COMP5211: Machine Learning Lecture 7

Minhao Cheng

From last lecture Linear hypotheses

- Up to now: linear hypotheses
 - Perception, Linear regression, Logistic regression, ...
- Many problems are not linearly separable

Nonlinear transformation Circular Separable and Linear Separable

 $h(x) = \operatorname{sign}(\underbrace{0.6}_{\tilde{W}_{0}} \cdot \underbrace{1}_{\tilde{Z}_{0}} + \underbrace{(-1)}_{\tilde{W}_{1}} \cdot \underbrace{x_{1}^{2}}_{\tilde{Z}_{1}} + \underbrace{(-1)}_{\tilde{W}_{2}} \cdot \underbrace{x_{2}^{2}}_{\tilde{Z}_{2}})$ $= \operatorname{sign}(\tilde{W}^{T}z)$

- $\{(x_n, y_n)\}$ circular separable \Rightarrow $\{(z_n, y_n)\}$ linear separable
- $x \in \mathcal{X} \to x \in \mathcal{X}$ (using a nonlinear transformation ϕ)

Nonlinear Transformation Definition

- Define nonlinear transformation
 - $\phi(\mathbf{x}) = (1, x_1^2, x_2^2) = (z_0, z_1, z_2) = \mathbf{z}$
- Linear hypotheses in \mathcal{X} -space:
 - $\operatorname{sign}(\tilde{h}(\mathbf{z})) = \operatorname{sign}(\tilde{h}(\phi(\mathbf{x}))) = \operatorname{sign}(w^T \phi(\mathbf{x}))$
- Line in \mathscr{X} -space \Leftrightarrow some quadratic curves in \mathscr{X} -space

Nonlinear Transformation General Quadratic Hypothesis Set

- A "bigger " \mathscr{Z} -space:
 - $\phi_2(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2)$
- Linear in \mathscr{X} -space \Leftrightarrow quadratic hypotheses in \mathscr{X} -space
- The hypotheses space:

•
$$\mathscr{H}_{\phi_2} = \{h(x) : h(x) = \tilde{w}^T \phi_2(x)\}$$

• Also include linear model as a degenerate case

for some \tilde{w} (quadratic hypotheses)

Nonlinear transformation Learning a good quadratic function

- Transform original data $\{x_n, y_n\}$ to $\{z_n = \phi(x_n), y_n\}$
- Solve a linear problem on $\{z_n, y_n\}$ using your favorite algorithm \mathscr{A} to get a good model \tilde{W}
- Return the model $h(x) = \operatorname{sign}(\tilde{w}^T \phi(x))$

Nonlinear transformation Polynomial mappings

- Can now freely do quadratic classification, quadratic regression
- Can easily extend to any degree of polynomial mappings

• E.g.,

$$\phi(x) = (x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3)$$

 $(x_3, x_1x_2^2, x_1x_3^2, x_1x_2^2, x_2^2x_3, x_2^2x_3, x_2^2x_3, x_1^3, x_2^3, x_3^3)$

Nonlinear Transformation The price we pay: computational complexity

• *Q*-th oder polynomial transform:

- $O(d^Q)$ dimensional vector \Rightarrow High computational cost
 - Kernel method

Nonlinear Transformation The price we pay: overfitting

Overfitting: the model has low training error but high prediction error

Theory of Generalization **Training versus testing**

- Machine learning pipeline:
 - Training phase:
 - Obtain the best model h by minimizing training error
 - Test (inference) phase:
 - For any incoming test data x"
 - Make prediction by h(x)
 - Measure the performance of h: test error

Theory of Generalization Training versus testing

- Does low training error imply low test error?
 - They can be totally different if
 - train distribution \neq test distribution

Theory of Generalization Training versus testing

- Does low training error imply low test error?
 - They can be totally different if
 - train distribution \neq test distribution
 - Even under the same distribution, they can be very different:
 - Because h is picked to minimize training error, not test error

Theory of Generalization Formal definition

- Assume training and test data are both sampled from ${\cal D}$
- The ideal function (for generating labels) is $f: f(x) \rightarrow y$
- Training error: Sample x_1, \ldots, x_N from D and

•
$$E_{tr}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(x_n), f(x_n))$$

- h is determined by x_1, \ldots, x_N
- Test error: Sample x_1, \ldots, x_M from D and

•
$$E_{te}(h) = \frac{1}{M} \sum_{m=1}^{M} e(h(x_m), f(x_m))$$

• h is independent to x_1, \ldots, x_M

Theory of Generalization Formal definition

- Assume training and test data are both sampled from ${\cal D}$
- The ideal function (for generating labels) is $f: f(x) \to y$
- Training error: Sample x_1, \ldots, x_N from D and

•
$$E_{tr}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(x_n), f(x_n))$$

- h is determined by x_1, \ldots, x_N
- Test error: Sample x_1, \ldots, x_N from D and

•
$$E_{te}(h) = \frac{1}{M} \sum_{m=1}^{M} e(h(x_m), f(x_m))$$

- h is independent to x_1, \ldots, x_M
- Generalization error = Test error = Expected performance on D:

•
$$E(h) = \mathbb{E}_{x \sim D}[e(h(x), f(x))] = E_{te}(h)$$

Theory of Generalization The 2 questions of learning

- $E(h) \approx 0$ is achieved through:
 - $E(h) \approx E_{tr}(h)$ and $E_{tr}(h) \approx 0$

Theory of Generalization The 2 questions of learning

- $E(h) \approx 0$ is achieved through:
 - $E(h) \approx E_{tr}(h)$ and $E_{tr}(h) \approx 0$
- Learning is split into 2 questions:
 - Can we make sure that $E(h) \approx E_{tr}(h)$?
 - Today's focus
 - Can we make $E_{tr}(h)$ small?
 - Optimization

Theory of Generalization Bound $||E(h) - E_{tr}(h)||$

- Consider a bin with red and green marbles
 - $P[\text{picking a red mable}] = \mu$
 - $P[\text{picking a green mable}] = 1 \mu$
- The value of μ is unknown to us
- How to infer μ ?
 - Pick N marbles independently
 - ν : the traction of red marble

Theory of Generalization Inferring with probability

- Do we know μ
 - No
 - Sample can be mostly green while bin is mostly red
- Can we say something about μ ?
 - Yes
 - ν is "probably" close to μ

Theory of Generalization Hoeffding's inequality

- In big sample (large N), ν (sample mean) is probably close to μ :
 - $p[|\nu \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$
 - This is called Hoeffding's inequality
- The statement " $\mu = \nu$ " is probably approximately correct (PAC)

Theory of Generalization Hoeffding's inequality

- $p[|\nu \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$
 - Valid for all N and $\epsilon > 0$
 - Does not depend on μ (no need to know μ)
 - Larger sample size N or looser gap $\epsilon \Rightarrow$ higher probability for $\mu \approx \nu$

- How to connect this to learning?
 - Each marble (uncolored) is a data point $x \in \mathcal{X}$

- How to connect this to learning?
 - Each marble (uncolored) is a data point $x \in \mathcal{X}$
 - Red marble: $h(x) \neq f(x)$
 - Green marble: h(x) = f(x)

- Given a function *h*
- If we randomly draw x_1, \ldots, x_n (independent to h):

•
$$E(h) = \mathbb{E}_{x \sim D}[h(x) \neq f(x)] \Leftrightarrow \mu$$

•
$$\frac{1}{N} \sum_{n=1}^{N} [h(x_n) \neq y_n] \Leftrightarrow \nu$$
 (error or

- (generalization error, unknown)
- n sampled data, known)

- Given a function h
- If we randomly draw x_1, \ldots, x_n (independent to h):
 - $E(h) = \mathbb{E}_{x \sim D}[h(x) \neq f(x)] \Leftrightarrow \mu$ (generalization error, unknown)
 - $\frac{1}{N} \sum_{n=1}^{N} [h(x_n) \neq y_n] \Leftrightarrow \nu$ (error on sampled data, known)
- Based on Hoeffding's inequality:

•
$$p[|\nu - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

• " $\mu = \nu$ " is probably approximately correct (PAC)

- Given a function h
- If we randomly draw x_1, \ldots, x_n (independent to h):
 - $E(h) = \mathbb{E}_{x \sim D}[h(x) \neq f(x)] \Leftrightarrow \mu$ (generalization error, unknown)

•
$$\frac{1}{N} \sum_{n=1}^{N} [h(x_n) \neq y_n] \Leftrightarrow \nu$$
 (error on sampled data, know

- Based on Hoeffding's inequality:
 - $p[|\nu \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$
- " $\mu = \nu$ " Is probably approximately correct (PAC)
- However, this can only "verify" the error of a hypothesis:
 - h and x_1, \ldots, x_N must be independent

wn)

Theory of Generalization **Apply to multiple bins (hypothesis)**

- Can we apply to multiple hypothesis?
- Color in each bin depends on different hypothesis
 - Bingo when getting all green balls?

Theory of Generalization Coin game

- If you have 150 fair coins, flip each coin 5 times, and one of them gets 5 heads. Is this coin (g) special?
- No. The probability of exiting at least one of the coin results in 5 heads is $1 - (\frac{31}{32})^{150} > 99\%$
- Because: there can exist some h such that E and E_{tr} are far way if M is large.

Theory of Generalization A simple solution

- For each particular h,
 - $P[|E_{tr}(h) E(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$
- - $P[|E_{tr}(h_1) E(h_1)| > \epsilon]$ or ... or $P[|E_{tr}(h_{|\mathcal{H}|}) E(h_{|\mathcal{H}|})| > \epsilon]$
 - $\leq \sum_{n=1}^{\infty} P[|E_{tr}(h_m) E(h_m)| > \epsilon] \leq 2|\mathcal{H}|e^{-2\epsilon^2 N}$ m=1

Because of union bound inequality P(

• If we have a hypothesis set \mathscr{H} , we want to derive the bound for $P[\sup_{h \in \mathscr{H}} | E_{tr}(h) - E(h) | > \epsilon]$

$$\int_{i=1}^{\infty} A_i \leq \sum_{i=1}^{\infty} P(A_i)$$

Theory of generalization When is learning successful?

- When our learning algorithm \mathscr{A} picks the hypothesis g:
 - $P[SUP_{h\in\mathscr{H}} | E_{tr}(h) E(h) | > \epsilon] \le 2 |\mathscr{H}| e^{-2\epsilon^2 N}$
- If $|\mathcal{H}|$ is small and N is large enough:
 - If \mathscr{A} finds $E_{tr}(g) \approx 0 \Rightarrow E(g) \approx 0$ (Learning is successful!)

- $P[|E_{tr}(g) E(g)| > \epsilon] \le 2|\mathcal{H}|e$
 - Two questions:
 - 1. Can we make sure $E(g) \approx E_{tr}(g)$?
 - 2. Can we make sure $E_{tr}(g) \approx 0$?

$$e^{-2\epsilon^2 N}$$

- $P[|E_{tr}(g) E(g)| > \epsilon] \le 2|\mathcal{H}|e$
 - Two questions:
 - 1. Can we make sure $E(g) \approx E_{tr}(g)$?
 - 2. Can we make sure $E_{tr}(g) \approx 0$?
- | *H* | : complexity of model

$$e^{-2\epsilon^2 N}$$

• Small $|\mathcal{H}|$: 1 holds, but 2 may not hold (too few choices) (under-fitting)

- $P[|E_{tr}(g) E(g)| > \epsilon] \le 2|\mathcal{H}|e^{-2\epsilon^2 N}$
 - Two questions:
 - 1. Can we make sure $E(g) \approx E_{tr}(g)$?
 - 2. Can we make sure $E_{tr}(g) \approx 0$?
- $|\mathcal{H}|$: complexity of model
 - Small $|\mathcal{H}|$: 1 holds, but 2 may not hold (too few choices) (under-fitting)
 - Large $|\mathcal{H}|$: 1 doesn't hold, but 2 may hold (over-fitting)

- Currently we only know
 - $P[SUP_{h\in\mathcal{H}} | E_{tr}(h) E(h) | > \epsilon] \le 2 | \mathcal{H} | e^{-2\epsilon^2 N}$

- Currently we only know
 - $P[SUP_{h\in\mathcal{H}} | E_{tr}(h) E(h) | > \epsilon] \le 2 | \mathcal{H} | e^{-2\epsilon^2 N}$
- What if $\mathcal{H} = \infty$?
 - (e.g. linear hyperplanes)

Theory of Generalization Deduce the dimension

- Why do we need to consider every possible hypothesis?
 - $P[SUP_{h\in\mathscr{H}} | E_{tr}(h) E(h) | > \epsilon]$
 - If we omit one hypothesis, we might miss the biggest gap
- $P[SUP_{h\in\mathscr{H}} | E_{tr}(h) E(h) | > \epsilon] \le 2 | \mathscr{H} | e^{-2\epsilon^2 N}$
 - from the union bound, which assume the event is independent

Theory of Generalization Deduce the dimension

- Why do we need to consider every possible hypothesis?
 - $P[SUP_{h\in\mathscr{H}} | E_{tr}(h) E(h) | > \epsilon]$
 - If we omit one hypothesis, we might miss the biggest gap
- However, are the events of each hypothesis having a big generalization gap are likely to be independent?

Theory of Generalization **Deduce the dimension**

- Why do we need to consider every possible hypothesis?
 - $P[SUP_{h\in\mathscr{H}} | E_{tr}(h) E(h) | > \epsilon]$
 - If we omit one hypothesis, we might miss the biggest gap
- However, are the events of each hypothesis having a big generalization gap are likely to be independent?
 - No

Theory of Generalization **Symmetrization lemma**

- Imagine we have the ghost dataset S' with also size N:

• $P[SUP_{h\in\mathscr{H}}|E_{tr}(h) - E(h)| > \epsilon] \le 2P[SUP_{h\in\mathscr{H}}|E_{tr}(h) - E'_{tr}(h)| > \frac{\epsilon}{2}]$

Theory of Generalization **Growth function**

- Imagine we have the ghost dataset S' with also size N:
- By union bound:

• $P[SUP_{h\in\mathscr{H}}|E_{tr}(h) - E(h)| > \epsilon] \le 2P[SUP_{h\in\mathscr{H}}|E_{tr}(h) - E'_{tr}(h)| > \frac{\epsilon}{2}]$

• $P[SUP_{h \in \mathscr{H}_{S \cup S'}} | E_{tr}(h) - E'_{tr}(h) | > \frac{\epsilon}{2}] \le |\mathscr{H}_{S \cup S'}| P[|E_{tr}(h) - E'_{tr}(h)| > \frac{\epsilon}{2}]$

Theory of Generalization **Growth function**

- Imagine we have the ghost dataset S' with also size N:
- By union bound:
- How to bound $|\mathcal{H}_{S\cup S'}|$

• $P[SUP_{h\in\mathscr{H}}|E_{tr}(h) - E(h)| > \epsilon] \le 2P[SUP_{h\in\mathscr{H}}|E_{tr}(h) - E'_{tr}(h)| > \frac{\epsilon}{2}]$

• $P[SUP_{h \in \mathscr{H}_{S \cup S'}} | E_{tr}(h) - E'_{tr}(h) | > \frac{\epsilon}{2}] \le |\mathscr{H}_{S \cup S'}| P[|E_{tr}(h) - E'_{tr}(h)| > \frac{\epsilon}{2}]$

Theory of Generalization Growth function

- For binary classification {+1,-1}, for a dataset with N samples,
 - The max number of distinct labellings is 2^N
- Growth function $\Delta_{\mathscr{H}}(N)$: The max number of distinct labellings on a dataset S of size N by a hypothesis space \mathscr{H}
- So,
 - $P[SUP_{h\in\mathscr{H}_{S\cup S'}}|E_{tr}(h) E'_{tr}(h)| > \frac{\epsilon}{2}$
 - And $\Delta_{\mathscr{H}}(N) \leq 2^m$

$$\frac{\epsilon}{2} \leq \Delta_{\mathscr{H}}(2N)P[|E_{tr}(h) - E'_{tr}(h)| > \frac{\epsilon}{2}]$$