COMP5211: Machine Learning Lecture 3

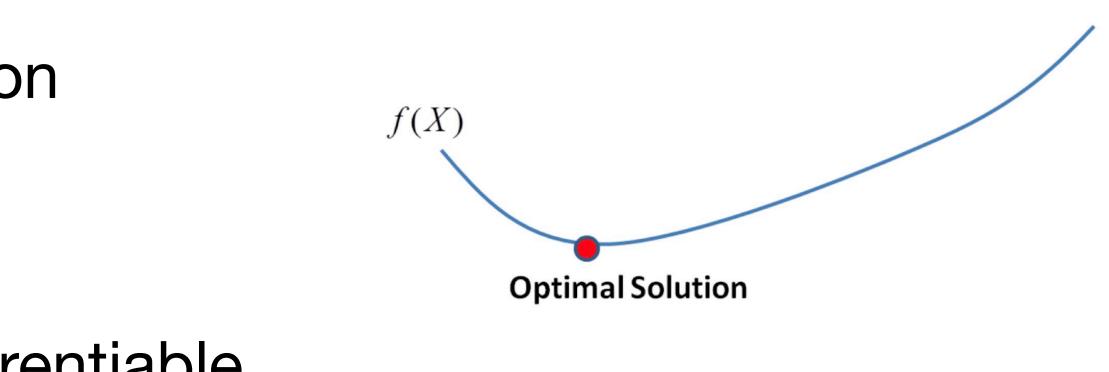
Minhao Cheng

Logistics

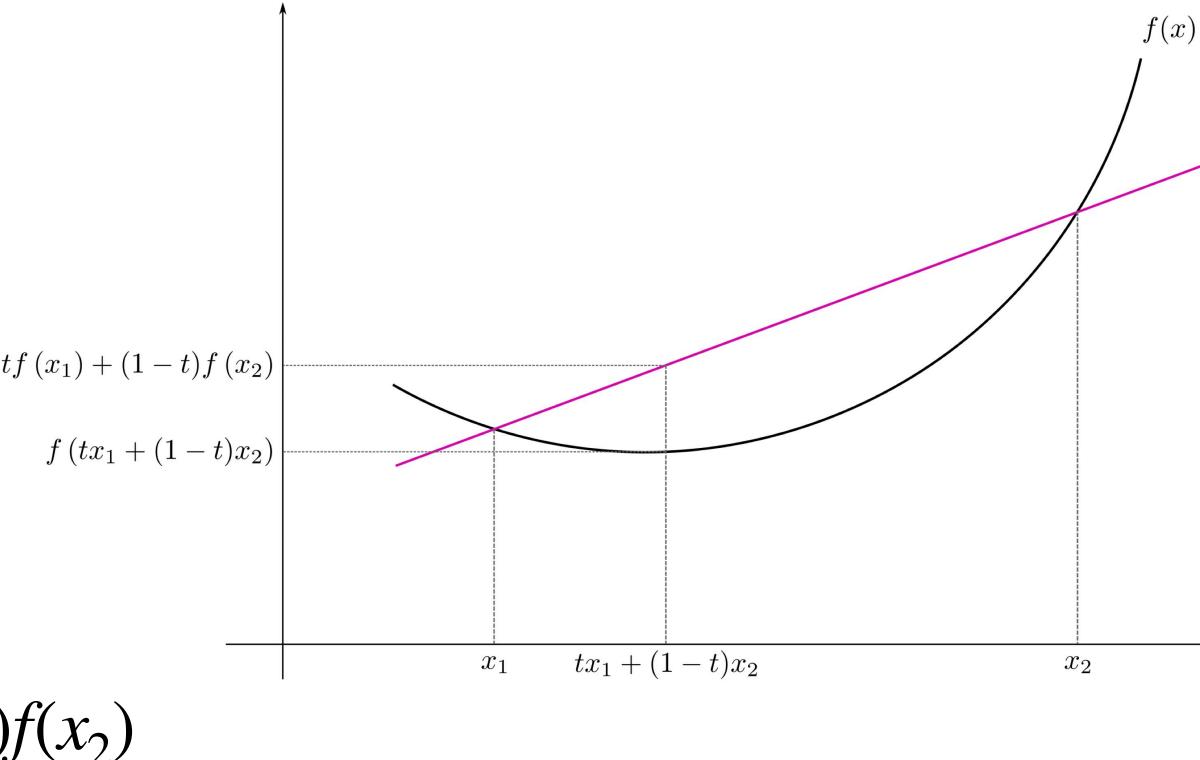
- Form your group
 - Group registration: Due next Friday
 - Submit your team members & project title & project abstract
- Homework 1 will release this weekend

Optimization Goal

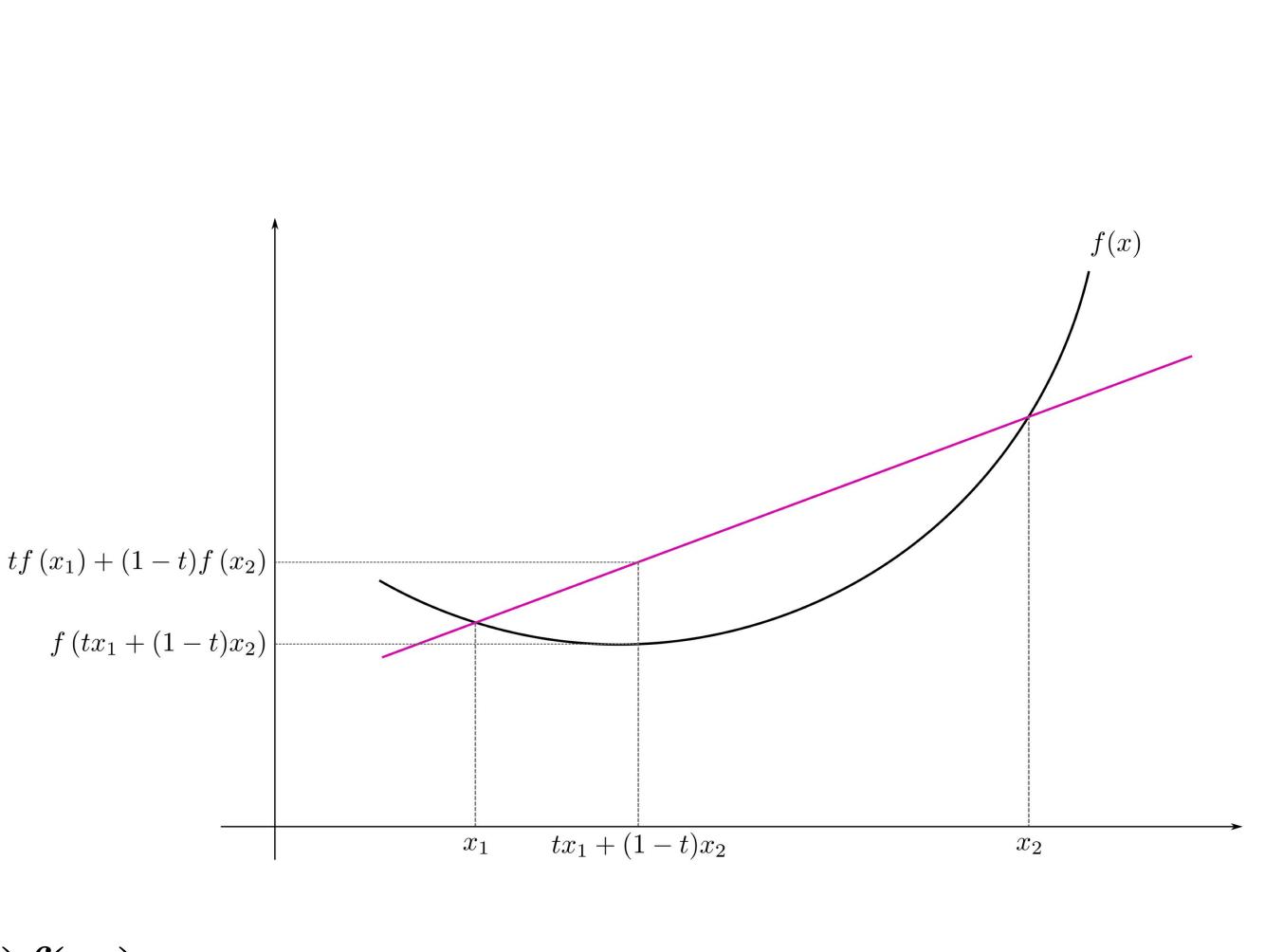
- Goal: find the minimizer of a function
 - $min_w f(w)$
- For now we assume f is twice differentiable



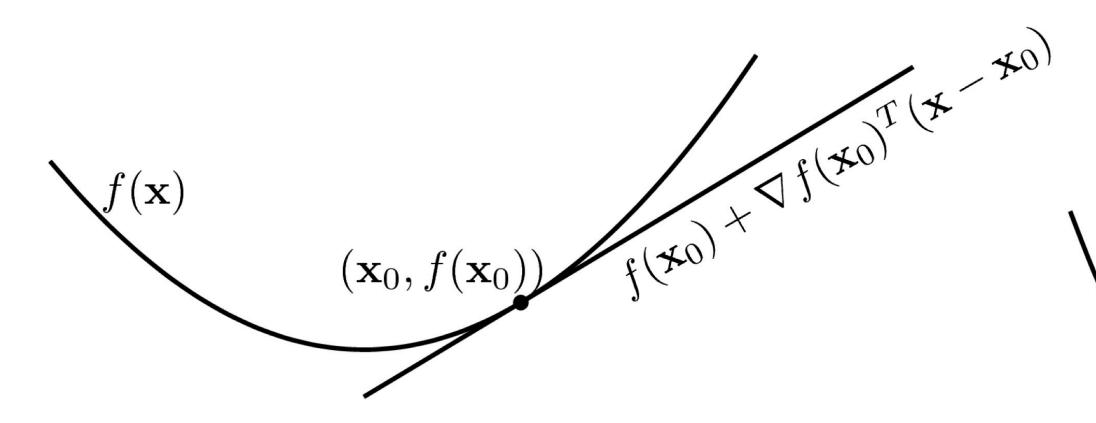
- A function $f : \mathbb{R}^n \to \mathbb{R}$ is a convex function
- \Leftrightarrow the function f is below any line $tf(x_1) + (1-t)f(x_2)$ segment between two points on f: $f(tx_1 + (1-t)x_2)$
 - $\forall x_1, x_2, \forall t \in [0, 1],$
 - $f(tx_1 + (1 t)x_2) \le tf(x_1) + (1 t)f(x_2)$



- A function $f : \mathbb{R}^n \to \mathbb{R}$ is a convex function
- \Leftrightarrow the function f is below any line segment between two points on f:
 - $\forall x_1, x_2, \forall t \in [0, 1],$
 - $f(tx_1 + (1 t)x_2) \le tf(x_1) + (1 t)f(x_2)$
- Strictly convex: $f(tx_1 + (1 - t)x_2) < tf(x_1) + (1 - t)f(x_2)$

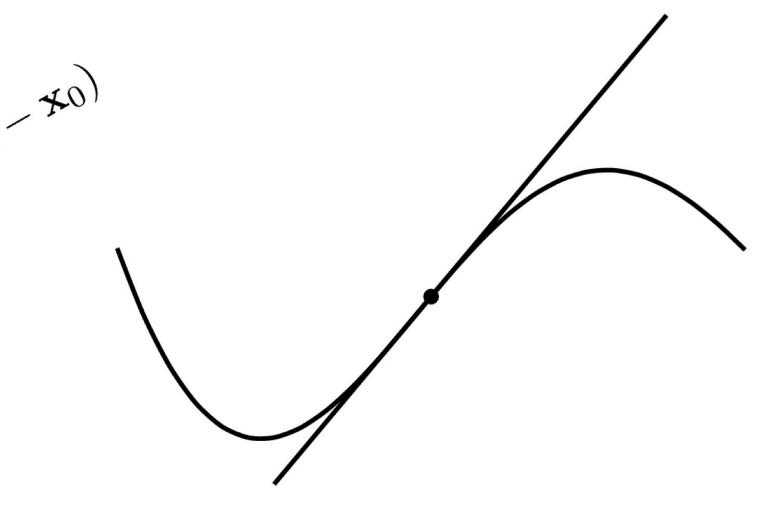


- Another equivalent definition for differentiable function:
 - f is convex if and only if $f(x) \ge f(x)$



convex function

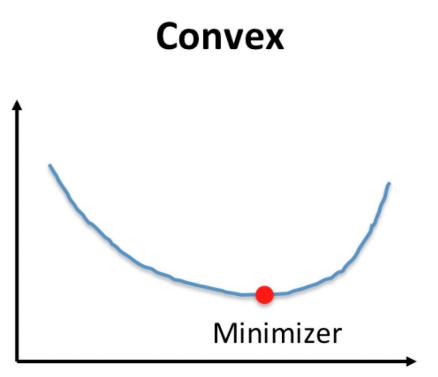
$$(x_0) + \nabla f(x_0)^T (x - x_0), \forall x, x_0$$



nonconvex function

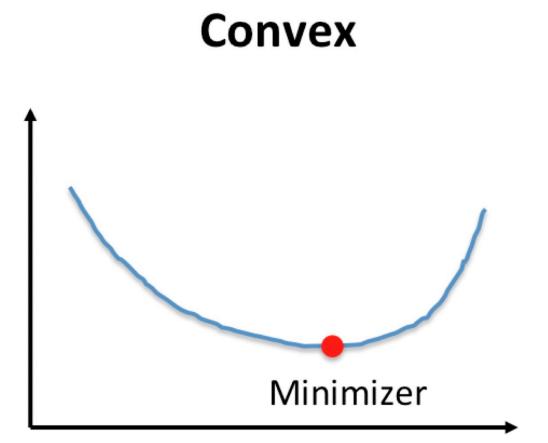
- Convex function:

 - If f is twice differentiable \Rightarrow
 - F is convex if and only if $\nabla^2 f(w)$ is **positive semi-definite**
 - Example: linear regression, logistic regression, ...



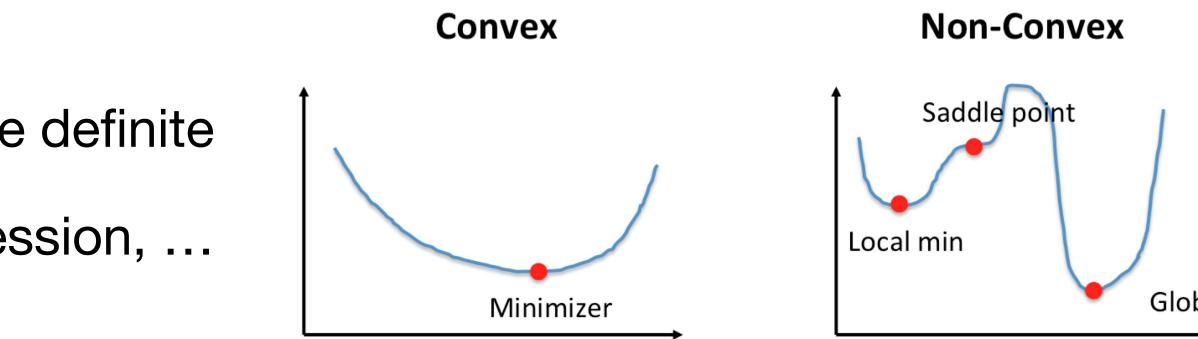
• (For differentiable function) $\nabla f(w^*) = 0 \Leftrightarrow w^*$ is a global minimum

- Strict convex function:
 - $\nabla f(w^*) = 0 \Leftrightarrow w^*$ is the unique global minimum
 - Most algorithms only converge to gradient=0
 - Example: Linear regression when $X^T X$ is invertible



Optimization **Convex vs Nonconvex**

- Convex function:
 - $\nabla f(x) = 0 \longleftrightarrow$ Global minimum
 - A function is convex if $\nabla^2 f(x)$ is positive definite
 - Example: linear regression, logistic regression, ...
- Non-convex function: •
 - $\nabla f(x) = 0 \longrightarrow \text{Global min, local min, or saddle point}$
 - Most algorithms only converge to gradient =0
 - Example: neural network, ...



Global min

Optimization **Gradient descent**

Gradient descent: repeatedly do

•
$$w^{t+1} \leftarrow w^t - \alpha \nabla f(w^t)$$

- $\alpha > 0$ is the step size
- Generate the sequence w^1, w^2, \ldots
 - Converge to stationary points ($\lim \|\nabla f(w^t)\| = 0$)

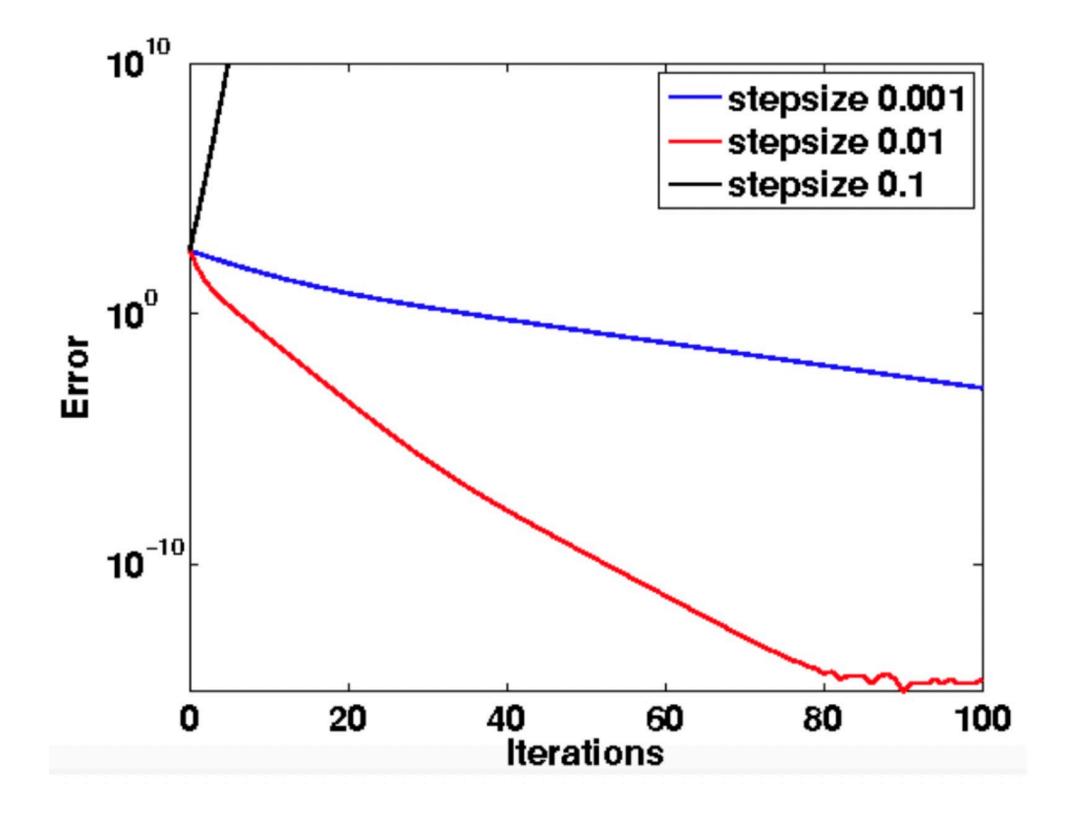
$t \rightarrow \infty$

Optimization Gradient descent

Gradient descent: repeatedly do

•
$$w^{t+1} \leftarrow w^t - \alpha \nabla f(w^t)$$

- $\alpha > 0$ is the step size
- Generate the sequence w^1, w^2, \ldots
 - Converge to stationary points ($\lim_{t \to \infty} \|\nabla f(w^t)\| = 0$)
 - Step size too large \Rightarrow diverge;
 - too small \Rightarrow slow convergence



Optimization Why gradient descent

• At each iteration, form a approximation function of $f(\cdot)$:

•
$$f(w+d) \approx g(d) := f(w^t) + \nabla f(w^t)d$$

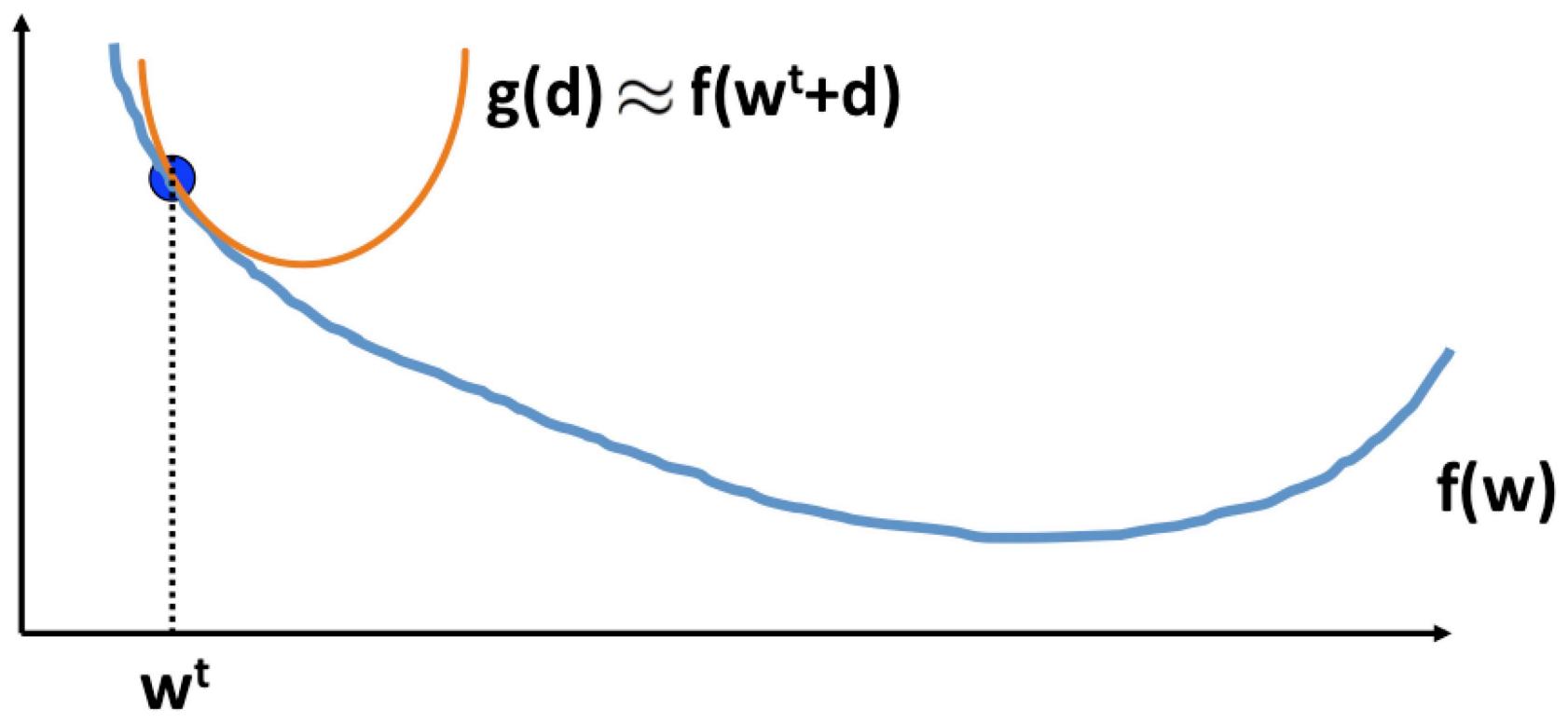
• Update solution by $w^{t+1} \leftarrow w^t + d^*$

•
$$d^* = \arg \min_d g(d)$$

• $\nabla g(d^*) = 0 \Rightarrow \nabla f(w^t) + \frac{1}{\alpha}d^* = 0 \Rightarrow d^* = -\alpha \nabla f(w^t)$

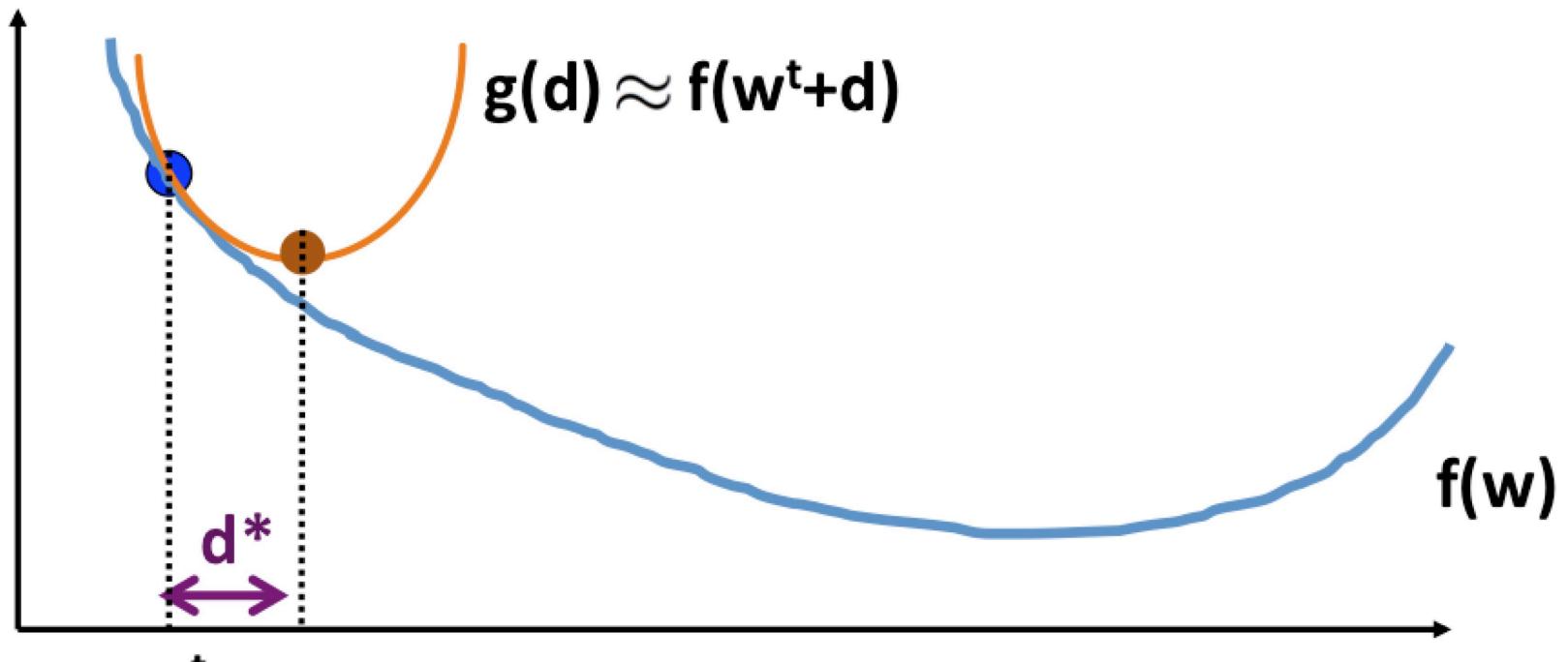
• d^* will decrease $f(\cdot)$ if α (step size) is sufficiently small

$\left\| + \frac{1}{2\alpha} \| d \|^2 \right\|$



Form a quadratic approximation

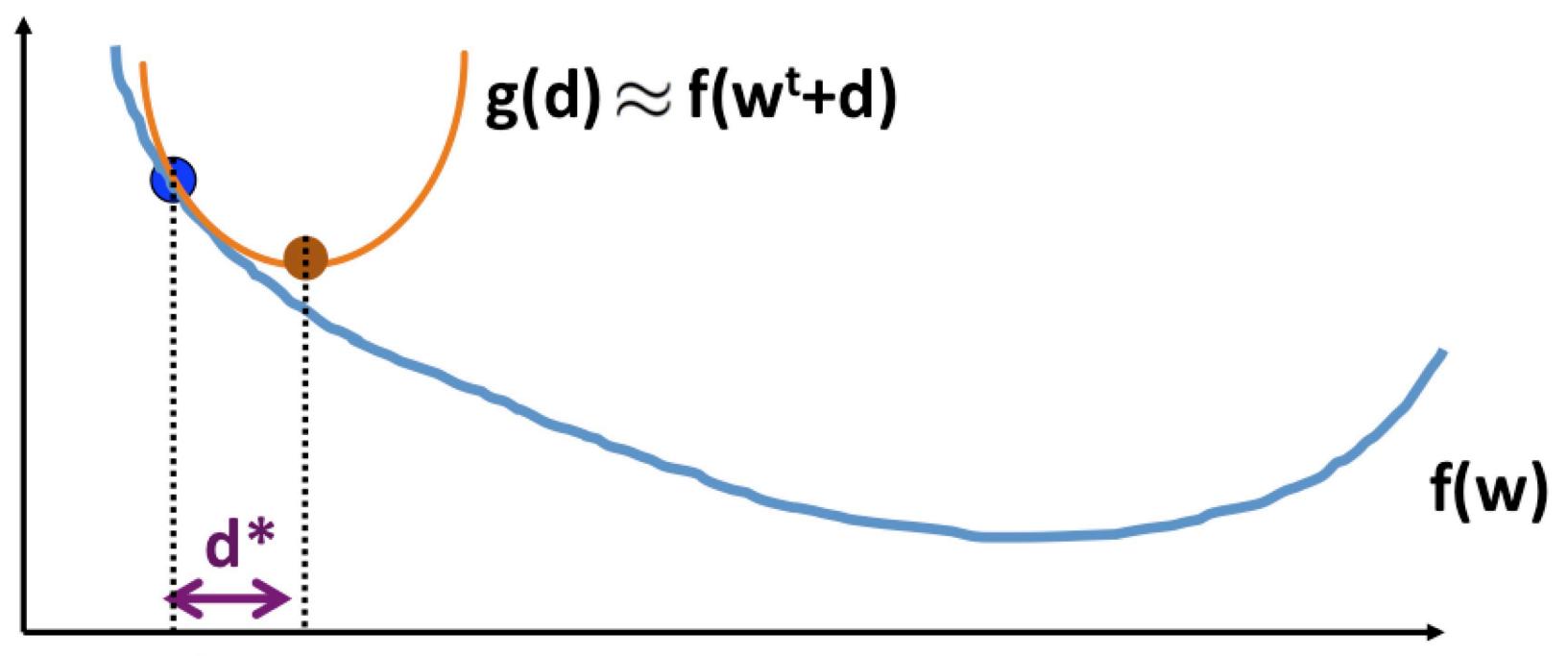
• $f(w+d) \approx g(d) := f(w^t) + \nabla f(w^t) d + \frac{1}{2\alpha} ||d||^2$



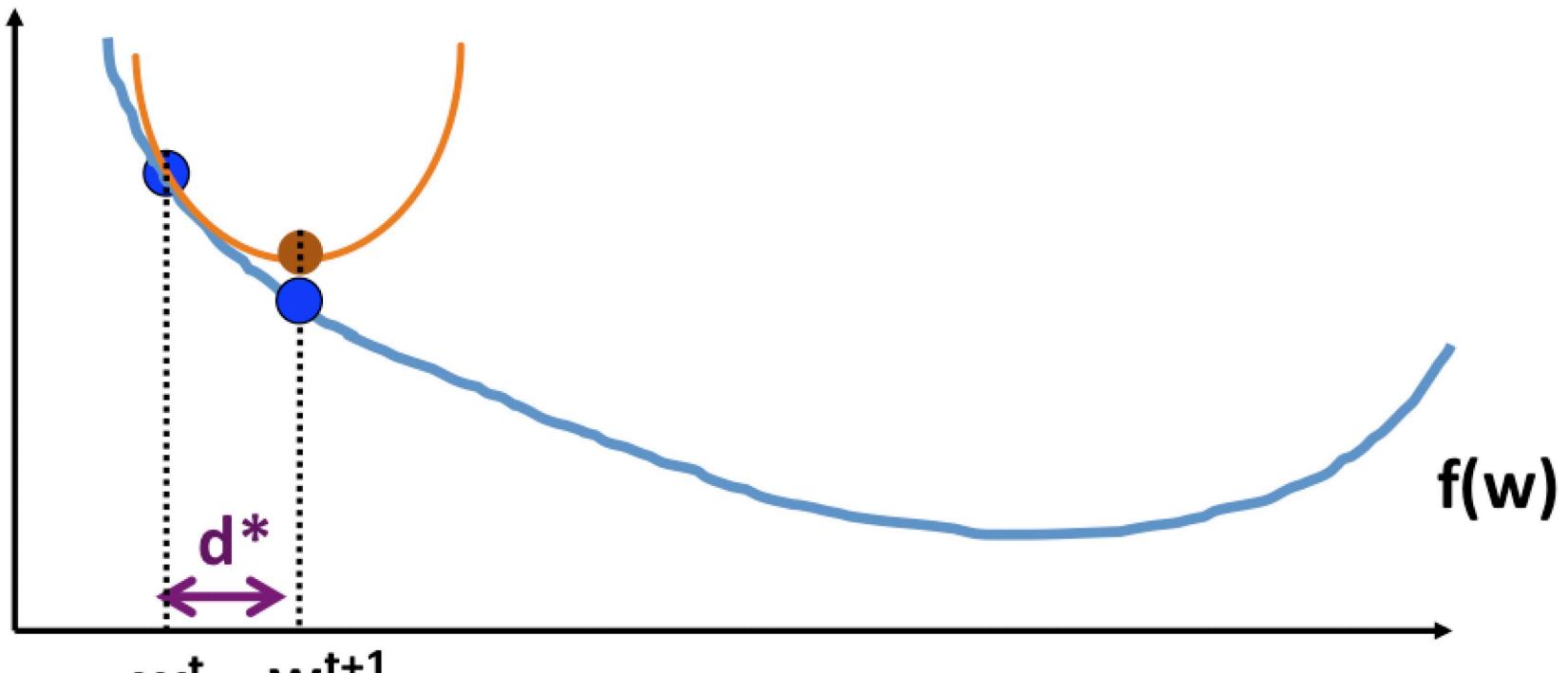
w^t

• Minimize g(d)

• $\nabla g(d^*) = 0 \Rightarrow \nabla f(w^t) + \frac{1}{\alpha}d^* = 0 \Rightarrow d^* = -\alpha \nabla f(w^t)$

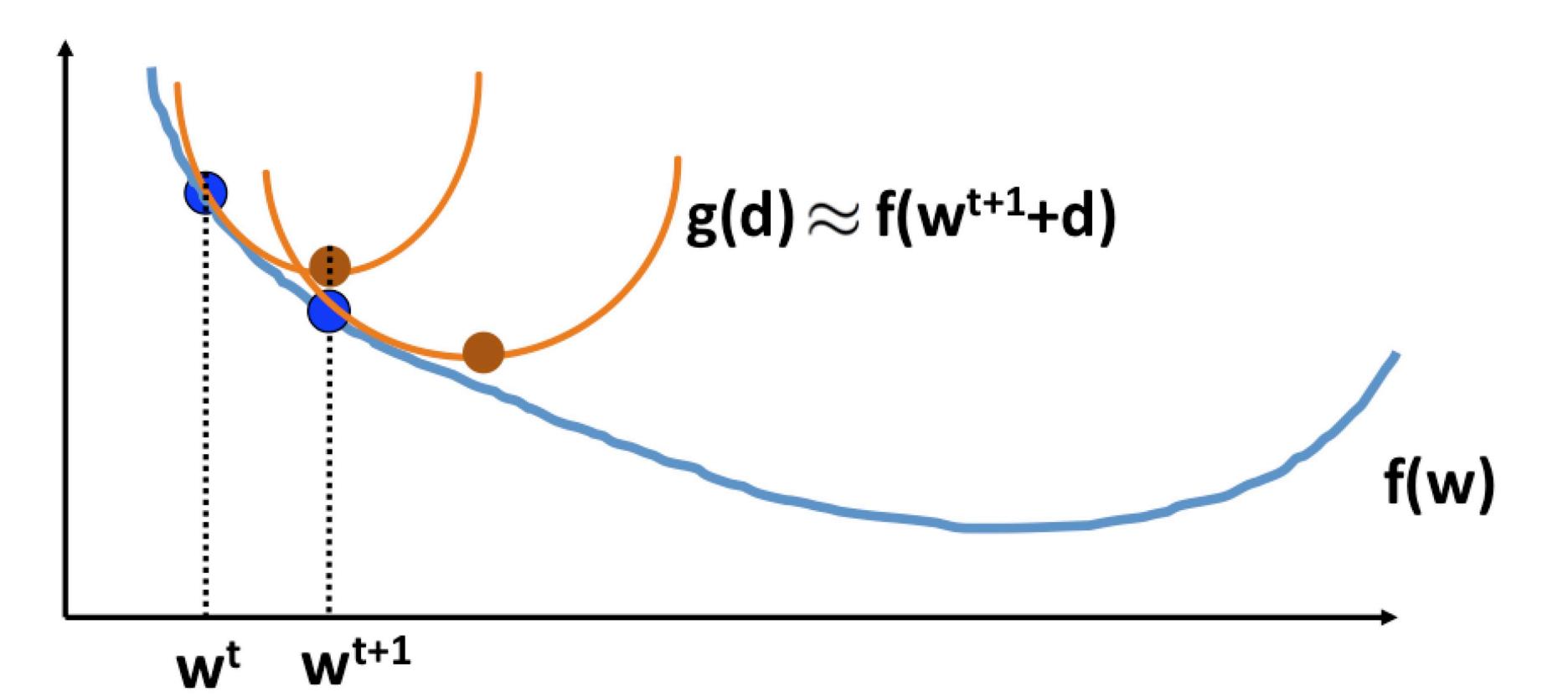


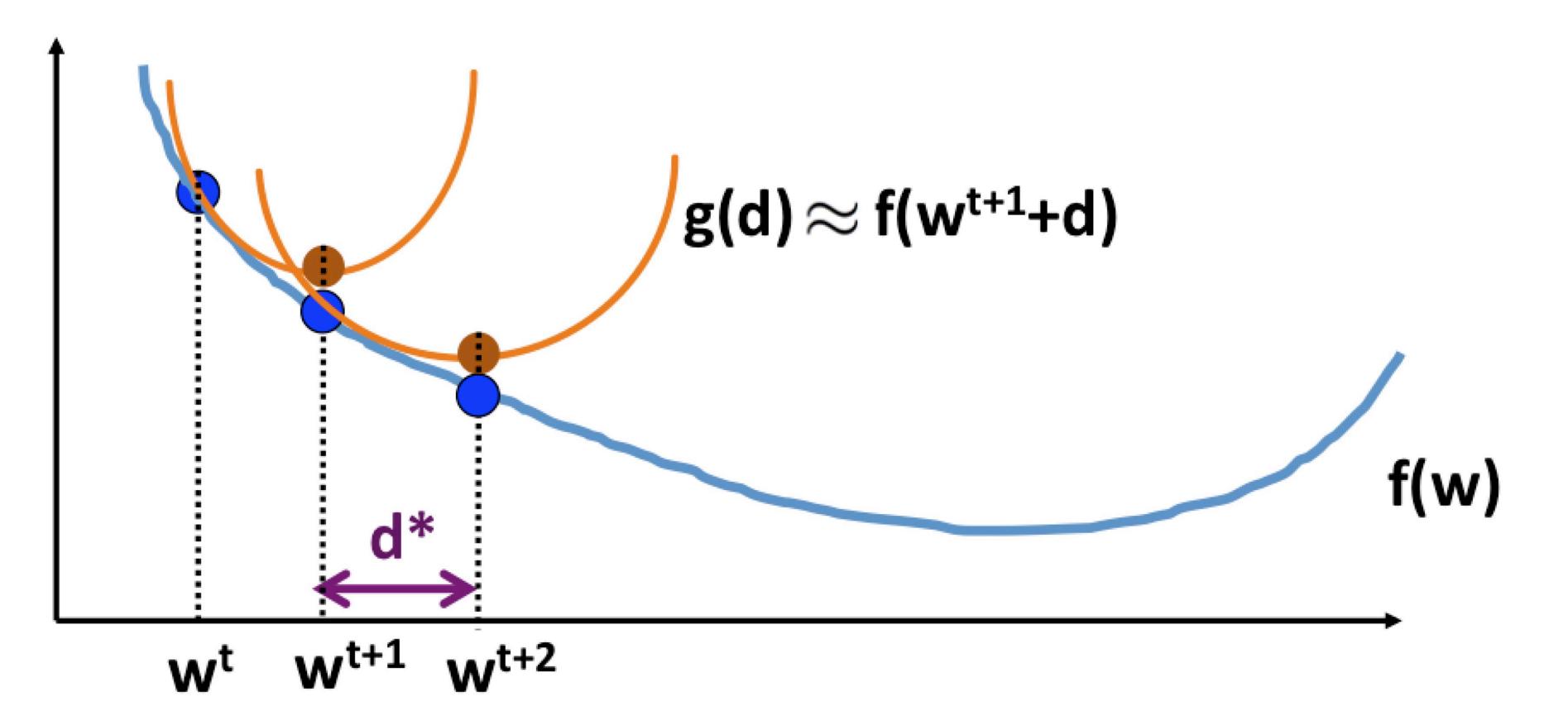
- Update *w*
 - $w^{t+1} = w^t + d^* = w^t \alpha \nabla f(w^t)$



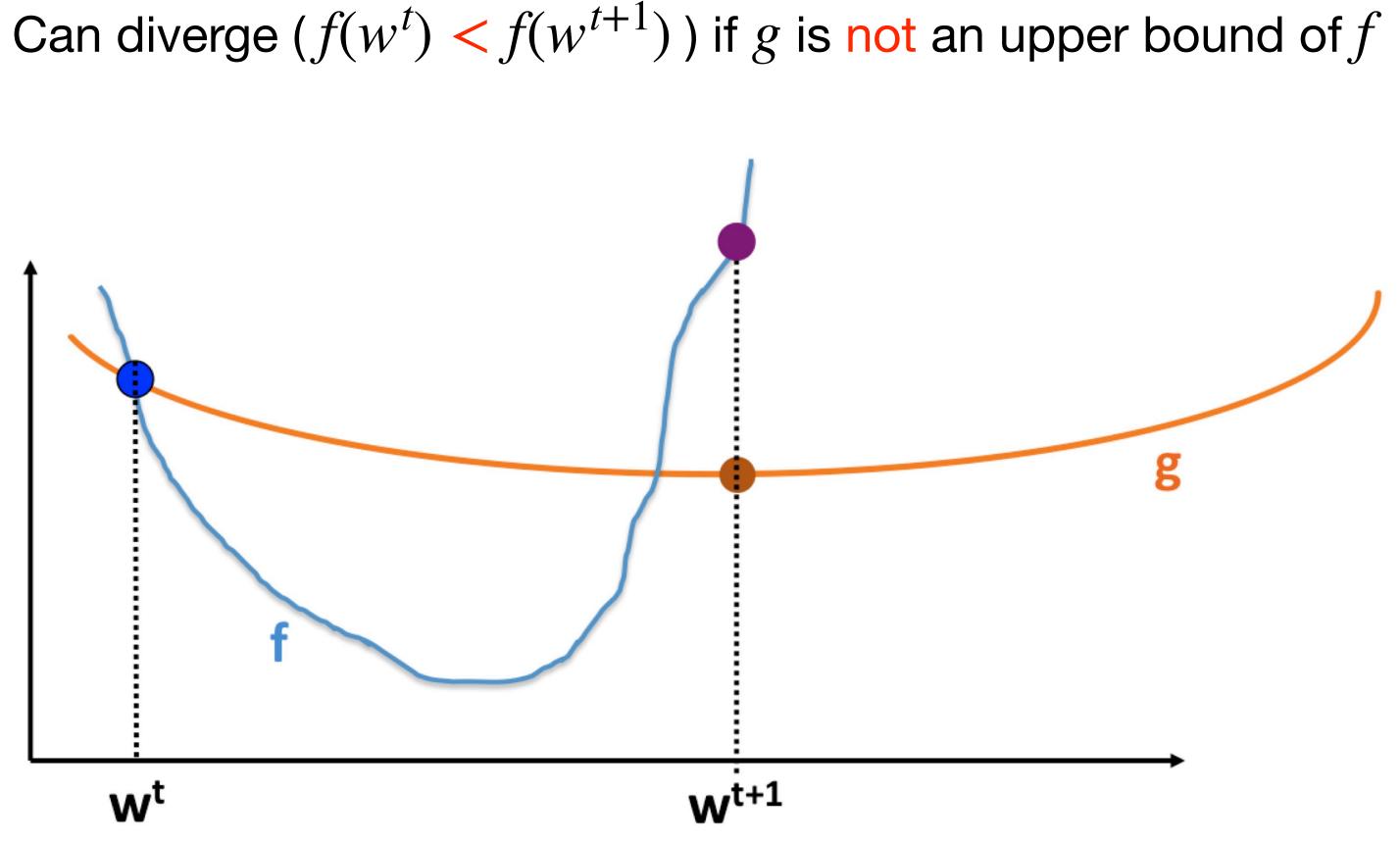
w^t w^{t+1}

- Update *w*
 - $w^{t+1} = w^t + d^* = w^t \alpha \nabla f(w^t)$



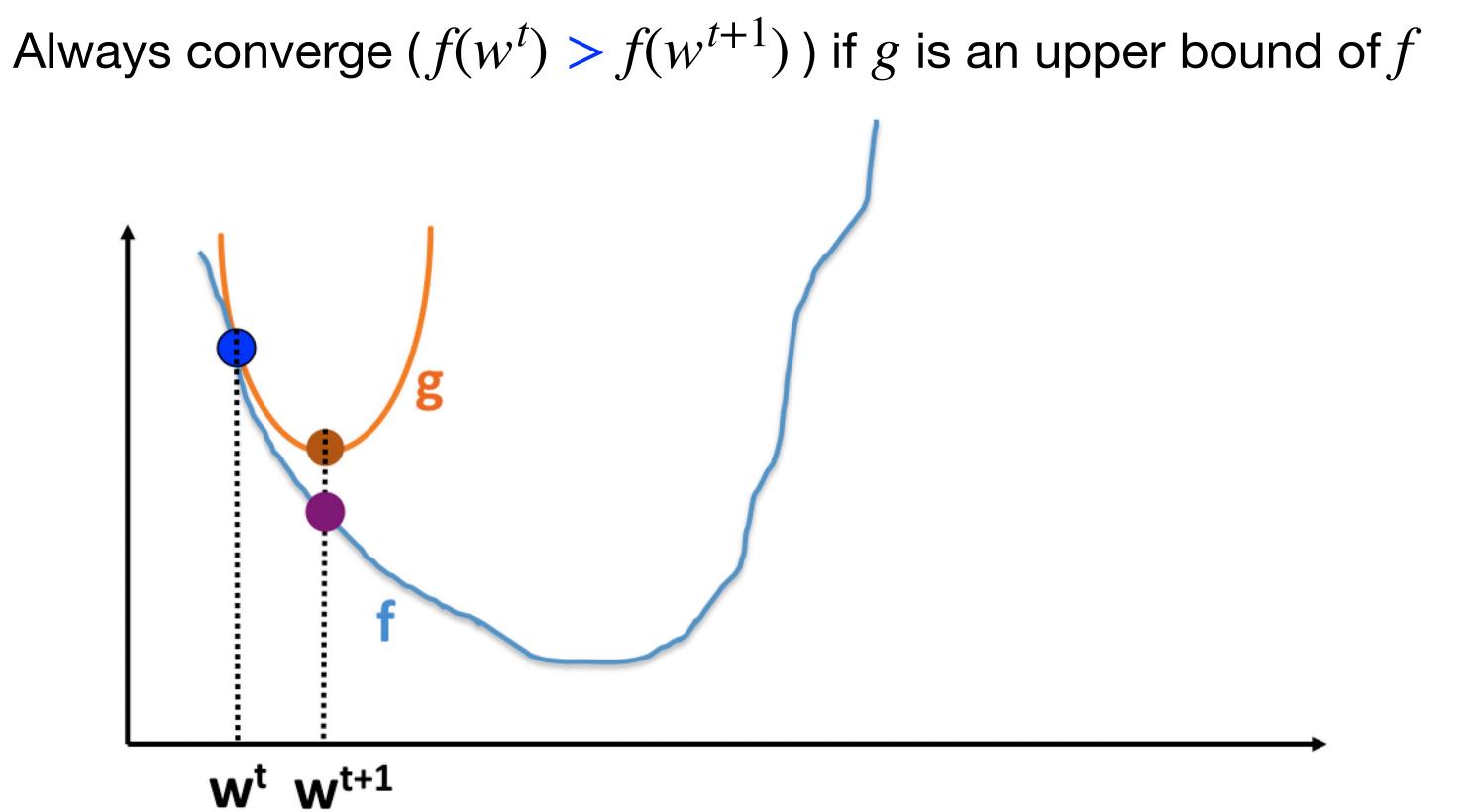


Optimization When will it diverge



f(w^t) < f(w^{t+1}), diverge because g's curvature is too small

Optimization When will it converge



f(w^t) > f(w^{t+1}), converge when g's curvature is large enough

- A differential function f is said to be L-Lipschitz continuous:
 - $||f(x_1) f(x_2)||_2 \le L||x_1 x_2||_2$
- A differential function f is said to be L-smooth: its gradient are Lipschitz continuous:
 - $\|\nabla f(x_1) \nabla f(x_2)\|_2 \le L \|x_1 x_2\|_2$
 - And we could get
 - $\nabla^2 f(x) \leq LI$
 - $f(y) \le f(x) + \nabla f(x)^T (y x) + \frac{1}{2}L\|_2^2$

$$|y - x||^2$$

- Let L be a Lipchitz constant $(\nabla^2 f(x) \leq LI$ for all x)
- Theorem: gradient descent converges if $\alpha < \frac{1}{L}$
- In practice, we do not know $L \dots$
 - Need to tune step size when running gradient descent

- Let *L* be a Lipchitz constant $(\nabla^2 f(x) \leq LI$ for all *x*)
- Theorem: gradient descent converges if $\alpha < \frac{1}{L}$
- Why?

$x) \leq LI \text{ for all } x$ $y \leq LI \text{ for all } x$ $y \leq \frac{1}{L}$

- Let *L* be a Lipchitz constant $(\nabla^2 f(x) \leq LI$ for all *x*)
- Theorem: gradient descent converges if $\alpha < \frac{1}{L}$
- Why?

• When $\alpha < 1/L$, for any d,

$$g(d) = f(w^{t}) + \nabla f(w^{t})^{T} d + \frac{1}{2\alpha} ||d||^{2}$$

> $f(w^{t}) + \nabla f(w^{t})^{T} d + \frac{L}{2} ||d||^{2}$
 $\geq f(w^{t} + d)$
So, $f(w^{t} + d^{*}) < g(d^{*}) \le g(0) = f(w^{t})$

• In formal proof, need to show $f(w^t + d^*)$ is sufficiently smaller than $f(w^t)$

Optimization **Gradient descent convergence rate**

solution that satisfies:

•
$$f(w^t) - f(w^*) \le \frac{\|w^0 - w^*\|_2^2}{2\alpha t}$$

Proof

 Suppose f is convex and differentiable and its gradient is lipshcitz continuous, then if we run gradient for t iterations with a fixed step $\alpha \leq \frac{1}{T}$, it will yield a

- Let L be a Lipchitz constant $(\nabla^2 f(x) \leq LI$ for all x)
- Theorem: gradient descent converges if $\alpha < \frac{1}{L}$
- In practice, we do not know $L \dots$
 - Need to tune step size when running gradient descent

Optimization Applying to logistic regression

gradient descent for logistic regression

• Initialize the weights \boldsymbol{w}_0

• For
$$t = 1, 2, \cdots$$

• Compute the gradient

$$abla f(oldsymbol{w}) =$$

Update the weights: *w* ← *w* − η∇f(*w*)
Return the final weights *w*

$$\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^T \mathbf{x}_n}}$$

Optimization Applying to logistic regression

- When to stop?
 - Fixed number of iterations, or
 - Stop when $\|\nabla f(w)\| < \epsilon$

gradient descent for logistic regression

- Initialize the weights \boldsymbol{w}_0
- For $t = 1, 2, \cdots$
 - Compute the gradient

$$abla f(oldsymbol{w}) = -rac{1}{N} \sum_{n=1}^{N} rac{y_n oldsymbol{x}_n}{1 + e^{y_n oldsymbol{w}^T oldsymbol{x}_n}}$$

Update the weights: *w* ← *w* − η∇f(*w*)
Return the final weights *w*

- In practice, we do not know $L \dots$
 - Need to tune step size when running gradient descent
- Line Search: Select step size automatically (for gradient descent)

- The back-tracking line search:
 - Start from some large α_0

• Try
$$\alpha = \alpha_0, \alpha_0/2, \alpha_0/4, ...$$

• Stop when α satisfies some sufficient decrease condition

- The back-tracking line search:
 - Start from some large α_0

• Try
$$\alpha = \alpha_0, \alpha_0/2, \alpha_0/4, ...$$

- Stop when α satisfies some sufficient decrease condition
- A simple condition: $f(w + \alpha d) < f(w)$

- The back-tracking line search:
 - Start from some large α_0

• Try
$$\alpha = \alpha_0, \alpha_0/2, \alpha_0/4, ...$$

- Stop when α satisfies some sufficient decrease condition
- A simple condition: $f(w + \alpha d) < f(w)$
 - Often works in practice but doesn't work in theory

Optimization Line search (cont *)

- The back-tracking line search:
 - Start from some large α_0
 - Try $\alpha = \alpha_0, \alpha_0/2, \alpha_0/4, ...$
 - Stop when α satisfies some sufficient decrease condition
 - A simple condition: $f(w + \alpha d) < f(w)$
 - Often works in practice but doesn't work in theory
 - A (provable) sufficient decrease condition $f(w + \alpha d) \leq f(w) + c_1 \alpha \nabla f(w)^T d$ (armijo condition)
 - $\nabla f(w + \alpha d)^T d \ge c_2 \nabla f(w)^T d$ (curvature)
 - + armijo = wolfe condition
 - For constant $c_1, c_2 \in (0,1)$

gradient descent with backtracking line search

- Initialize the weights w_0
- For $t = 1, 2, \cdots$
 - Compute the gradient
 - For $\alpha = \alpha_0, \alpha_0/2, \alpha_0/4, \cdots$ Break if $f(\boldsymbol{w} + \alpha \boldsymbol{d}) \leq f(\boldsymbol{w}) + \sigma \alpha \nabla f(\boldsymbol{w})^T \boldsymbol{d}$ • Update $\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha \boldsymbol{d}$

Return the final solution w

$\boldsymbol{d} = -\nabla f(\boldsymbol{w})$