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Machine learning pipeline



Machine learning pipeline
The devil is in the details



Automated Machine learning
The devil is in the details

• AutoML simplifies each step in the machine learning process, from handling a 
raw dataset to deploying a practical machine learning model.



Automated Machine learning

• AutoML:


• Neural Architecture Search (NAS)


• Hyperparameter Optimization (HPO)


• Meta Learning and Learning to learn


• Automated Reinforcement learning


• AutoML in Physical World


• Automated model selection 


• …



AutoML
Architecture of Neural Network

• Neural network architecture is important for both accuracy and efficiency

Can we automatically design architecture?



Neural Architecture Search
History of Neural Architecture Search (NAS)

• Early years: only on toy or small-scaled problems


• Evolutionary algorithms (Miller et al., 89; Schaffer et al., 92; Verbancsics & Harguess, 
13)


• Bayesian optimization (Snoek et al, 12; Domhan et al., 15)



Neural Architecture Search
An early example



Neural Architecture Search

• In 2016, Reinforcement learning (RL) is proposed for NAS


• A better (structured) representation of search space


• Learning a controller to generate architectures


• Successful results, but need hundreds of GPU days

[Zoph and Quoc] Neural Architecture Search with Reinforcement Learning. ICLR, 2017. 
[Baker, Gupta, Naik, Raskar] Designing Neural Network Architectures using Reinforcement Learning. ICLR, 2017. 



Neural Architecture Search
NAS with Reinforcement Learning



Neural Architecture Search
Training RNN controller by RL

Extremely slow (>20,000 GPU days)



Neural Architecture Search
Cell-based Search Space (NASNet)

• Direct search on the global space:


• Expensive; can’t transfer to other datasets


• Cell-based search space: 


• Repeated cells (like ResNet)


• Can use less blocks in searching 


• Can generalize to more complex datasets  
by stacking more blocks


• Compared with (Zoph & Le, 2017):


• Error: 3.65 -> 2.65


• Search cost: 22,400 -> 2000 GPU days

[Zoph, Vasudevan, Shlens, Le] Learning Transferable Architectures for Scalable Image Recognition. In CVPR, 2018. 



Neural Architecture Search
Generalize from CIFAR-10 to ImageNet



Neural Architecture Search
Evolutionary Algorithm

• Evolutionary algorithm also becomes possible with this search space

[Real, Aggarwak, Huang, Le] Regularized Evolution for Image Classifier Architecture Search. AAAI, 2019. 



Neural Architecture Search
Other RL or evolutionary algorithms proposed

Search typically takes hundreds of GPU days! Impractical for typical users. 



Neural Architecture Search
Significantly reduced search time since 2018

Can run on a single 
GPU machine!



Neural Architecture Search
Concept of Weight Sharing

• Models defined by Path A and Path B should be trained separately


• Can we assume Path A and Path B share the same weight at 1->2?


• Weight Sharing!


• Avoid retraining for each new architecture



Neural Architecture Search
Concept of Weight Sharing

• Supernet: ensemble of many architectures


• All the architectures share the same w (weight sharing)


• Weight sharing can be directly used to speed up Performance Evaluation in other NAS methods


• Train a “supernet” containing all the operations and weights


• For any architecture, directly take the shared weights and evaluate on  
validation set


• ENAS: weight sharing + RL 


• 0.5 GPU days with 2.9 error on CIFAR-10

[Pham, Guan, Zoph, Le, Dean] Efficient Neural Architecture Search via Parameter Sharing. ICML, 2018.  



Differentiable NAS
Can we directly obtain the final architecture through supernet training?

• Each edge is chosen from a pool of 
operations:


• Conv3x3, Conv5x5, Conv7x7, skip_connect, 
max_pool, avg_pool, zero, noise, ...


• One operation per edge => a discrete 
problem



Differentiable NAS
Continuous Relaxation

• For simplicity, assume 3 operations 



• Assume each edge is a mixed of three operations:

o1 : Conv3 × 3,o2 : skip connect, o3 : Zero

[Liu, Simonyan, Yang] DARTS: Differentiable Architecture Search. In ICLR 2019. 



Differentiable NAS
Continuous Relaxation

• For simplicity, assume 3 operations 



• Assume each edge is a mixed of three operations:


• Can use softmax to ensure the weights form a prob. distribution

o1 : Conv3 × 3,o2 : skip connect, o3 : Zero

[Liu, Simonyan, Yang] DARTS: Differentiable Architecture Search. In ICLR 2019. 



Differentiable NAS
Continuous Relaxation

• Final architecture:    is a 
one-hot vector


• Relax to continuous values in the 
search phase=> Bi-level 
optimization for finding 

[α1, α2, α3]

α



Differentiable NAS
Differentiable Neural Architecture Search (DARTS)

• Solve the bi-level optimization problem to obtain   (supernet)


• Use magnitude of  to choose the final architecture

(α*, w*)

α*



Differentiable NAS
How to solve bi-level optimization?

• Iteratively update  and  


• Update  :


• Time consuming to compute w* exactly => approximate by one SGD step


• 


• Update  :


• First order DARTS: assume w is constant w.r.t.  


•

w α

w

w′ ← w − η∇wLtrain(w, α)

α

α

α ← α − c∇αLval(w′ , α)



Differentiable NAS
Complexity of DARTS

• Time complexity: training the supernet only once 


• Supernet is a network with K operations with each edge  
=> only K times slower than standard training


• Usually good enough


• Memory complexity (GPU memory):


• Backprop on all the operations on each edge 
=> K times memory consumption


• Prohibits for many problems



Differentiable NAS
DARTS fails in many simple cases



Differentiable NAS
DARTS leads to degenerated solutions



Differentiable NAS
Reason 1: sharpness of the solution

• A good continuous solution doesn’t imply a good discrete solution


• Gap between continuous and discrete solutions can be estimated by sharpness


• Assume  is the continuous solution and  is the discrete solution


• Based on Taylor expansion: 

 where 

 is the Hessian


• Standard DARTS lead to “Sharp solutions” (large Hessian)

α* ᾱ

Lval(w*, ᾱ) ≈ Lval(w*, α*) +
1
2

(ᾱ − α*)TH(ᾱ − α*)
H = ∇2

αLval(w*, α*)



Differentiable NAS
Reason 1: sharpness of the solution

• A good continuous solution doesn’t imply a good discrete solution


• Gap between continuous and discrete solutions can be estimated by 
sharpness


• Standard DARTS lead to “Sharp solutions” (large Hessian)



Differentiable NAS
Reason 1: sharpness of the solution

• DARTS training leads to sharp local minimums



Differentiable NAS
Reason 2: Skip connection domination



Differentiable NAS
Reason 2: Skip connection domination



Improvements over DARTS

• Supernet Training


• Usually aim to make superset more “discreterizable”


• Balance exploration and exploitation


• Scalability


• How to use more blocks in searching?


• Reduce memory overhead to directly search on larger problems


• Architecture Selection


• Does architecture weight  really indicate their performanceα



Supernet training: Distribution learning

• Rethink DARTS as a distribution learning problem


• For each edge,  defines a distribution over operations


• We eventually “sample” an architecture from this distribution


• How to learn  based on gradient-based optimization?


• Benefits:


• Performance will be preserved better after discretization


• Reduced training time in some cases

[α1, …, αk]

[α1, …, αk]



Supernet training: Distribution learning
Gumbel softmax



Supernet training: Distribution learning
DrNAS



Supernet training: Distribution learning
DrNAS



Supernet training: Distribution learning
DrNAS



Supernet training
Perturbation-based regularization



Supernet training
Perturbation-based regularization

• Make supernet robust to  perturbation


• Since we need to perturb it to a discrete architecture in the final stage


• Mathematically, we hope the superset robust to random or adversarial (worst-
case) perturbation of 

α

α



Supernet training
Perturbation-based regularization

• Make supernet robust to  perturbation


• Since we need to perturb it to a discrete architecture in the final stage


• Mathematically, we hope the superset robust to random or adversarial (worst-
case) perturbation of 

α

α



Supernet training
SmoothDARTS



Architecture Selection
Architecture Selection in DARTS



Architecture Selection
Architecture Selection in DARTS



Architecture Selection
Does  represent operation strength?α



Architecture Selection
Does  represent operation strength?α



Architecture Selection
A New architecture Selection Method

• Evaluate the importance of an operation o by:


• Compute the drop of validation accuracy when o is removed (no need for 
further training)


• Use this to choose the best o for an edge


• Fine-tune the solution, and move to the next edge


• “Pertubation-based selection” (PT for short)



Architecture Selection
A New architecture Selection Method



Architecture Selection
A New architecture Selection Method



Architecture Selection
A New architecture Selection Method



Architecture Selection
A New architecture Selection Method


