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Machine learning pipeline

The devil is In the detalls

* What feature * Which model * Which parameter
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Automated Machine learning

The devil is In the detalls

 AutoML simplifies each step in the machine learning process, from handling a
raw dataset to deploying a practical machine learning model.
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e AutoML;

Neural Architecture Search (NAS)
Hyperparameter Optimization (HPO)
Meta Learning and Learning to learn
Automated Reinforcement learning
AutoML in Physical World

Automated model selection

Unimportant parameter
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AutoML

Architecture of Neural Network

 Neural network architecture is important for both accuracy and efficiency
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Can we automatically design architecture?



Neural Architecture Search
History of Neural Architecture Search (NAS)

e Early years: only on toy or small-scaled problems

* Evolutionary algorithms (Miller et al., 89; Schaffer et al., 92; Verbancsics & Harguess,
13)

 Bayesian optimization (Snoek et al, 12; Domhan et al., 15)

VN

Population Performance
(set of configs) evaluation

A 4

Evolutionary: recombination &
mutation
Bayesian: resampling




Neural Architecture Search

An early example

1.0

input 2
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a. b. >4 d.

Figure 3. The four-quadrant problem. a. 2-d mapping to be learned. b. Standard 3-layer architectural solution. c¢. Standard 4-layer archi-
tectural solution. d. Typical discovered architectural solution.



Neural Architecture Search

In 2016, Reinforcement learning (RL) is proposed for NAS
* A better (structured) representation of search space

* | earning a controller to generate architectures

[Zoph and Quoc] Neural Architecture Search with Reinforcement Learning. ICLR, 2017.
[Baker, Gupta, Naik, Raskar] Designing Neural Network Architectures using Reinforcement Learning. ICLR, 2017.

Successful results, but need hundreds of GPU days

Architecture Test Error (%) Search Cost (GPU days) Search Method
ResNet (He et al., 2016) 4.62 - manual
DenseNet-BC (Huang et al., 2017) 3.46 manual

NAS-RL (Zoph & Le, 2017) 3.65 22,400 RL




NAS with Reinforcement Learning

[1,3,5,7]

[1,3,5,7]

[1,2,3]

11,2,3]

Neural Architecture Search

[24,36,48,64]
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Neural Architecture Search
Training RNN controller by RL

Sample architecture A
with probability p

Trains a child network
The controller (RNN) with architecture

A to get accuracy R

Compute gradient of p and
scale it by R to update
the controller

Extremely slow (>20,000 GPU days)



Cell-based Search Space (NASNet)

* Direct search on the global space:

Neural Architecture Search

Softmax

1

 EXxpensive; can’t transfer to other datasets

Normal Cell

» Cell-based search space:

—>

Reduction Cell

 Repeated cells (like ResNet)

—>

» Can use less blocks in searching

Normal Cell

* Can generalize to more complex datasets

—>

by stacking more blocks

Reduction Cell

» Compared with (Zoph & Le, 2017):

—>

Normal Cell

e Error: 3.65 -> 2.65

1

» Search cost: 22,400 -> 2000 GPU days

Image

X N

X N

avg
3x3

Reduction Cell

[Zoph, Vasudevan, Shlens, Le] Learning Transferable Architectures for Scalable Image Recognition. In CVPR, 2018.




Softmax

1

Normal Cell x N

A

Reduction Cell

Normal Cell x N
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Neural Architecture Search
Generalize from CIFAR-10 to ImageNet
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Neural Architecture Search
Evolutionary Algorithm

* Evolutionary algorithm also becomes possible with this search space

Parent Selection
\ »| Parents
[nitialization , Survivor o ,
| Population Qelection vRecombmatlon & Mutation

A

Offspring
Fitness Evaluation

[Real, Aggarwak, Huang, Le] Regularized Evolution for Image Classifier Architecture Search. AAAI, 2019.



Neural Architecture Search

Other RL or evolutionary algorithms proposed

Reference Error (%) Params (Millions) GPU Days

Baker et al. (2017) 6.92 11.18 100 |

Zoph and Le (2017) 3.65 37.4 22.400

Cai et al. (2018a) 4.23 23.4 10

Zoph et al. (2018) 3.41 5 2,000 Reinforcement
Zoph et al. (2018) + Cutout 2.65 3.3 2,000 - Learning
Zhong et al. (2018) 3.54 39.8 96

Cai et al. (2018b) 2.99 5.7 200

Cai et al. (2018b) + Cutout 2.49 0T 200

Real et al. (2017) 5.40 5.4 2,600 |

Xie and Yuille (2017) 5.39 N/A 17

Suganuma et al. (2017) 5.98 1.7 14.9 = Evolution
Liu et al. (2018b) 3.5 157 300

Real et al. (2019) 3.34 5 B, 3,150

e

Designing competitive networks can take hundreds of GPU-days!
How to make neural architecture search more efficient?

Search typically takes hundreds of GPU days! Impractical for typical users.



Neural Architecture Search

Significantly reduced search time since 2018

Architecture Test Error (%) Search Cost (GPU days) Search Method

DenseNet-BC (Huang et al., 2017) 3.46 - manual

NAS-RL (Zoph & Le, 2017) 3.65 22,400 RL

NASNet-A (Zoph et al., 2018) 2.65 2000 RL

BlockQNN (Zhong et al., 2018) 3.54 96 RL

AmoebaNet (Real et al., 2019) 3.34 £+ 0.06 3150 evolution

Hierarchical GA (Liu et al., 2018) 3.75 300 evolution

GCP (Suganuma et al., 2017) 5.98 15 evolution

DARTS (1st) (Liu et al., 2019) 3.00 +£0.14 0.4 differentiable

DARTS (2nd) (Liu et al., 2019) 2.76 £+ 0.09 1.0 differentiable

SNAS (moderate) (Xie et al., 2019) 2.85 4+ 0.02 1.5 differentiable

GDAS (Dong & Yang, 2019) 2.93 0.3 differentiable Can run on a single
ProxylessNAS (Cai et al., 2019)T 2.08 4.0 ditfferentiable GPU machine!
PC-DARTS (Xu et al., 2020) 2.57 +0.07 0.1 differentiable

NASP (Yao et al., 2019) 2.83 £ 0.09 0.1 differentiable

SDARTS-ADYV (Chen & Hsieh, 2020) 2.61 +0.02 1.3 differentiable

DrNAS (Chen et al., 2019) 2.46 4+ 0.03 0.6 differentiable

DARTS+PT (Wang et al., 2020) 2.61 £ 0.08 0.8 differentiable




Neural Architecture Search
Concept of Weight Sharing

Path A

* Models defined by Path A and Path B should be trained separately
 Can we assume Path A and Path B share the same weight at 1->27?
e Weight Sharing!

* Avoid retraining for each new architecture



Neural Architecture Search
Concept of Weight Sharing

* Supernet: ensemble of many architectures
» All the architectures share the same w (weight sharing)

» Weight sharing can be directly used to speed up Performance Evaluation in other NAS methods

* Train a “supernet” containing all the operations and weights

* For any architecture, directly take the shared weights and evaluate on
validation set

 ENAS: weight sharing + RL /

* 0.5 GPU days with 2.9 error on CIFAR-10

A%

Population
(set of configs) X

Performance _

Evaluation

[Pham, Guan, Zoph, Le, Dean] Efficient Neural Architecture Search via Parameter Sharing. ICML, 2018.

0




Differentiable NAS

Can we directly obtain the final architecture through supernet training?

0

 Each edge is chosen from a pool of

operations: ’

:

* Conv3x3, Convdxb, Conv/x7, skip_connect, o
max_pool, avg_pool, zero, noise, ... o ol

» One operation per edge => a discrete o 3

problem




Differentiable NAS

Continuous Relaxation

* For simplicity, assume 3 operations
0, : Conv3 X 3,0, : skip connect, 05 : Zero

 Assume each edge is a mixed of three operations:

[Liu, Simonyan, Yang] DARTS: Differentiable Architecture Search. In ICLR 2019.

vO




Differentiable NAS

Continuous Relaxation

vO
* For simplicity, assume 3 operations
0, : Conv3 X 3,0, : skip connect, 05 : Zero
01 |0
 Assume each edge is a mixed of three operations: L™
V1 :@01 (vo) +2( —
A

¢
Yout — Zo Z,Xe%poao(vin)

[Liu, Simonyan, Yang] DARTS: Differentiable Architecture Search. In ICLR 2019.



Differentiable NAS

Continuous Relaxation

» Final architecture: |, a,, a3] is a

one-hot vector

e Relax to continuous values In the

search phase=> Bi-level
optimization for finding o

min& Lval (w* (a)7 a)

s.t. w* (a) = arg min,, L

umn(

w, )

vO

a1 Qg Qs

v1

vO

1

2

v1




Differentiable NAS

Differentiable Neural Architecture Search (DARTS)

 Solve the bi-level optimization problem to obtain (a™, w™) (supernet)

» Use magnitude of o™ to choose the final architecture

(d) Search start (e) Search end (f) Final cell



Differentiable NAS min,, L (w* (), a)

How to solve bi-level optimization?

s.t. w*(a) = argmin,, L. (w, a)

Umn(
* |teratively update w and o

 Update w:

* Time consuming to compute w* exactly => approximate by one SGD step
e W —w—nV, Liain(w, Q)
 Update a:
* First order DARTS: assume w is constant w.r.t. o

e d —a—cV, L, W, a)



Differentiable NAS

Complexity of DARTS

 [iIme complexity: training the supernet only once

* Supernet is a network with K operations with each edge
=> only K times slower than standard training

* Usually good enough
 Memory complexity (GPU memory):

 Backprop on all the operations on each edge
=> K times memory consumption

* Prohibits for many problems



Differentiable NAS

DARTS fails in many simple cases

Space 1: 2 operations per edge (selected from the original DARTS supernet)
Space 2. 2 operations per edge {Conv3x3, skip connect}

Space 3: 3 operations per edge {Conv3x3, skip_connect, Zero}

Space 4. 2 operations per edge {Conv3x3, Gaussian_noise}
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Differentiable NAS

DARTS leads to degenerated solutions

skip_connect
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sKip_con

R
C_{k-1} | skip_connect

\ 5 /,/v skip_connect .

skip_connect _}] 2
c_{kj c_{k-2} skip_connect

skip_conn Skjp_connect / Skip_CO[lIlECt
3 skip_connect

sep_conv_3x3

skip_comaect

0

skip connect skip connect
c {k-2} c_{k-1} ‘i Skip_COﬂM

S1 S2

2] noise N

skip_connect sep_conv_3x3 \\bm

: c_{k}
= k —'_'/’——'-'/D
2 \ sep_conv_3x3

noise
P— ¢ (k1)
0 : NV
c_{k-2} W skip_connect 3 sep_conv_3x3
\skip_connect

S3 S4

skip_connect

skip_connect

skip_connect




Differentiable NAS

Reason 1: sharpness of the solution

A good continuous solution doesn’t imply a good discrete solution

 (Gap between continuous and discrete solutions can be estimated by sharpness

¢« Assume ¥ is the continuous solution and @ is the discrete solution

 Based on Taylor expansion:

Ly(w*, a) = Lyq(w*, a*) + 5(07 — o) H(a — a*) where
H = V2L, ,(w*, a*) is the Hessian

o Standard DARTS lead to “Sharp solutions” (large Hessian)



Differentiable NAS

Reason 1: sharpness of the solution

* A good continuous solution doesn’t iImply a good discrete solution

* (Gap between continuous and discrete solutions can be estimated by
sharpness

» Standard DARTS lead to “Sharp solutions” (large Hessian)

LOSSvaHd




Differentiable NAS

Reason 1: sharpness of the solution

 DARTS training leads to sharp local minimums
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Differentiable NAS

Reason 2: SKip connection domination

e Supernet accuracy 1
e \Weight for skip connection 1
e \Weight for convolution |
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Differentiable NAS

Reason 2: SKip connection domination

e Supernet accuracy 1
e \Weight for skip connection 1
e \Weight for convolution |

skip_connect
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c_{k-1} |_skip_connect

N
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to infinity, o ..1 1and & 10
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Improvements over DARTS

e Supernet Training
 Usually aim to make superset more “discreterizable”
 Balance exploration and exploitation
» Scalability
 How to use more blocks in searching?
 Reduce memory overhead to directly search on larger problems

 Architecture Selection

* Does architecture weight a really indicate their performance



Supernet training: Distribution learning

* Rethink DARTS as a distribution learning problem

 For each edge, |ay, ..., ;] defines a distribution over operations

 We eventually “sample” an architecture from this distribution

« How to learn [y, ..., ;] based on gradient-based optimization?
* Benefits:
* Performance will be preserved better after discretization

* Reduced training time in some cases

Sample [

Distribution of |a, ..., ak] 1| et crete e - Gradient computation

Update



Supernet training: Distribution learning

Gumbel softmax

e Sampling from a distribution i ~ a;/ > | oy (can't backprop from i to a)
e (Gumbel-max: this is equivalent to
i = argmaxy {G; + log(a;)}

where each Gy ~ Gumbel(0, 1)
o Gumbel-softmax: using softmax with temperature annealed to be close to zero

exp(G;+log(a))/v

i = =
’ Zi’ exp(Gy +log(oyr)) /v

o This enables back-propagation to |a1,...,ax] (reparameterization trick)
o SNAS: use Gumbel softmax with annealed temperature in DARTS



Supernet training: Distribution learning
DrNAS

e Assume architecture parameters |a;,...,ax| are sampled from Dirichlet

Distribution:
ay,...,ag| ~Dir([B1,...,BKk])

e Dirichlet distribution samples from the standard K-1 simplex
o B K1 leads to sparse samples
with high variance
o B >1 leads to dense samples
with low variance (for sufficient
exploration)

i |

(0.85, 0.85, 0.85) (1, 1, 1) (5, 5, 5)
(1, 2, 3) (2, 5, 10) (50, 50, 50)




Supernet training: Distribution learning
DrNAS

e DrNAS objective:
o Point estimation — distribution learning

min Eq(alﬁ)[Lva/(W*(O‘)v O‘)] T )‘d(ﬁa B)a S.T.

p
w™ = argmin L¢ain(w, @), q(al|B) ~ Dir(5)
o (Gradient computation:
dOé,' - 8ggj-ta (aj‘ﬂjv 5tot o BJ) " (5,] — 04,-)

dﬁj B fBeta(Oéj‘/Bja Btot — 61)

].—Oéj

o Architecture selection: magnitude of B



Supernet training: Distribution learning
DrNAS

e On NAS-Bench-201

o Achieve oracle when searching on CIFAR-100
DrNAS (73.51) vs SNAS (69.34) vs DARTS (38.97)

CIFAR-10 CIFAR-100 ImageNet-16-120

Method — — —

validation test validation test validation test
ResNet 90.83 03.97 70.42 70.86 44.53 43.63
Random (baseline) 90.934+0.36 93.70+0.36 70.60+1.37 70.65+1.38 42.92+2.00 42.96+ 2.15
ROPS 84.16+1.69 87.66+1.69 45.78+6.33 46.60+6.57 31.094+5.65 30.78+6.12
Reinforce 01.094+037 93.85+0.3Ff 7005+167 70.l7+106]1 43.04+2.18 43.161+ 2728
ENAS 39.77+0.00 54304000 10.23+0.12 10621027 1643+:0.00 16.3240.00
DARTS (1st) 39.77 £0.00 54.304+0.00 3857+0.00 38.97+0.00 18.874+0.00 18.41 £0.00
DARTS (2nd) 39.77 £0.00 54.304+0.00 38.57+0.00 38.97+0.00 18.87+0.00 18.41+0.00
GDAS 00.01 £0.46 93.23+0.23 24.05+8.12 24.20+8.08 40.66+0.00 41.02+0.00
SNAS 00.10+1.04 92.77+0.83 69.69+239 69.34+198 42.84+1.79 43.16+ 2.64
DSNAS 89.66 £0.29 93.08+0.13 30.87+16.40 31.01 +16.38 40.61 +0.09 41.07 £+0.09
PC-DARTS 89.96 +£0.15 93414030 67.12+0.39 67.48+0.89 40.834+0.08 41.31+0.22
DrNAS 01.55+0.00 9436 +0.00 73.49+0.00 73.514+0.00 46.371+0.00 46.34+0.00
optimal 91.61 04.37 73.49 73.51 46.77 47.31




Supernet training

Perturbation-based regularization

e A smoother landscape will make supernet robust to discreterization
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Supernet training

Perturbation-based regularization

 Make supernet robust to o perturbation

* Since we need to perturb it to a discrete architecture in the final stage

 Mathematically, we hope the superset robust to random or adversarial (worst-
case) perturbation of o



Supernet training

Perturbation-based regularization

 Make supernet robust to o perturbation

* Since we need to perturb it to a discrete architecture in the final stage

 Mathematically, we hope the superset robust to random or adversarial (worst-
case) perturbation of o

: T _ SDARTS: Each step
min, L, (w(a), ), s.t. > Perturb @

— . : 2
SDARTSRS: w(a) = argmin,, Esy. . L... (w, A+ 0) ¢ Random: @' < a+ N(0,07)
e € Adversarial:
SDARTS-Adv: W(@) = arg min,, max|s|<¢ Ly (w, A + 0) o — a+ VoL, (o,w)

- Update w based on @’
= Update @ based onw



Supernet training
SmoothDARTS

e On NAS-Bench-1Shot1

o Continues to discover better architectures
o Anneal Hessian to a low level
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Architecture Selection
Architecture Selection in DARTS

!
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(e) Search end (f) Final cell




Architecture Selection
Architecture Selection in DARTS

e Recall the skip-domination problem:

o For the optimal supernet with infinite number of layers: ag;, T1 and o, 40
o a values may not really represent the “importance” of each operation

e Skip connection stands out if we select the best operation based on a
e Does oy, > a.,, mean skip connection is better than convolution?



Architecture Selection

Does a represent operation strength?

e Probably Not!

o S2:(Skip _connect, sep _conv_3x3)

o  Skip connections dominate according to a
o But the accuracy of S2 supernet benefits from more convolutions

e e e e NSO ML TN S B __ skip_connect
— e e T
/Skip cgnnect - e P 5k|p connect e SE‘D conv_ 3X3 ’ E’ e ————e skip_connect __-::::—"(‘-:-—:_-_— el
_skip_connect R - : e ——— —

— o el | T——____sep_conv_3x3 B o S
c {k-1 // . - = ," \ __:.‘13:[ '.'
_{ } Skip-connect / ‘ \t Si'_p connect - T skip_ connect —— T / ™ skipconnect Sap_conv_Sc3 by o _—skip_connect __—— T/
_skip_ cc.mnec *---\_\____. /:—;,-_—:’______ ________,__—-—- skip connec/t, ! '. SOP S, 3x3 S e 48 _____,_-——--"‘ skip_connect/ /
—_——__——____ i i // | {,-‘J \ / e —— S . N _”__,-"——--_'___——“ / !

|| // ——,EF_ = sklp connect ™~ - / / ST — :_i-j:_s,kip_connect w v/x
§ - y . e SRS % P J
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%’*—-___ o il Skip_con nect_____————--_ . ,l'l - _-__’___-"-_ e p—conv_jxj TN — - =
4 I e o ——— g .,."' -_'__'__--t'f = s iy

C_{k-Z} e sep_conv_3x3 R e e ',.-"f‘ > {k-z_} —

T — o 4 ~ N

sep_conv 3x3 ___—

skip_connect sep_conv_3x3

Magnitude-base selection Progressive tuning selection



Architecture Selection

Does a represent operation strength?

Same observations on large space: DARTS space

Magnitude of a deviates from accuracy of the supernet
Some operations with small a are in fact more important for supernet
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Architecture Selection

A New architecture Selection Method

* Evaluate the importance of an operation o by:

 Compute the drop of validation accuracy when o is removed (no need for
further training)

* Use this to choose the best o for an edge
* Fine-tune the solution, and move to the next edge

* “Pertubation-based selection” (PT for short)
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A New architecture Selection Method

e PT consistently improves over the original magnitude-based selection

Dataset | Space | DARTS | DARTS+PT (Ours)
51 3.84 3.50
52 4.85 2.79
il 53 3.34 2.49
S4 {20 2.64
< i 29.46 24.48
52 26.05 23.16
100 53 28.90 22.03
S4 22.85 20.80
S1 4.58 2.62
52 3.53 252
Sk S3 3.41 2.42
S4 3.05 2.42
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A New architecture Selection Method

e Performance improves with more searching epochs

40

20

Test Accuracy on cifar10 (%)

-p== Perturbation-based Selection
—a= Magnitude-based Selection

% 40 60 80 100
Search Epoch

Figure: Test accuracy vs search epoch on NAS-Bench-201 space
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A New architecture Selection Method

Architecture Test Error (%) Search Cost (GPU days) Search Method
DARTS (1st) (Liu et al., 2019) 3.00£0.14 0.4 differentiable
DARTS (2nd) (L1u et al., 2019) 2.76 = 0.09 1.0 differentiable
SNAS (moderate) (Xie et al., 2019) 2.850 +0.02 LD differentiable
DrNAS (Chen et al., 2020) 204+ 113 0.4 differentiable
NASP (Yao et al., 2019) 2.83 + 0.09 0.1 differentiable
SDARTS-ADYV (Chen & Hsieh, 2020) 2 bl =2 1.3 differentiable
ProxylessNAS (Cai et al., 2019)f 2.08 4.0 differentiable
PC-DARTS (Xu et al., 2020) 201 0.07 0.1 differentiable
DrNAS (with progressive learning) 2.46 = 0.03 0.6 differentiable
DARTS+PT (Wang et al., 2020) 2.61 +£0.08 0.8 differentiable
SDARTS-ADV+PT 2.04.40.01 0.8 differentiable

I Obtained on a different space with PyramidNet as the backbone.
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Table 3: Darts+PT on S1-S4 (test error (%)).

Dataset | Space | DARTS | Darts+PT (Ours) } Darts+PT (fix a)*
S1 3.84 2.86
S2 4.85 2.59
Cl0 | s3 [ 334 2.52
S4 7.20 2.58
S1 29.46 24 .40
S2 26.05 Z23.30)
Cl00 1 s3 | 2890 21.94
S4 22.85 20.66
S1 4.58 2.39
S2 3.53 2.32
SVEN | s3 | 341 2.32
S4 3.05 2.39
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