COMP5211: Machine Learning
 Lecture 7

Minhao Cheng

From last lecture

Linear hypotheses

- Up to now: linear
hypotheses
- Perception, Linear regression, Logistic regression, ...
- Many problems are not linearly separable

Hypothesis:

Nonlinear transformation

Circular Separable and Linear Separable

$$
\begin{aligned}
h(x) & =\operatorname{sign}(\underbrace{0.6}_{\tilde{w}_{0}} \cdot \underbrace{1}_{\tilde{z_{0}}}+\underbrace{(-1)}_{\tilde{w}_{1}} \cdot \underbrace{x_{1}^{2}}_{\tilde{z_{1}}}+\underbrace{(-1)}_{\tilde{w}_{2}} \cdot \underbrace{x_{2}^{2}}_{\tilde{z_{2}}}) \\
& =\operatorname{sign}\left(\tilde{w}^{T} z\right)
\end{aligned}
$$

- $\left\{\left(x_{n}, y_{n}\right)\right\}$ circular separable \Rightarrow $\left\{\left(z_{n}, y_{n}\right)\right\}$ linear separable
- $x \in \mathscr{X} \rightarrow x \in \mathscr{Z}$ (using a
 nonlinear transformation ϕ)

Nonlinear Transformation

Definition

- Define nonlinear transformation
- $\phi(\mathbf{x})=\left(1, x_{1}^{2}, x_{2}^{2}\right)=\left(z_{0}, z_{1}, z_{2}\right)=\mathbf{z}$
- Linear hypotheses in \mathscr{X}-space:
- $\operatorname{sign}(\tilde{h}(\mathbf{z}))=\operatorname{sign}(\tilde{h}(\phi(\mathbf{x})))=\operatorname{sign}\left(w^{T} \phi(\mathbf{x})\right)$
- Line in \mathscr{X}-space \Leftrightarrow some quadratic curves in \mathscr{X}-space

Nonlinear Transformation

General Quadratic Hypothesis Set

- A "bigger " \mathscr{Z}-space:
- $\phi_{2}(\mathbf{x})=\left(1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)$
- Linear in \mathscr{Z}-space \Leftrightarrow quadratic hypotheses in \mathscr{X}-space
- The hypotheses space:
- $\mathscr{H}_{\phi_{2}}=\left\{h(x): h(x)=\tilde{w}^{T} \phi_{2}(x)\right.$ for some $\left.\tilde{w}\right\}$ (quadratic hypotheses)
- Also include linear model as a degenerate case

Nonlinear transformation

Learning a good quadratic function

- Transform original data $\left\{x_{n}, y_{n}\right\}$ to $\left\{z_{n}=\phi\left(x_{n}\right), y_{n}\right\}$
- Solve a linear problem on $\left\{z_{n}, y_{n}\right\}$ using your favorite algorithm \mathscr{A} to get a good model \tilde{w}
- Return the model $h(x)=\operatorname{sign}\left(\tilde{w}^{T} \phi(x)\right)$

Nonlinear transformation

Polynomial mappings

- Can now freely do quadratic classification, quadratic regression
- Can easily extend to any degree of polynomial mappings
- E.g.,

$$
\phi(x)=\left(x_{1}, x_{2}, x_{3}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, x_{1} x_{2}^{2}, x_{1} x_{3}^{2}, x_{1} x_{2}^{2}, x_{2}^{2} x_{3}, x_{2}^{2} x_{3}, x_{1}^{3}, x_{2}^{3}, x_{3}^{3}\right)
$$

Nonlinear Transformation

The price we pay: computational complexity

- Q-th oder polynomial transform:

$$
\begin{gathered}
\phi(x)=\left(1, x_{1}, x_{2}, \ldots, x_{d},\right. \\
x_{1}^{2}, x_{1} x_{2}, \ldots, x_{d}^{2}, \ldots, x_{d}^{2},
\end{gathered}
$$

$\left.x_{1}^{Q}, x_{1}^{Q-1} x_{2}, \ldots, x_{d}^{Q}\right)$

- $O\left(d^{Q}\right)$ dimensional vector \Rightarrow High computational cost
- Kernel method

Nonlinear Transformation

The price we pay: overfitting

- Overfitting: the model has low training error but high prediction error

Theory of Generalization

Training versus testing

- Machine learning pipeline:
- Training phase:
- Obtain the best model h by minimizing training error
- Test (inference) phase:
- For any incoming test data x "
- Make prediction by $h(x)$
- Measure the performance of h: test error

Theory of Generalization

Training versus testing

- Does low training error imply low test error?
- They can be totally different if
- train distribution \neq test distribution

Theory of Generalization

Training versus testing

- Does low training error imply low test error?
- They can be totally different if
- train distribution \neq test distribution
- Even under the same distribution, they can be very different:
- Because h is picked to minimize training error, not test error

Theory of Generalization

Formal definition

- Assume training and test data are both sampled from D
- The ideal function (for generating labels) is $f: f(x) \rightarrow y$
- Training error: Sample x_{1}, \ldots, x_{N} from D and
. $E_{t r}(h)=\frac{1}{N} \sum_{n=1}^{N} e\left(h\left(x_{n}\right), f\left(x_{n}\right)\right)$
- h is determined by x_{1}, \ldots, x_{N}
- Test error: Sample x_{1}, \ldots, x_{M} from D and
. $E_{t e}(h)=\frac{1}{M} \sum_{m=1}^{M} e\left(h\left(x_{m}\right), f\left(x_{m}\right)\right)$
- h is independent to x_{1}, \ldots, x_{M}

Theory of Generalization

Formal definition

- Assume training and test data are both sampled from D
- The ideal function (for generating labels) is $f: f(x) \rightarrow y$
- Training error: Sample x_{1}, \ldots, x_{N} from D and

$$
E_{t r}(h)=\frac{1}{N} \sum_{n=1}^{N} e\left(h\left(x_{n}\right), f\left(x_{n}\right)\right)
$$

- h is determined by x_{1}, \ldots, x_{N}
- Test error: Sample x_{1}, \ldots, x_{N} from D and
. $E_{t e}(h)=\frac{1}{M} \sum_{m=1}^{M} e\left(h\left(x_{m}\right), f\left(x_{m}\right)\right)$
- h is independent to x_{1}, \ldots, x_{M}
- Generalization error = Test error = Expected performance on D :
- $E(h)=\mathbb{E}_{x \sim D}[e(h(x), f(x))]=E_{t e}(h)$

Theory of Generalization

The 2 questions of learning

- $E(h) \approx 0$ is achieved through:
- $E(h) \approx E_{t r}(h)$ and $E_{t r}(h) \approx 0$

Theory of Generalization

The 2 questions of learning

- $E(h) \approx 0$ is achieved through:
- $E(h) \approx E_{t r}(h)$ and $E_{t r}(h) \approx 0$
- Learning is split into 2 questions:
- Can we make sure that $E(h) \approx E_{t r}(h)$?
- Today's focus
- Can we make $E_{t r}(h)$ small?
- Optimization

Theory of Generalization

Bound $\left\|E(h)-E_{t r}(h)\right\|$

- Consider a bin with red and green marbles
- P [picking a red mable] $=\mu$
- $P[$ picking a green mable $]=1-\mu$
- The value of μ is unknown to us
- How to infer μ ?
- Pick N marbles independently

- ν : the traction of red marble

Theory of Generalization

Inferring with probability

- Do we know μ
- No
- Sample can be mostly green while bin is mostly red
- Can we say something about μ ?
- Yes
- ν is "probably" close to μ

Theory of Generalization

Hoeffding's inequality

- In big sample (large N), ν (sample mean) is probably close to μ :
- $p[|\nu-\mu|>\epsilon] \leq 2 e^{-2 \epsilon^{2} N}$
- This is called Hoeffding's inequality
- The statement " $\mu=\nu$ " Is probably approximately correct (PAC)

Theory of Generalization

Hoeffding's inequality

- $p[|\nu-\mu|>\epsilon] \leq 2 e^{-2 \epsilon^{2} N}$
- Valid for all N and $\epsilon>0$
- Does not depend on μ (no need to know $\mu)$
- Larger sample size N or looser gap $\epsilon \Rightarrow$ higher probability for $\mu \approx \nu$

Theory of Generalization

Connection to Learning

- How to connect this to learning?
- Each marble (uncolored) is a data point $x \in \mathscr{X}$

Theory of Generalization

Connection to Learning

- How to connect this to learning?
- Each marble (uncolored) is a data point $x \in \mathscr{X}$
- Red marble: $h(x) \neq f(x)$
- Green marble: $h(x)=f(x)$

Theory of Generalization

Connection to Learning

- Given a function h
- If we randomly draw x_{1}, \ldots, x_{n} (independent to h):
- $E(h)=\mathbb{E}_{x \sim D}[h(x) \neq f(x)] \Leftrightarrow \mu$ (generalization error, unknown)
- $\frac{1}{N} \sum_{n=1}^{N}\left[h\left(x_{n}\right) \neq y_{n}\right] \Leftrightarrow \nu$ (error on sampled data, known)

Theory of Generalization
 Connection to Learning

- Given a function h
- If we randomly draw x_{1}, \ldots, x_{n} (independent to h):
- $E(h)=\mathbb{E}_{x \sim D}[h(x) \neq f(x)] \Leftrightarrow \mu$ (generalization error, unknown)
- $\frac{1}{N} \sum_{n=1}^{N}\left[h\left(x_{n}\right) \neq y_{n}\right] \Leftrightarrow \nu$ (error on sampled data, known)
- Based on Hoeffding's inequality:
- $p[|\nu-\mu|>\epsilon] \leq 2 e^{-2 \epsilon^{2} N}$
- " $\mu=\nu$ " Is probably approximately correct (PAC)

Theory of Generalization
 Connection to Learning

- Given a function h
- If we randomly draw x_{1}, \ldots, x_{n} (independent to h):
- $E(h)=\mathbb{E}_{x \sim D}[h(x) \neq f(x)] \Leftrightarrow \mu$ (generalization error, unknown)
- $\frac{1}{N} \sum_{n=1}^{N}\left[h\left(x_{n}\right) \neq y_{n}\right] \Leftrightarrow \nu$ (error on sampled data, known)
- Based on Hoeffding's inequality:
- $p[|\nu-\mu|>\epsilon] \leq 2 e^{-2 \epsilon^{2} N}$
- " $\mu=\nu$ " Is probably approximately correct (PAC)
- However, this can only "verify" the error of a hypothesis:
- h and x_{1}, \ldots, x_{N} must be independent

Theory of Generalization

Apply to multiple bins (hypothesis)

- Can we apply to multiple hypothesis?
- Color in each bin depends on different hypothesis
- Bingo when getting all green balls?

Theory of Generalization

Coin game

- If you have 150 fair coins, flip each coin 5 times, and one of them gets 5 heads. Is this coin (g) special?
- No. The probability of exiting at least one of the coin results in 5 heads is

$$
1-\left(\frac{31}{32}\right)^{150}>99 \%
$$

- Because: there can exist some h such that E and $E_{t r}$ are far way if M is large.

Theory of Generalization

A simple solution

- For each particular h,
- $P\left[\left|E_{t r}(h)-E(h)\right|>\epsilon\right] \leq 2 e^{-2 \epsilon^{2} N}$
- If we have a hypothesis set \mathscr{H}, we want to derive the bound for $P\left[\sup _{h \in \mathscr{H}}\left|E_{t r}(h)-E(h)\right|>\epsilon\right]$
- $P\left[\left|E_{t r}\left(h_{1}\right)-E\left(h_{1}\right)\right|>\epsilon\right]$ or \ldots or $P\left[\left|E_{t r}\left(h_{|\mathscr{H}|}\right)-E\left(h_{\mid \mathscr{H}}\right)\right|>\epsilon\right]$
. $\leq \sum_{m=1}^{\mathscr{H}} P\left[\left|E_{t r}\left(h_{m}\right)-E\left(h_{m}\right)\right|>\epsilon\right] \leq 2|\mathscr{H}| e^{-2 \epsilon^{2} N}$
. Because of union bound inequality $P\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} P\left(A_{i}\right)$

Theory of generalization

When is learning successful?

- When our learning algorithm \mathscr{A} picks the hypothesis g :
- $P\left[\operatorname{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E(h)\right|>\epsilon\right] \leq 2|\mathscr{H}| e^{-2 \epsilon^{2} N}$
- If $|\mathscr{H}|$ is small and N is large enough:
- If \mathscr{A} finds $E_{t r}(g) \approx 0 \Rightarrow E(g) \approx 0$ (Learning is successfu!!)

Theory of Generalization

Feasibility of Learning

- $P\left[\left|E_{t r}(g)-E(g)\right|>\epsilon\right] \leq 2|\mathscr{H}| e^{-2 \epsilon^{2} N}$
- Two questions:
- 1. Can we make sure $E(g) \approx E_{t r}(g)$?
- 2. Can we make sure $E_{t r}(g) \approx 0$?

Theory of Generalization

Feasibility of Learning

- $P\left[\left|E_{t r}(g)-E(g)\right|>\epsilon\right] \leq 2|\mathscr{H}| e^{-2 \epsilon^{2} N}$
- Two questions:
- 1. Can we make sure $E(g) \approx E_{t r}(g)$?
- 2. Can we make sure $E_{t r}(g) \approx 0$?
- $|\mathscr{H}|$: complexity of model
- Small $|\mathscr{H}|: 1$ holds, but 2 may not hold (too few choices) (under-fitting)

Theory of Generalization

Feasibility of Learning

- $P\left[\left|E_{t r}(g)-E(g)\right|>\epsilon\right] \leq 2|\mathscr{H}| e^{-2 \epsilon^{2} N}$
- Two questions:
- 1. Can we make sure $E(g) \approx E_{t r}(g)$?
- 2. Can we make sure $E_{t r}(g) \approx 0$?
- $|\mathscr{H}|$: complexity of model
- Small $|\mathscr{H}|: 1$ holds, but 2 may not hold (too few choices) (under-fitting)
- Large $|\mathscr{H}|: 1$ doesn't hold, but 2 may hold (over-fitting)

Theory of Generalization

Feasibility of Learning

- Currently we only know
- $P\left[\operatorname{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E(h)\right|>\epsilon\right] \leq 2|\mathscr{H}| e^{-2 \epsilon^{2} N}$

Theory of Generalization

Feasibility of Learning

- Currently we only know
- $P\left[\operatorname{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E(h)\right|>\epsilon\right] \leq 2|\mathscr{H}| e^{-2 \epsilon^{2} N}$
- What if $|\mathscr{H}|=\infty$?
- (e.g. linear hyperplanes)

Theory of Generalization

Deduce the dimension

- Why do we need to consider every possible hypothesis?
- $P\left[\mathrm{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E(h)\right|>\epsilon\right]$
- If we omit one hypothesis, we might miss the biggest gap
- $P\left[\operatorname{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E(h)\right|>\epsilon\right] \leq 2|\mathscr{H}| e^{-2 \epsilon^{2} N}$
- from the union bound, which assume the event is independent

Theory of Generalization

Deduce the dimension

- Why do we need to consider every possible hypothesis?
- $P\left[\operatorname{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E(h)\right|>\epsilon\right]$
- If we omit one hypothesis, we might miss the biggest gap
- However, are the events of each hypothesis having a big generalization gap are likely to be independent?

Theory of Generalization

Deduce the dimension

- Why do we need to consider every possible hypothesis?
- $P\left[\mathrm{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E(h)\right|>\epsilon\right]$
- If we omit one hypothesis, we might miss the biggest gap
- However, are the events of each hypothesis having a big generalization gap are likely to be independent?
- No

Theory of Generalization

Symmetrization lemma

- Imagine we have the ghost dataset S^{\prime} with also size N :
. $P\left[\mathrm{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E(h)\right|>\epsilon\right] \leq 2 P\left[\mathrm{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E_{t r}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]$

Theory of Generalization

Growth function

- Imagine we have the ghost dataset S^{\prime} with also size N :
. $P\left[\operatorname{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E(h)\right|>\epsilon\right] \leq 2 P\left[\operatorname{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E_{t r}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]$
- By union bound:
. $P\left[\mathrm{SUP}_{h \in \mathscr{H}_{s u s^{\prime}}}\left|E_{t r}(h)-E_{t r}^{\prime}(h)\right|>\frac{\epsilon}{2}\right] \leq\left|\mathscr{H}_{S \cup S^{\prime}}\right| P\left[\left|E_{t r}(h)-E_{t r}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]$

Theory of Generalization

Growth function

- Imagine we have the ghost dataset S^{\prime} with also size N :
. $P\left[\operatorname{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E(h)\right|>\epsilon\right] \leq 2 P\left[\operatorname{SUP}_{h \in \mathscr{H}}\left|E_{t r}(h)-E_{t r}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]$
- By union bound:
- $P\left[\operatorname{SUP}_{h \in \mathscr{H}_{s \cup S^{\prime}}}\left|E_{t r}(h)-E_{t r}^{\prime}(h)\right|>\frac{\epsilon}{2}\right] \leq\left|\mathscr{H}_{S \cup S^{\prime}}\right| P\left[\left|E_{t r}(h)-E_{t r}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]$
- How to bound $\left|\mathscr{H}_{S \cup S^{\prime}}\right|$

Theory of Generalization

Growth function

- For binary classification $\{+1,-1\}$, for a dataset with N samples,
- The max number of distinct labellings is 2^{N}
- Growth function $\Delta_{\mathscr{H}}(N)$: The max number of distinct labellings on a dataset S of size N by a hypothesis space \mathscr{H}
- So,
. $P\left[\operatorname{SUP}_{h \in \mathscr{H}_{s u s^{\prime}}}\left|E_{t r}(h)-E_{t r}^{\prime}(h)\right|>\frac{\epsilon}{2}\right] \leq \Delta_{\mathscr{H}}(2 N) P\left[\left|E_{t r}(h)-E_{t r}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]$
- And $\Delta_{\mathscr{H}}(N) \leq 2^{m}$

