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From last lecture
Linear hypotheses

• Up to now: linear 
hypotheses


• Perception, Linear 
regression, Logistic 
regression, …


• Many problems are not 
linearly separable



Nonlinear transformation
Circular Separable and Linear Separable

• 


•  circular separable 
 linear separable


•  (using a 
nonlinear transformation )
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Nonlinear Transformation
Definition

• Define nonlinear transformation


• 


• Linear hypotheses in -space:


• 


• Line in -space  some quadratic curves in -space

ϕ(x) = (1,x2
1 , x2

2) = (z0, z1, z2) = z

𝒵

sign(h̃(z)) = sign(h̃(ϕ(x))) = sign(wTϕ(x))

𝒵 ⇔ 𝒳



Nonlinear Transformation
General Quadratic Hypothesis Set

• A “bigger ” -space:


• 


• Linear in -space  quadratic hypotheses in -space


• The hypotheses space:


•  (quadratic hypotheses)


• Also include linear model as a degenerate case

𝒵

ϕ2(x) = (1,x1, x2, x2
1 , x1x2, x2

2)

𝒵 ⇔ 𝒳

ℋϕ2
= {h(x) : h(x) = w̃Tϕ2(x) for some w̃}



Nonlinear transformation
Learning a good quadratic function

• Transform original data  
to 


• Solve a linear problem on 
 using your favorite 

algorithm  to get a good 
model 


• Return the model 

{xn, yn}
{zn = ϕ(xn), yn}

{zn, yn}
𝒜

w̃

h(x) = sign(w̃Tϕ(x))



Nonlinear transformation
Polynomial mappings

• Can now freely do quadratic classification, quadratic regression


• Can easily extend to any degree of polynomial mappings


• E.g., 
ϕ(x) = (x1, x2, x3, x1x2, x1x3, x2x3, x1x2

2 , x1x2
3 , x1x2

2 , x2
2 x3, x2

2 x3, x3
1 , x3

2 , x3
3)



Nonlinear Transformation
The price we pay: computational complexity

• -th oder polynomial transform:


•



•  dimensional vector  High computational cost


• Kernel method

Q
ϕ(x) = (1,x1, x2, …, xd,
x2

1 , x1x2, …, x2
d , …, x2

d ,
…

xQ
1 , xQ−1

1 x2, …, xQ
d )

O(dQ) ⇒



Nonlinear Transformation
The price we pay: overfitting

• Overfitting: the model has low training error but high prediction error



Theory of Generalization
Training versus testing

• Machine learning pipeline:


• Training phase:


• Obtain the best model  by minimizing training error


• Test (inference) phase:


• For any incoming test data ”


• Make prediction by 


• Measure the performance of h: test error

h

x

h(x)



Theory of Generalization
Training versus testing

• Does low training error imply low test error?


• They can be totally different if


• train distribution  test distribution≠



Theory of Generalization
Training versus testing

• Does low training error imply low test error?


• They can be totally different if


• train distribution  test distribution


• Even under the same distribution, they can be very different:


• Because  is picked to minimize training error, not test error

≠

h



Theory of Generalization
Formal definition

• Assume training and test data are both sampled from 


• The ideal function (for generating labels) is 


• Training error: Sample  from  and 


• 


• h is determined by 


• Test error: Sample  from  and 


• 


• h is independent to 

D

f : f(x) → y

x1, …, xN D

Etr(h) =
1
N

N

∑
n=1

e(h(xn), f(xn))

x1, …, xN

x1, …, xM D

Ete(h) =
1
M

M

∑
m=1

e(h(xm), f(xm))

x1, …, xM



Theory of Generalization
Formal definition

• Assume training and test data are both sampled from 


• The ideal function (for generating labels) is 


• Training error: Sample  from  and 


• 


• h is determined by 


• Test error: Sample  from  and 


• 


• h is independent to 


• Generalization error = Test error = Expected performance on :


•

D

f : f(x) → y

x1, …, xN D

Etr(h) =
1
N

N

∑
n=1

e(h(xn), f(xn))

x1, …, xN

x1, …, xN D

Ete(h) =
1
M

M

∑
m=1

e(h(xm), f(xm))

x1, …, xM

D

E(h) = 𝔼x∼D[e(h(x), f(x))] = Ete(h)



Theory of Generalization
The 2 questions of learning

•  is achieved through:


•  and 

E(h) ≈ 0

E(h) ≈ Etr(h) Etr(h) ≈ 0



Theory of Generalization
The 2 questions of learning

•  is achieved through:


•  and 


• Learning is split into 2 questions:


• Can we make sure that ?


• Today’s focus


• Can we make  small?


• Optimization

E(h) ≈ 0

E(h) ≈ Etr(h) Etr(h) ≈ 0

E(h) ≈ Etr(h)

Etr(h)



Theory of Generalization
Bound ∥E(h) − Etr(h)∥

• Consider a bin with red and green marbles


• 


• 


• The value of  is unknown to us


• How to infer ?


• Pick N marbles independently


• : the traction of red marble

P[picking a red mable] = μ

P[picking a green mable] = 1 − μ

μ

μ

ν



Theory of Generalization
Inferring with probability

• Do we know 


• No


• Sample can be mostly green while 
bin is mostly red


• Can we say something about ?


• Yes


•  is “probably” close to 

μ

μ

ν μ



Theory of Generalization
Hoeffding’s inequality

• In big sample (large N),  (sample mean) is probably close to :


• 


• This is called Hoeffding’s inequality 

• The statement “ ” Is probably approximately correct (PAC)

ν μ

p[ |ν − μ | > ϵ] ≤ 2e−2ϵ2N

μ = ν



Theory of Generalization
Hoeffding’s inequality

•  

• Valid for all  and 


• Does not depend on  (no need to know 
)


• Larger sample size  or looser gap   
higher probability for 

p[ |ν − μ | > ϵ] ≤ 2e−2ϵ2N

N ϵ > 0

μ
μ

N ϵ ⇒
μ ≈ ν



Theory of Generalization 
Connection to Learning

• How to connect this to learning?


• Each marble (uncolored) is a 
data point x ∈ 𝒳



Theory of Generalization 
Connection to Learning

• How to connect this to learning?


• Each marble (uncolored) is a 
data point 


• Red marble: 


• Green marble: 

x ∈ 𝒳

h(x) ≠ f(x)

h(x) = f(x)



Theory of Generalization
Connection to Learning

• Given a function 


• If we randomly draw  (independent to ):


•  (generalization error, unknown)


•  (error on sampled data, known)

h

x1, …, xn h

E(h) = 𝔼x∼D[h(x) ≠ f(x)] ⇔ μ

1
N

N

∑
n=1

[h(xn) ≠ yn] ⇔ ν



Theory of Generalization
Connection to Learning

• Given a function 


• If we randomly draw  (independent to ):


•  (generalization error, unknown)


•  (error on sampled data, known)


• Based on Hoeffding’s inequality:


• 


• “ ” Is probably approximately correct (PAC)

h

x1, …, xn h

E(h) = 𝔼x∼D[h(x) ≠ f(x)] ⇔ μ

1
N

N

∑
n=1

[h(xn) ≠ yn] ⇔ ν

p[ |ν − μ | > ϵ] ≤ 2e−2ϵ2N

μ = ν



Theory of Generalization
Connection to Learning

• Given a function 


• If we randomly draw  (independent to ):


•  (generalization error, unknown)


•  (error on sampled data, known)


• Based on Hoeffding’s inequality:


• 


• “ ” Is probably approximately correct (PAC)


• However, this can only “verify” the error of a hypothesis:


•  and  must be independent

h

x1, …, xn h

E(h) = 𝔼x∼D[h(x) ≠ f(x)] ⇔ μ

1
N

N

∑
n=1

[h(xn) ≠ yn] ⇔ ν

p[ |ν − μ | > ϵ] ≤ 2e−2ϵ2N

μ = ν

h x1, …, xN



Theory of Generalization
Apply to multiple bins (hypothesis)

• Can we apply to multiple hypothesis?


• Color in each bin depends on different 
hypothesis 


• Bingo when getting all green balls?



Theory of Generalization
Coin game

• If you have 150 fair coins, flip each coin 5 
times, and one of them gets 5 heads. Is 
this coin ( ) special?


• No. The probability of exiting at least one 
of the coin results in 5 heads is 




• Because: there can exist some  such 
that  and  are far way if M is large.

g

1 − (
31
32

)150 > 99 %

h
E Etr



Theory of Generalization
A simple solution

• For each particular ,


• 


• If we have a hypothesis set ,we want to derive the bound for 


•  or … or 


• 


• Because of union bound inequality 

h

P[ |Etr(h) − E(h) | > ϵ] ≤ 2e−2ϵ2N

ℋ P[suph∈ℋ |Etr(h) − E(h) | > ϵ]

P[ |Etr(h1) − E(h1) | > ϵ] P[ |Etr(h|ℋ|) − E(h|ℋ|) | > ϵ]

≤
ℋ

∑
m=1

P[ |Etr(hm) − E(hm) | > ϵ] ≤ 2 |ℋ |e−2ϵ2N

P(
∞

⋃
i=1

Ai) ≤
∞

∑
i=1

P(Ai)



Theory of generalization
When is learning successful?

• When our learning algorithm  picks the hypothesis :


• 


• If  is small and N is large enough:


• If  finds    (Learning is successful!)

𝒜 g

P[SUPh∈ℋ |Etr(h) − E(h) | > ϵ] ≤ 2 |ℋ |e−2ϵ2N

|ℋ |

𝒜 Etr(g) ≈ 0 ⇒ E(g) ≈ 0



Theory of Generalization
Feasibility of Learning

• 


• Two questions:


• 1. Can we make sure ?


• 2. Can we make sure ?

P[ |Etr(g) − E(g) | > ϵ] ≤ 2 |ℋ |e−2ϵ2N

E(g) ≈ Etr(g)

Etr(g) ≈ 0



Theory of Generalization
Feasibility of Learning

• 


• Two questions:


• 1. Can we make sure ?


• 2. Can we make sure ?


• : complexity of model


• Small : 1 holds, but 2 may not hold (too few choices) (under-fitting)

P[ |Etr(g) − E(g) | > ϵ] ≤ 2 |ℋ |e−2ϵ2N

E(g) ≈ Etr(g)

Etr(g) ≈ 0

|ℋ |

|ℋ |



Theory of Generalization
Feasibility of Learning

• 


• Two questions:


• 1. Can we make sure ?


• 2. Can we make sure ?


• : complexity of model


• Small : 1 holds, but 2 may not hold (too few choices) (under-fitting)


• Large : 1 doesn’t hold, but 2 may hold (over-fitting)

P[ |Etr(g) − E(g) | > ϵ] ≤ 2 |ℋ |e−2ϵ2N

E(g) ≈ Etr(g)

Etr(g) ≈ 0

|ℋ |

|ℋ |

|ℋ |



Theory of Generalization
Feasibility of Learning

• Currently we only know


• P[SUPh∈ℋ |Etr(h) − E(h) | > ϵ] ≤ 2 |ℋ |e−2ϵ2N



Theory of Generalization
Feasibility of Learning

• Currently we only know


• 


• What if ?


• (e.g. linear hyperplanes)

P[SUPh∈ℋ |Etr(h) − E(h) | > ϵ] ≤ 2 |ℋ |e−2ϵ2N

|ℋ | = ∞



Theory of Generalization
Deduce the dimension

• Why do we need to consider every possible 
hypothesis?


• 


• If we omit one hypothesis, we might miss the 
biggest gap 


• 


• from the union bound, which assume the event is 
independent

P[SUPh∈ℋ |Etr(h) − E(h) | > ϵ]

P[SUPh∈ℋ |Etr(h) − E(h) | > ϵ] ≤ 2 |ℋ |e−2ϵ2N



Theory of Generalization
Deduce the dimension

• Why do we need to consider every possible 
hypothesis?


• 


• If we omit one hypothesis, we might miss the 
biggest gap 


• However, are the events of each hypothesis having a 
big generalization gap are likely to be independent?

P[SUPh∈ℋ |Etr(h) − E(h) | > ϵ]



Theory of Generalization
Deduce the dimension

• Why do we need to consider every possible 
hypothesis?


• 


• If we omit one hypothesis, we might miss the 
biggest gap 


• However, are the events of each hypothesis having a 
big generalization gap are likely to be independent?


• No

P[SUPh∈ℋ |Etr(h) − E(h) | > ϵ]



Theory of Generalization
Symmetrization lemma

• Imagine we have the ghost dataset  with also size N:


•

S′￼

P[SUPh∈ℋ |Etr(h) − E(h) | > ϵ] ≤ 2P[SUPh∈ℋ |Etr(h) − E′￼tr(h) | >
ϵ
2

]



Theory of Generalization
Growth function

• Imagine we have the ghost dataset  with also size N:


• 


• By union bound:


•

S′￼

P[SUPh∈ℋ |Etr(h) − E(h) | > ϵ] ≤ 2P[SUPh∈ℋ |Etr(h) − E′￼tr(h) | >
ϵ
2

]

P[SUPh∈ℋS∪S′￼
|Etr(h) − E′￼tr(h) | >

ϵ
2

] ≤ |ℋS∪S′￼
|P[ |Etr(h) − E′￼tr(h) | >

ϵ
2

]



Theory of Generalization
Growth function

• Imagine we have the ghost dataset  with also size N:


• 


• By union bound:


• 


• How to bound 

S′￼

P[SUPh∈ℋ |Etr(h) − E(h) | > ϵ] ≤ 2P[SUPh∈ℋ |Etr(h) − E′￼tr(h) | >
ϵ
2

]

P[SUPh∈ℋS∪S′￼
|Etr(h) − E′￼tr(h) | >

ϵ
2

] ≤ |ℋS∪S′￼
|P[ |Etr(h) − E′￼tr(h) | >

ϵ
2

]

|ℋS∪S′￼
|



Theory of Generalization
Growth function

• For binary classification {+1,-1}, for a dataset with N samples,


• The max number of distinct labellings is 


• Growth function  : The max number of distinct labellings on a dataset S of 
size N by a hypothesis space 


• So,


• 


• And 

2N

Δℋ(N)
ℋ

P[SUPh∈ℋS∪S′￼
|Etr(h) − E′￼tr(h) | >

ϵ
2

] ≤ Δℋ(2N)P[ |Etr(h) − E′￼tr(h) | >
ϵ
2

]

Δℋ(N) ≤ 2m


