)| \le \sqrt{\frac{1}{2N}\log\frac{2|\mathcal{H}|}{\delta}}$$

- i.e $|E_{tr}(h) E(h)| \leq \gamma$ for all $h \in \mathcal{H}$
- Define the best hypothesis as $h^* = \arg \min E(h)$
- We have $E(\hat{h}) \leq E_{tr}(\hat{h}) + \gamma \leq E_{tr}(h^*) + \gamma \leq E(h^*) + 2\gamma$

. What about the best hypothesis in training data? $\hat{h} = \arg\min_{h \in \mathcal{H}} E_{tr}(h)$

 $h \in \mathcal{H}$

- . What about the best hypothesis in training data? $\hat{h} = \arg\min_{h \in \mathcal{H}} E_{tr}(h)$
 - Define the best hypothesis as $h^* = \arg \min E(h)$ $h \in \mathcal{H}$

• We have
$$E(\hat{h}) \leq E_{tr}(\hat{h}) + \gamma \leq E_{tr}(\hat{h})$$

• So we have

•
$$E(\hat{h}) \le (\min_{h \in \mathcal{H}} E(h)) + 2\sqrt{\frac{1}{2N} \log \frac{1}{2N}}$$

Connection with bias/variance tradeoff

 $(h^*) + \gamma \leq E(h^*) + 2\gamma$

 $2|\mathcal{H}|$ δ

- What about the best hypothesis in training data? $\hat{h} = \arg \min E_{tr}(h)$
 - . Define the best hypothesis as $h^* = \arg\min_{h \in \mathcal{H}} E(h)$
 - We have $E(\hat{h}) \leq E_{tr}(\hat{h}) + \gamma \leq E_{tr}(h^*) + \gamma \leq E(h^*) + 2\gamma$
 - So we have

•
$$E(\hat{h}) \leq (\min_{h \in \mathcal{H}} E(h)) + 2\sqrt{\frac{1}{2N} \log \frac{2|\mathcal{H}|}{\delta}}$$

- Connection with bias/variance tradeoff
- Further, given ϵ and some $\delta > 0$, is suffices that

•
$$N \ge \frac{1}{2\epsilon^2} \log \frac{2|\mathcal{H}|}{\delta} = O(\frac{1}{\epsilon^2} \log \frac{|\mathcal{H}|}{\delta})$$

 $h \in \mathcal{H}$

Can we improve on $|\mathcal{H}|$?

-1

Can we improve on | *H* | ?

Can we improve on $|\mathcal{H}|$?

Can we improve on | *H* ?

• The event that $|E_{tr}(h_1) - E(h_1)| > \epsilon$ and $|E_{tr}(h_2) - E(h_2)| > \epsilon$ are largely overlapped

What can we replace $|\mathcal{H}|$ with?

Instead of the whole input space

What can we replace $|\mathcal{H}|$ with?

- Instead of the whole input space
- Let's consider a finite set of input points

What can we replace $|\mathcal{H}|$ with?

- Instead of the whole input space
- Let's consider a finite set of input points
- How many patterns of colors can you get?

Dichotomies: mini-hypotheses

- A hypothesis: $h : \mathcal{X} \to \{-1, +1\}$
- A dichotomy: $h: \{x_1, x_2, ..., x_N\} \rightarrow \{-1, +1\}$

Dichotomies: mini-hypotheses

- A hypothesis: $h: \mathcal{X} \to \{-1, +1\}$
- A dichotomy: $h: \{x_1, x_2, ..., x_N\} \rightarrow \{-1, +1\}$
- Number of hypotheses $|\mathcal{H}|$ can be infinite
- Number of dichotomies $\mathcal{H}(x_1, x_2, x_2, x_3)$

...,
$$x_N$$
) | at most 2^N

Dichotomies: mini-hypotheses

- A hypothesis: $h: \mathcal{X} \to \{-1, +1\}$
- A dichotomy: $h: \{x_1, x_2, ..., x_N\} \rightarrow \{-1, +1\}$
- Number of hypotheses $|\mathcal{H}|$ can be infinite
- Number of dichotomies $\mathcal{H}(x_1, x_2, x_2, x_3)$
 - \Rightarrow Candidate for replacing \mathcal{H}
 - Why?

$$\dots, x_N$$
) | at most 2^N

Theory of Generalization **Symmetrization lemma**

- Imagine we have the ghost dataset S' with also size N:

• $P[SUP_{h\in\mathscr{H}}|E_{tr}(h) - E(h)| > \epsilon] \le 2P[SUP_{h\in\mathscr{H}}|E_{tr}(h) - E'_{tr}(h)| > \frac{\epsilon}{2}]$

Theory of Generalization **Growth function**

- Imagine we have the ghost dataset S' with also size N:
- By union bound:

• $P[SUP_{h\in\mathscr{H}}|E_{tr}(h) - E(h)| > \epsilon] \le 2P[SUP_{h\in\mathscr{H}}|E_{tr}(h) - E'_{tr}(h)| > \frac{\epsilon}{2}]$

• $P[SUP_{h \in \mathscr{H}_{S \cup S'}} | E_{tr}(h) - E'_{tr}(h) | > \frac{\epsilon}{2}] \le |\mathscr{H}_{S \cup S'}| P[|E_{tr}(h) - E'_{tr}(h)| > \frac{\epsilon}{2}]$

Theory of Generalization **Growth function**

- Imagine we have the ghost dataset S' with also size N:
- By union bound:
- How to bound $|\mathcal{H}_{S\cup S'}|$

• $P[SUP_{h\in\mathscr{H}}|E_{tr}(h) - E(h)| > \epsilon] \le 2P[SUP_{h\in\mathscr{H}}|E_{tr}(h) - E'_{tr}(h)| > \frac{\epsilon}{2}]$

• $P[SUP_{h \in \mathscr{H}_{S \cup S'}} | E_{tr}(h) - E'_{tr}(h) | > \frac{\epsilon}{2}] \le |\mathscr{H}_{S \cup S'}| P[|E_{tr}(h) - E'_{tr}(h)| > \frac{\epsilon}{2}]$

Theory of Generalization **Deduce the dimension**

- Why do we need to consider every possible hypothesis?
 - $P[SUP_{h\in\mathscr{H}} | E_{tr}(h) E(h) | > \epsilon]$
 - If we omit one hypothesis, we might miss the biggest gap
- However, are the events of each hypothesis having a big generalization gap are likely to be independent?
 - No

The growth function

The growth function counts the most dichotomies on any N points:

$$\mathbf{M}_{\mathcal{H}}(N) = \max_{\substack{x_1, \dots, x_N \in \mathcal{X}}} | \mathcal{H}(x_1, \dots, x_N)|$$

 x_N)

The growth function

The growth function counts the most dichotomies on any N points:

$$\mathbf{M}_{\mathscr{H}}(N) = \max_{\substack{x_1, \dots, x_N \in \mathscr{X}}} | \mathscr{H}(x_1, \dots, x_N)|$$

• The growth function satisfies:

•
$$m_{\mathcal{H}}(N) \leq 2^N$$

 (x_N)

• Compute $m_{\mathcal{H}}(3)$ in 2-D space

• Compute $m_{\mathscr{H}}(3)$ in 2-D space when \mathscr{H} is perceptron (linear hyperplanes)

 $m_{\mathcal{H}}(3) = 8$

Doesn't matter because we only counts the most dichotomies

• What's $m_{\mathcal{H}}(4)$?

- What's $m_{\mathcal{H}}(4)$?
- (At least) missing two dichotomies:

- What's $m_{\mathcal{H}}(4)$?
- (At least) missing two dichotomies:

• $m_{\mathcal{H}}(4) = 14 < 2^4$

Example I: positive rays

$$\begin{array}{c} \bullet & h(x) = +1 \\ \bullet & \bullet & \bullet & \bullet \\ x_N \end{array}$$

$$\mathcal{H}$$
 is set of $h: \mathbb{R} \to \{-1, +1\}$
 $h(x) = \operatorname{sign}(x - a)$
 $m_{\mathcal{H}}(N) = N + 1$

Example II: positive intervals

$$m_{\mathcal{H}}(N) = \binom{N+1}{2} + 1 = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

- \mathscr{H} is set of $h : \mathbb{R}^2 \to \{-1, +1\}$
 - h(x) = +1 is convex
- How many dichotomies can we generate?

- \mathscr{H} is set of $h : \mathbb{R}^2 \to \{-1, +1\}$
 - h(x) = +1 is convex
- How many dichotomies can we generate?

- \mathscr{H} is set of $h : \mathbb{R}^2 \to \{-1, +1\}$
 - h(x) = +1 is convex
- How many dichotomies can we generate?

• \mathscr{H} is set of $h : \mathbb{R}^2 \to \{-1, +1\}$

• h(x) = +1 is convex

• $m_{\mathscr{H}}(N) = 2^N$ for any $N \Rightarrow$ We say the N points are "shattered" by h

Shattered

• Given a set $S = \{x^{(i)}, \dots, x^{(d)}\}$ (no relation to the training set) of points $x^{(i)} \in \mathcal{X}$, we say that \mathcal{H} shatters S if \mathcal{H} can realize any labeling on S. I.e, if for any set of labels $\{y^{(i)}, \dots, y^{(d)}\}$, there exist some $h \in \mathcal{H}$ so that $h(x^{(i)}) = y^{(i)}$ for all $i = 1, \dots, d$

The 3 growth functions

- \mathcal{H} is positive rays:
 - $m_{\mathcal{H}}(N) = N + 1$
- \mathcal{H} is positive intervals:

•
$$m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

• \mathcal{H} is convex sets:

•
$$m_{\mathcal{H}}(N) = 2^N$$

What's next?

- Remember the inequality
 - $\mathbb{P}[|E_{\text{in}} E_{\text{out}}| > \epsilon] \le 2|\mathcal{H}|e^{-2\epsilon^2 N}$
- What happens if we replace \mathcal{H} by $m_{\mathcal{H}}(N)$
 - $m_{\mathcal{H}}(N)$ polynomial \Rightarrow Good!

What's next?

- Remember the inequality
 - $\mathbb{P}[|E_{\mathsf{tr}} E| > \epsilon] \le 2 |\mathcal{H}| e^{-2\epsilon^2 N}$
- What happens if we replace \mathcal{H} by $m_{\mathcal{H}}(N)$
 - $m_{\mathscr{H}}(N)$ polynomial \Rightarrow Good!
 - Why?
- How to show $m_{\mathcal{H}}(N)$ is polynomial?

