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From last lecture

Linear hypotheses

 Up to now: linear

hypOtheseS Data: Hypothesis:
 Perception, Linear 1 ——— L
regression, Logistic « o
regression, ... ° 2
O} 0
© o
« Many problems are not 7
linearly separable o " x 1
1 X




Nonlinear transformation

Circular Separable and Linear Separable

h(x) = sign(0.6 - 1+ (- 1) xl + (= 1) x)

= sign(Ww’ 2)

o {(x,,y,)} circular separable =
{(z,,y,)} linear separable

e XE X — x € Z (using a
nonlinear transformation @)




Nonlinear Transformation

Definition

e Define nonlinear transformation

* ¢(X) — (1,x12,x22) — (Z(), {15 Zz) = Z

» Linear hypotheses in £ -space:

+ sign(h(z)) = sign(A(¢(x))) = sign(w’ ¢ (x))

» Line in Z -space < some quadratic curves in 2 -space



Nonlinear Transformation
General Quadratic Hypothesis Set

« A “bigger ” Z -space:

¢2(X) — (1 xla x29 xl ) x1x29 )
 Linear in £ -space < quadratic hypotheses in X -space

 The hypotheses space:
« A b = th(x) : h(x) = WTgbz(x) for some W} (quadratic hypotheses)

* Also include linear model as a degenerate case



Nonlinear transformation

Learning a good quadratic function

» Transform original data {x,, v}
to {Zn — ¢(Xn), yn}

* Solve a linear problem on
1Z,, v, } using your favorite
algorithm & to get a good

model w

e Return the model

h(x) = sign(W" ¢(x))

1 - 1

x
X
x X ‘ 0




Nonlinear transformation

Polynomial mappings

 Can now freely do quadratic classification, quadratic regression

 Can easily extend to any degree of polynomial mappings

e E.0.,
_ 2 2 2 .2 2
P(x) = (X1, Xy, X3, X1 X5, x1x3,x2x3,x1x2,x1x3,xlxz,x2x3,x2x3,x1,xz,x3)



Nonlinear Transformation

The price we pay: computational complexity

» ()-th oder polynomial transform:

P(x) = (1x, x5, ..., x,,

2 2 2
xl,XIxz, ...,Xd, ...,Xd,

Q0 ,.0-1 é,
X7 X7 X, ...,xd)

. O(dQ) dimensional vector = High computational cost

e Kernel method



Nonlinear Transformation

The price we pay: overfitting

* Qverfitting: the model has low training error but high prediction error

Model: 9t order polynomial 1
1 P Target: sin(21x) + noise | —©— Training
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Theory of Generalization

Training versus testing

 Machine learning pipeline:

* [raining phase:

 Obtain the best model /2 by minimizing training error

* Jest (inference) phase:
 For any incoming test data x”
« Make prediction by /(x)

 Measure the performance of h: test error



Theory of Generalization

Training versus testing

* Does low training error imply low test error?

 They can be totally different if

o train distribution # test distribution



Theory of Generalization

Training versus testing

* Does low training error imply low test error?

 They can be totally different if

o train distribution # test distribution

 Even under the same distribution, they can be very different:

» Because /1 is picked to minimize training error, not test error



Theory of Generalization

Formal definition

e Assume training and test data are both sampled from D

 The ideal function (for generating labels) is f : f(x) — y

e Training error: Sample x, ..., xy from D and
1 &
o Etr(h) — N Z e(h(xn)a f(xn))
n=1
* his determined by X, ..., Xy
e Test error: Sample x, ..., x;, from D and
1 M
o Ete(h) — M le e(h(xm)a f(xm))

* hisindependentto x;, ..., x),



Theory of Generalization

Formal definition

Assume training and test data are both sampled from D

The ideal function (for generating labels) is f : f(x) — y

» Training error: Sample X, ..., xy from D and
1 &
MOEEDICCCANIEN)
n=1
 his determined by xy, ..., Xy
» Test error: Sample xy, ..., xy from D and
1 M
L Elh) ==Y e(h(x,). f(x,))
M
m=1
* hisindependent to X, ..., x),

Generalization error = Test error = Expected performance on D:

» E(h) = E, ple(h(x), f(x)] = E,(h)



Theory of Generalization

The 2 questions of learning

e E(h) ~ O is achieved through:
« E(h) =~ E (h)and E, (h) =~ 0



Theory of Generalization

The 2 questions of learning

e E(h) ~ 0 is achieved through:
« E(h) % E,(h)and E, (h) = 0
* |earning is split into 2 questions:
» Can we make sure that E(h) ~ E, (h)?

 Joday’s focus

 Can we make E, (1) small?

e Optimization



Theory of Generalization
Bound || E(h) — E, (W]

 Consider a bin with red and marbles
» P|picking ared mable] = u BIN
» Pl|picking a mable] =1 — u SA MPLE
m 0000000000
* The value of y is unknown to us Vv = fraction

of red marbles

 How to infer u?

AAAAAAAAA

L = probability
of red marbles

* Pick N marbles independently

e 1: the traction of red marble



Theory of Generalization
Inferring with probability

* Do we know u

e NO BIN

 Sample can be mostly while s AMPLE
bin Is mostly red 0000000000
y m V = fraction

of red marbles

« Can we say something about /?

AAAAAAAAA

* Yes LL = probability
of red marbles

* U IS “probably” close to u



Theory of Generalization
Hoeffding’s inequality

 |In big sample (large N), v (sample mean) is probably close to u:
e pllv—pl > el <2e72N
* This is called Hoeffding’s inequality

* The statement “u = v” Is probably approximately correct (PAC)



Theory of Generalization
Hoeffding’s inequality

c pllv—p| > el <2e7 %N BN

e Valid forall Nand e > 0 SAMPLE
m e o0 O
V = fraction

of red marbles

* Does not depend on u (no need to know
1)

AAAAAAAAA

o Larger sample size N or looser gap € = &
_ o of red marbles
higher probability for 4 ~ v



Theory of Generalization

Connection to Learning

 How to connect this to learning?

 Each marble (uncolored) is a
data pointx € X




Theory of Generalization

Connection to Learning

’ h(x)# /(X)

 How to connect this to learning?

® /(x)=/(x)

 Each marble (uncolored) is a
data pointx € X

» Red marble: h(x) # f(x)

« Green marble: h(x) = f(x)




Theory of Generalization

Connection to Learning

e Given a function A

» If we randomly draw x, ..., x, (independent to A):

« E(h) =Lk, _plh(x) # f(x)] © u (generalization error, unknown)

1 &
= Z [A(x,) #y,] © v (error on sampled data, known)

n=1



Theory of Generalization

Connection to Learning

e Given a function A

» If we randomly draw x, ..., x, (independent to h):

« E(h) =k, _plh(x) # f(x)] < u (generalization error, unknown)

1 &
N Z [A(x,) # y,] © v (error on sampled data, known)
n=1

 Based on Hoeffding’s inequality:

e pllv—pl > e] <2e72N

o “u = U” Is probably approximately correct (PAC)



Theory of Generalization

Connection to Learning

e Given a function A

e If we randomly draw x;, ..., x, (independent to /):

« E(h) =L, _plh(x) # f(x)] & u (generalization error, unknown)

1 N
i Z [h(x,) # y,] © v (error on sampled data, known)
n=1

 Based on Hoeffding’s inequality:

e pllv—pu| > el <2e72N

o “u = U” Is probably approximately correct (PAC)

 However, this can only “verify” the error of a hypothesis:

 handXx, ..., xy must be independent



Theory of Generalization
Apply to multiple bins (hypothesis)

« Can we apply to multiple hypothesis? h, h, h,

e Color in each bin depends on different
hypothesis

* Bingo when getting all green balls?

Ein( hl) Ein(hz) Ein(hM)



Theory of Generalization

Coin game

* |f you have 150 fair coins, flip each coin 5
times, and one of them gets 5 heads. Is

this coin (g) special?

* No. The probabillity of exiting at least one
of the coin results in 5 heads is

31
1 —(—)">999%
32

» Because: there can exist some /1 such
that £ and £, are far way if M is large.



Theory of Generalization

A simple solution

» For each particular A,
. P[|E,(h) — E(h)| > €] <2e72N
- If we have a hypothesis set #',we want to derive the bound for P[sup, o, | E,(h) — E(h) | > €]

» PL|E,(h) — E(h)| > €]or...or P[|E,(Iyg) — E(lyg) | > €]

H
. < ) PLIE,h,) - Eh,)| > el <2||e72N
m=1

o0 0
Because of union bound inequality P(UAZ-) < Z P(A))
i=1 i=1



Theory of generalization

When is learning successful?

» When our learning algorithm &/ picks the hypothesis g:
e P[SUPco |E (h) — E(h)| > €] < 2| |e 2N
 If | 7| is small and N is large enough:

. If of finds E, (g) ~ 0 = E(g) = 0O (Learning is successfull)



Theory of Generalization

Feasibility of Learning

_2¢2
« P[|E(8) —E@Q)|>€l<2| % |e>N
 [wo gquestions:

1. Can we make sure E(g) =~ E,(g)7?

» 2. Can we make sure £, (g) ~ 07



Theory of Generalization

Feasibility of Learning

« P[|E(8) - E@@)| > el <2| 7 |e %N
 [wo gquestions:

1. Can we make sure E(g) =~ E,(g)7?
» 2. Can we make sure £, (g) ~ 07
e | A |: complexity of model

« Small | |: 1 holds, but 2 may not hold (too few choices) (under-fitting)



Theory of Generalization

Feasibility of Learning

+ PIE(8) —E(®)| > el <2|7 |7V
 Two questions:
» 1. Can we make sure L(g) ~ E,(g)7?
» 2. Can we make sure E, (g) ~ 07?
e | A |: complexity of model
« Small | Z |: 1 holds, but 2 may not hold (too few choices) (under-fitting)

» Large | # |: 1 doesn’t hold, but 2 may hold (over-fitting)



Theory of Generalization

Feasibility of Learning

* Currently we only know

« P[SUP,c | E,(h) — E(h)| > €] < 2| |e 2N



Theory of Generalization

Feasibility of Learning

* Currently we only know
e P[SUP,co | E(h) — E(h)| > €] < 2|7 | e~ 2N

« Whatif | # | = c0?

* (e.q. linear hyperplanes)



Theory of Generalization

Deduce the dimension

 Why do we need to consider every possible
hypothesis?

+ P[SUPuco | E,(h) — E(h)| > €]

* |f we omit one hypothesis, we might miss the
biggest gap

« P[SUP,c | E,(h) — E(h)| > €] < 2| |e 2N

 from the union bound, which assume the event is
Independent



Theory of Generalization

Deduce the dimension

 Why do we need to consider every possible
hypothesis?

+ P[SUPuco | E,(h) — E(h)| > €]

* |f we omit one hypothesis, we might miss the
biggest gap

 However, are the events of each hypothesis having a
big generalization gap are likely to be independent?

-
~~~~~
-------
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- = Target Function




Theory of Generalization

Deduce the dimension

 Why do we need to consider every possible
hypothesis?

» P[SUPyeo | E,(h) — E(h)| > €]

* |f we omit one hypothesis, we might miss the
biggest gap

- However, are the events of each hypothesis havinga bo

big generalization gap are likely to be independent?

e No




Theory of Generalization

Symmetrization lemma

» Imagine we have the ghost dataset S’ with also size N:

€
. P[SUP,co | E, (h) — E(h)| > €] < 2P[SUPey | E,(h) — E,(h)| > 5]



Theory of Generalization

Growth function

» Imagine we have the ghost dataset S’ with also size N:
€
. P[SUP,c# | E, (h) — E(h)| > €] < 2P[SUPc | E, (h) — E/(h)| > >
* By union bound:

€ €
. P[SUPyeo I E(h) — E (h)] > 5] <|#sus'| Pl E(h) = E ()| > 5]



Theory of Generalization

Growth function

» Imagine we have the ghost dataset S’ with also size N:
€
. P[SUP,c# | E, (h) — E(h)| > €] < 2P[SUPc | E, (h) — E/(h)| > >
* By union bound:

€ €
. P[SUPyeo I E(h) — E (h)] > 5] <|#sus'| Pl E(h) = E ()| > 5]



Theory of Generalization

Growth function

* For binary classification {+1,-1}, for a dataset with N samples,

 The max number of distinct labellings is 2N

» Growth function A4,(/V) : The max number of distinct labellings on a dataset S of
size N by a hypothesis space #

* SO,
€ €
. PISUPyes (| E,(h) — Ex()| > 51 < Ay CN)PLIE, () = Ej(h)| > =]

. And A (N) < 2™



