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Logistics

• Form your group


• Group registration: Due next Friday


• Submit your team members & project title & project abstract


• Homework 1 will release this weekend



Optimization
Goal

• Goal: find the minimizer of a function


• 


• For now we assume  is twice differentiable 

minw f(w)

f



Optimization
Convex function

• A function  :  is a convex 
function


•  the function  is below any line 
segment between two points on :


• 


•

f ℝn → ℝ

⇔ f
f

∀x1, x2, ∀t ∈ [0,1],

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)



Optimization
Convex function

• A function  :  is a convex 
function


•  the function  is below any line 
segment between two points on :


• 


• 


• Strictly convex: 

f ℝn → ℝ

⇔ f
f

∀x1, x2, ∀t ∈ [0,1],

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)

f(tx1 + (1 − t)x2) < tf(x1) + (1 − t)f(x2)



Optimization
Convex function

• Another equivalent definition for differentiable function:


•  is convex if and only if f f(x) ≥ f(x0) + ∇f(x0)T(x − x0), ∀x, x0



Optimization
Convex function

• Convex function:


• (For differentiable function)  is a global minimum


• If  is twice differentiable 


• F is convex if and only if  is positive semi-definite 

• Example: linear regression, logistic regression, …

∇f(w*) = 0 ⇔ w*

f ⇒

∇2f(w)



Optimization
Convex function

• Strict convex function:


•  is the unique global minimum


• Most algorithms only converge to gradient=0


• Example: Linear regression when  is invertible

∇f(w*) = 0 ⇔ w*

XTX



Optimization
Convex vs Nonconvex

• Convex function:


•           Global minimum


• A function is convex if   is positive definite


• Example: linear regression, logistic regression, …


• Non-convex function:


•           Global min, local min, or saddle point


• Most algorithms only converge to gradient =0


• Example: neural network, …

∇f(x) = 0

∇2f(x)

∇f(x) = 0



Optimization
Gradient descent

• Gradient descent: repeatedly do


• 


•  is the step size


• Generate the sequence 


• Converge to stationary points (  )

wt+1 ← wt − α∇f(wt)

α > 0

w1, w2, …

lim
t→∞

∥∇f(wt)∥ = 0



Optimization
Gradient descent

• Gradient descent: repeatedly do


• 


•  is the step size


• Generate the sequence 


• Converge to stationary points 
(  )


• Step size too large  diverge; 


• too small  slow convergence

wt+1 ← wt − α∇f(wt)

α > 0

w1, w2, …

lim
t→∞

∥∇f(wt)∥ = 0

⇒

⇒



Optimization
Why gradient descent

• At each iteration, form a approximation function of :


• 


• Update solution by 


• 


• 


•  will decrease  if  (step size) is sufficiently small

f( ⋅ )

f(w + d) ≈ g(d) := f(wt) + ∇f(wt)d +
1

2α
∥d∥2

wt+1 ← wt + d*

d* = arg min
d

g(d)

∇g(d*) = 0 ⇒ ∇f(wt) +
1
α

d* = 0 ⇒ d* = − α∇f(wt)

d* f( ⋅ ) α



Optimization
Illustration of gradient descent

• Form a quadratic approximation


• f(w+d) ≈ g(d) := f(wt) + ∇f(wt)d+
1

2α
∥d∥2



Optimization
Illustration of gradient descent

• Minimize 


•

g(d)

∇g(d*) = 0 ⇒ ∇f(wt) +
1
α

d* = 0 ⇒ d* = − α∇f(wt)



Optimization
Illustration of gradient descent

• Update 


•

w

wt+1 = wt+d* = wt−α∇f(wt)



Optimization
Illustration of gradient descent

• Update 


•

w

wt+1 = wt+d* = wt−α∇f(wt)



Optimization
Illustration of gradient descent



Optimization
Illustration of gradient descent



Optimization
When will it diverge

Can diverge (  ) if  is not an upper bound of f(wt) < f(wt+1) g f



Optimization
When will it converge

Always converge (  ) if  is an upper bound of f(wt) > f(wt+1) g f



Optimization
Convergence

• A differential function  is said to be L-Lipschitz continuous:


• 


• A differential function  is said to be L-smooth: its gradient are Lipschitz continuous:


• 


• And we could get


• 


•

f

∥f(x1) − f(x2)∥2 ≤ L∥x1 − x2∥2

f

∥∇f(x1) − ∇f(x2)∥2 ≤ L∥x1 − x2∥2

∇2f(x) ⪯ LI

f(y) ≤ f(x) + ∇f(x)T(y − x) +
1
2

L∥y − x∥2



Optimization
Convergence

• Let  be a Lipchitz constant  (  for all  )


• Theorem: gradient descent converges if 


• In practice, we do not know  …


• Need to tune step size when running gradient descent

L ∇2f(x) ⪯ LI x

α <
1
L

L



Optimization
Convergence

• Let  be a Lipchitz constant  (  for all  )


• Theorem: gradient descent converges if 


• Why?

L ∇2f(x) ⪯ LI x

α <
1
L



Optimization
Convergence

• Let  be a Lipchitz constant  (  for all  )


• Theorem: gradient descent converges if 


• Why?


• When  for any ,


•



• So, 


• In formal proof, need to show  is sufficiently smaller than 

L ∇2f(x) ⪯ LI x

α <
1
L

α < 1/L, d

g(d) = f(wt) + ∇f(wt)Td +
1

2α
∥d∥2

> f(wt) + ∇f(wt)Td +
L
2

∥d∥2

≥ f(wt + d)
f(wt + d*) < g(d*) ≤ g(0) = f(wt)

f(wt + d*) f(wt)



Optimization
Gradient descent convergence rate

• Suppose f is convex and differentiable and its gradient is lipshcitz continuous, 

then if we run gradient for t iterations with a fixed step , it will yield a 
solution that satisfies:


• 


• Proof

α ≤
1
L

f(wt) − f(w*) ≤
∥w0 − w*∥2

2

2αt



Optimization
Convergence

• Let  be a Lipchitz constant  (  for all  )


• Theorem: gradient descent converges if 


• In practice, we do not know  …


• Need to tune step size when running gradient descent

L ∇2f(x) ⪯ LI x

α <
1
L

L



Optimization
Applying to logistic regression



Optimization
Applying to logistic regression

• When to stop?


• Fixed number of 
iterations, or


• Stop when 
∥∇f(w)∥ < ϵ



Optimization
Line search

• In practice, we do not know  …


• Need to tune step size when running gradient descent


• Line Search: Select step size automatically (for gradient descent)

L



Optimization
Line search

• The back-tracking line search:


• Start from some large 


• Try 


• Stop when  satisfies some sufficient decrease condition

α0

α = α0, α0/2,α0/4,…

α



Optimization
Line search

• The back-tracking line search:


• Start from some large 


• Try 


• Stop when  satisfies some sufficient decrease condition


• A simple condition: 

α0

α = α0, α0/2,α0/4,…

α

f(w + αd) < f(w)



Optimization
Line search

• The back-tracking line search:


• Start from some large 


• Try 


• Stop when  satisfies some sufficient decrease condition


• A simple condition: 


• Often works in practice but doesn’t work in theory

α0

α = α0, α0/2,α0/4,…

α

f(w + αd) < f(w)



Optimization
Line search (cont *)

• The back-tracking line search:


• Start from some large 


• Try 


• Stop when  satisfies some sufficient decrease condition


• A simple condition: 


• Often works in practice but doesn’t work in theory


• A (provable) sufficient decrease condition  (armijo condition)


•  (curvature) 


• + armijo = wolfe condition


• For constant 

α0

α = α0, α0/2,α0/4,…

α

f(w + αd) < f(w)

f(w + αd) ≤ f(w) + c1α∇f(w)Td

∇f(w + αd)Td ≥ c2 ∇f(w)Td

c1, c2 ∈ (0,1)



Optimization
Line search


