
Minhao Cheng

COMP5211: Machine Learning
Lecture 3

Logistics

• Form your group

• Group registration: Due next Friday

• Submit your team members & project title & project abstract

• Homework 1 will release this weekend

Optimization
Goal

• Goal: find the minimizer of a function

•

• For now we assume is twice differentiable

minw f(w)

f

Optimization
Convex function

• A function : is a convex
function

• the function is below any line
segment between two points on :

•

•

f ℝn → ℝ

⇔ f
f

∀x1, x2, ∀t ∈ [0,1],

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)

Optimization
Convex function

• A function : is a convex
function

• the function is below any line
segment between two points on :

•

•

• Strictly convex:

f ℝn → ℝ

⇔ f
f

∀x1, x2, ∀t ∈ [0,1],

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)

f(tx1 + (1 − t)x2) < tf(x1) + (1 − t)f(x2)

Optimization
Convex function

• Another equivalent definition for differentiable function:

• is convex if and only if f f(x) ≥ f(x0) + ∇f(x0)T(x − x0), ∀x, x0

Optimization
Convex function

• Convex function:

• (For differentiable function) is a global minimum

• If is twice differentiable

• F is convex if and only if is positive semi-definite

• Example: linear regression, logistic regression, …

∇f(w*) = 0 ⇔ w*

f ⇒

∇2f(w)

Optimization
Convex function

• Strict convex function:

• is the unique global minimum

• Most algorithms only converge to gradient=0

• Example: Linear regression when is invertible

∇f(w*) = 0 ⇔ w*

XTX

Optimization
Convex vs Nonconvex

• Convex function:

• Global minimum

• A function is convex if is positive definite

• Example: linear regression, logistic regression, …

• Non-convex function:

• Global min, local min, or saddle point

• Most algorithms only converge to gradient =0

• Example: neural network, …

∇f(x) = 0

∇2f(x)

∇f(x) = 0

Optimization
Gradient descent

• Gradient descent: repeatedly do

•

• is the step size

• Generate the sequence

• Converge to stationary points ()

wt+1 ← wt − α∇f(wt)

α > 0

w1, w2, …

lim
t→∞

∥∇f(wt)∥ = 0

Optimization
Gradient descent

• Gradient descent: repeatedly do

•

• is the step size

• Generate the sequence

• Converge to stationary points
()

• Step size too large diverge;

• too small slow convergence

wt+1 ← wt − α∇f(wt)

α > 0

w1, w2, …

lim
t→∞

∥∇f(wt)∥ = 0

⇒

⇒

Optimization
Why gradient descent

• At each iteration, form a approximation function of :

•

• Update solution by

•

•

• will decrease if (step size) is sufficiently small

f(⋅)

f(w + d) ≈ g(d) := f(wt) + ∇f(wt)d +
1

2α
∥d∥2

wt+1 ← wt + d*

d* = arg min
d

g(d)

∇g(d*) = 0 ⇒ ∇f(wt) +
1
α

d* = 0 ⇒ d* = − α∇f(wt)

d* f(⋅) α

Optimization
Illustration of gradient descent

• Form a quadratic approximation

• f(w+d) ≈ g(d) := f(wt) + ∇f(wt)d+
1

2α
∥d∥2

Optimization
Illustration of gradient descent

• Minimize

•

g(d)

∇g(d*) = 0 ⇒ ∇f(wt) +
1
α

d* = 0 ⇒ d* = − α∇f(wt)

Optimization
Illustration of gradient descent

• Update

•

w

wt+1 = wt+d* = wt−α∇f(wt)

Optimization
Illustration of gradient descent

• Update

•

w

wt+1 = wt+d* = wt−α∇f(wt)

Optimization
Illustration of gradient descent

Optimization
Illustration of gradient descent

Optimization
When will it diverge

Can diverge () if is not an upper bound of f(wt) < f(wt+1) g f

Optimization
When will it converge

Always converge () if is an upper bound of f(wt) > f(wt+1) g f

Optimization
Convergence

• A differential function is said to be L-Lipschitz continuous:

•

• A differential function is said to be L-smooth: its gradient are Lipschitz continuous:

•

• And we could get

•

•

f

∥f(x1) − f(x2)∥2 ≤ L∥x1 − x2∥2

f

∥∇f(x1) − ∇f(x2)∥2 ≤ L∥x1 − x2∥2

∇2f(x) ⪯ LI

f(y) ≤ f(x) + ∇f(x)T(y − x) +
1
2

L∥y − x∥2

Optimization
Convergence

• Let be a Lipchitz constant (for all)

• Theorem: gradient descent converges if

• In practice, we do not know …

• Need to tune step size when running gradient descent

L ∇2f(x) ⪯ LI x

α <
1
L

L

Optimization
Convergence

• Let be a Lipchitz constant (for all)

• Theorem: gradient descent converges if

• Why?

L ∇2f(x) ⪯ LI x

α <
1
L

Optimization
Convergence

• Let be a Lipchitz constant (for all)

• Theorem: gradient descent converges if

• Why?

• When for any ,

•

• So,

• In formal proof, need to show is sufficiently smaller than

L ∇2f(x) ⪯ LI x

α <
1
L

α < 1/L, d

g(d) = f(wt) + ∇f(wt)Td +
1

2α
∥d∥2

> f(wt) + ∇f(wt)Td +
L
2

∥d∥2

≥ f(wt + d)
f(wt + d*) < g(d*) ≤ g(0) = f(wt)

f(wt + d*) f(wt)

Optimization
Gradient descent convergence rate

• Suppose f is convex and differentiable and its gradient is lipshcitz continuous,

then if we run gradient for t iterations with a fixed step , it will yield a
solution that satisfies:

•

• Proof

α ≤
1
L

f(wt) − f(w*) ≤
∥w0 − w*∥2

2

2αt

Optimization
Convergence

• Let be a Lipchitz constant (for all)

• Theorem: gradient descent converges if

• In practice, we do not know …

• Need to tune step size when running gradient descent

L ∇2f(x) ⪯ LI x

α <
1
L

L

Optimization
Applying to logistic regression

Optimization
Applying to logistic regression

• When to stop?

• Fixed number of
iterations, or

• Stop when
∥∇f(w)∥ < ϵ

Optimization
Line search

• In practice, we do not know …

• Need to tune step size when running gradient descent

• Line Search: Select step size automatically (for gradient descent)

L

Optimization
Line search

• The back-tracking line search:

• Start from some large

• Try

• Stop when satisfies some sufficient decrease condition

α0

α = α0, α0/2,α0/4,…

α

Optimization
Line search

• The back-tracking line search:

• Start from some large

• Try

• Stop when satisfies some sufficient decrease condition

• A simple condition:

α0

α = α0, α0/2,α0/4,…

α

f(w + αd) < f(w)

Optimization
Line search

• The back-tracking line search:

• Start from some large

• Try

• Stop when satisfies some sufficient decrease condition

• A simple condition:

• Often works in practice but doesn’t work in theory

α0

α = α0, α0/2,α0/4,…

α

f(w + αd) < f(w)

Optimization
Line search (cont *)

• The back-tracking line search:

• Start from some large

• Try

• Stop when satisfies some sufficient decrease condition

• A simple condition:

• Often works in practice but doesn’t work in theory

• A (provable) sufficient decrease condition (armijo condition)

• (curvature)

• + armijo = wolfe condition

• For constant

α0

α = α0, α0/2,α0/4,…

α

f(w + αd) < f(w)

f(w + αd) ≤ f(w) + c1α∇f(w)Td

∇f(w + αd)Td ≥ c2 ∇f(w)Td

c1, c2 ∈ (0,1)

Optimization
Line search

