COMP5212: Machine Learning Lecture 21

Minhao Cheng

Machine learning pipeline

Machine learning pipeline The devil is in the details

• What feature Constraint/Rule

Budget

Efficiency

 Which model Linear model

Boosting model

Neural network

Which parameter Hyperparameter

Optimizer

Automated Machine learning The devil is in the details

raw dataset to deploying a practical machine learning model.

AutoML simplifies each step in the machine learning process, from handling a

Automated Machine learning

- AutoML:
 - Neural Architecture Search (NAS)
 - Hyperparameter Optimization (HPO)
 - Meta Learning and Learning to learn
 - Automated Reinforcement learning
 - AutoML in Physical World
 - Automated model selection

AutoML **Architecture of Neural Network**

Can we automatically design architecture?

Neural network architecture is important for both accuracy and efficiency

Neural Architecture Search History of Neural Architecture Search (NAS)

- Early years: only on toy or small-scaled problems
 - Evolutionary algorithms (Miller et al., 89; Schaffer et al., 92; Verbancsics & Harguess, 13)
 - Bayesian optimization (Snoek et al, 12; Domhan et al., 15)

Neural Architecture Search An early example

Neural Architecture Search

- In 2016, Reinforcement learning (RL) is proposed for NAS
 - A better (structured) representation of search space
 - Learning a controller to generate architectures lacksquare

[Zoph and Quoc] Neural Architecture Search with Reinforcement Learning. ICLR, 2017. [Baker, Gupta, Naik, Raskar] Designing Neural Network Architectures using Reinforcement Learning. ICLR, 2017.

Successful results, but need hundreds of GPU days

Architecture	Test Error (%)	Search Cost (GPU days)	Search Method
ResNet (He et al., 2016)	4.62	-	manual
DenseNet-BC (Huang et al., 2017)	3.46	-	manual
NAS-RL (Zoph & Le, 2017)	3.65	22,400	RL

Neural Architecture Search NAS with Reinforcement Learning

Neural Architecture Search Training RNN controller by RL

Neural Architecture Search Cell-based Search Space (NASNet)

- Direct search on the global space:
 - Expensive; can't transfer to other datasets
- Cell-based search space:
 - Repeated cells (like ResNet)
 - Can use less blocks in searching
 - Can generalize to more complex datasets by stacking more blocks
- Compared with (Zoph & Le, 2017):
 - Error: 3.65 -> 2.65
 - Search cost: 22,400 -> 2000 GPU days

[Zoph, Vasudevan, Shlens, Le] Learning Transferable Architectures for Scalable Image Recognition. In CVPR, 2018.

Neural Architecture Search Generalize from CIFAR-10 to ImageNet

Neural Architecture Search Evolutionary Algorithm

Evolutionary algorithm also becomes possible with this search space \bullet

[Real, Aggarwak, Huang, Le] Regularized Evolution for Image Classifier Architecture Search. AAAI, 2019.

Neural Architecture Search Other RL or evolutionary algorithms proposed

Reference	Error (%)	Params (1
Baker et al. (2017)	6.92	11.
Zoph and Le (2017)	3.65	37.
Cai et al. (2018a)	4.23	23.
Zoph et al. (2018)	3.41	3.3
Zoph et al. (2018) + Cutout	2.65	3.
Zhong et al. (2018)	3.54	39.
Cai et al. (2018b)	2.99	5.
Cai et al. $(2018b)$ + Cutout	2.49	5.
Real et al. (2017)	5.40	5.4
Xie and Yuille (2017)	5.39	N/
Suganuma et al. (2017)	5.98	1.
Liu et al. (2018b)	3.75	15.
Real et al. (2019)	3.34	3.:

Designing competitive networks can take hundreds of GPU-days! How to make neural architecture search more efficient?

Search typically takes hundreds of GPU days! Impractical for typical users.

Neural Architecture Search Significantly reduced search time since 2018

Architecture	Test Error (%)	Search Cost (GPU days)	Search Method	
DenseNet-BC (Huang et al., 2017)	3.46	-	manual	
NAS-RL (Zoph & Le, 2017)	3.65	22,400	RL	
NASNet-A (Zoph et al., 2018)	2.65	2000	RL	
BlockQNN (Zhong et al., 2018)	3.54	96	RL	
AmoebaNet (Real et al., 2019)	3.34 ± 0.06	3150	evolution	
Hierarchical GA (Liu et al., 2018)	3.75	300	evolution	
GCP (Suganuma et al., 2017)	5.98	15	evolution	
DARTS (1st) (Liu et al., 2019)	3.00 ± 0.14	0.4	differentiable	
DARTS (2nd) (Liu et al., 2019)	2.76 ± 0.09	1.0	differentiable	
SNAS (moderate) (Xie et al., 2019)	2.85 ± 0.02	1.5	differentiable	
GDAS (Dong & Yang, 2019)	2.93	0.3	differentiable	Can run on a single
ProxylessNAS (Cai et al., 2019) [†]	2.08	4.0	differentiable	GPU machine!
PC-DARTS (Xu et al., 2020)	2.57 ± 0.07	0.1	differentiable	
NASP (Yao et al., 2019)	2.83 ± 0.09	0.1	differentiable	
SDARTS-ADV (Chen & Hsieh, 2020)	2.61 ± 0.02	1.3	differentiable	
DrNAS (Chen et al., 2019)	2.46 ± 0.03	0.6^{\ddagger}	differentiable	
DARTS+PT (Wang et al., 2020)	2.61 ± 0.08	0.8	differentiable	

Neural Architecture Search Concept of Weight Sharing

- Models defined by Path A and Path B should be trained separately
- Can we assume Path A and Path B share the same weight at 1->2?
 - Weight Sharing!
 - Avoid retraining for each new architecture

Neural Architecture Search Concept of Weight Sharing

- Supernet: ensemble of many architectures
- All the architectures share the same w (weight sharing)
- Weight sharing can be directly used to speed up Performance Evaluation in other NAS methods
 - Train a "supernet" containing all the operations and weights
 - For any architecture, directly take the shared weights and evaluate on validation set
 - ENAS: weight sharing + RL
 - 0.5 GPU days with 2.9 error on CIFAR-10

Population (set of configs)

[Pham, Guan, Zoph, Le, Dean] Efficient Neural Architecture Search via Parameter Sharing. ICML, 2018.

Differentiable NAS Can we directly obtain the final architecture through supernet training?

- Each edge is chosen from a pool of operations:
- Conv3x3, Conv5x5, Conv7x7, skip_connect, max_pool, avg_pool, zero, noise, ...
- One operation per edge => a discrete problem

Differentiable NAS Continuous Relaxation

- For simplicity, assume 3 operations o_1 : Conv3 X 3, o_2 : skip connect, o_3
- Assume each edge is a mixed of three operations:

$$v_1 = \alpha_1 o_1(v_0) + \alpha_2 o_2(v_0) + \alpha_3 o_3(v_0)$$

Weight of each operation

[Liu, Simonyan, Yang] DARTS: Differentiable Architecture Search. In ICLR 2019.

$$o_3$$
: Zero

Differentiable NAS Continuous Relaxation

- For simplicity, assume 3 operations o_1 : Conv3 X 3, o_2 : skip connect, o_3 : Zero
- Assume each edge is a mixed of three operations:

$$v_1 = lpha_1 o_1(v_0) + lpha_2 o_2(v_0) +$$

Weight of each operation

Can use softmax to ensure the weights form a prob. distribution

$$v_{\text{out}} = \sum_{o} \frac{\exp \alpha_o}{\sum_{o'} \exp \alpha_{o'}} o(v)$$

[Liu, Simonyan, Yang] DARTS: Differentiable Architecture Search. In ICLR 2019.

 $v_{\rm in}$

Differentiable NAS Continuous Relaxation

- Final architecture: $[\alpha_1, \alpha_2, \alpha_3]$ is a one-hot vector
- Relax to continuous values in the search phase=> Bi-level optimization for finding α

 $\min_{\alpha} L_{val}(w^*(\alpha), \alpha)$ s.t. $w^*(\alpha) = \arg\min_w L_{\text{train}}(w, \alpha)$

Differentiable NAS Differentiable Neural Architecture Search (DARTS)

- Solve the bi-level optimization problem to obtain (α^*, w^*) (supernet)
- Use magnitude of α^* to choose the final architecture

Differentiable NAS $\min_{\alpha} L_{val}(w^*(\alpha), \alpha)$ How to solve bi-level optimization? s.t. $w^*(\alpha) = \arg\min_w L_{train}(w, \alpha)$

- Iteratively update w and α
- Update *w*:
 - Time consuming to compute w* exactly => approximate by one SGD step

•
$$w' \leftarrow w - \eta \nabla_w L_{\text{train}}(w, \alpha)$$

- Update α :
 - First order DARTS: assume w is constant w.r.t. α

•
$$\alpha \leftarrow \alpha - c \nabla_{\alpha} L_{\text{val}}(w', \alpha)$$

Differentiable NAS Complexity of DARTS

- Time complexity: training the supernet only once
 - Supernet is a network with K operations with each edge => only K times slower than standard training
 - Usually good enough
- Memory complexity (GPU memory):
 - Backprop on all the operations on each edge => K times memory consumption
 - Prohibits for many problems

Differentiable NAS DARTS fails in many simple cases

- Space 1: 2 operations per edge (selected from the original DARTS supernet)
- Space 2: 2 operations per edge {Conv3x3, skip_connect}
- Space 3: 3 operations per edge {Conv3x3, skip_connect, Zero}
- Space 4: 2 operations per edge {Conv3x3, Gaussian_noise}

Differentiable NAS DARTS leads to degenerated solutions

S4

Differentiable NAS Reason 1: sharpness of the solution

- A good continuous solution doesn't imply a good discrete solution
- Gap between continuous and discrete solutions can be estimated by sharpness
 - Assume α^* is the continuous solution and $\bar{\alpha}$ is the discrete solution

• Based on Taylor expansion: $L_{\text{Val}}(w^*, \bar{\alpha}) \approx L_{\text{Val}}(w^*, \alpha^*) + \frac{1}{2}(\bar{\alpha} + M) = \nabla_{\alpha}^2 L_{\text{Val}}(w^*, \alpha^*)$ is the Hessian

Standard DARTS lead to "Sharp solutions" (large Hessian)

$$(\bar{\alpha} - \alpha^*)^T H(\bar{\alpha} - \alpha^*)$$
 where

Differentiable NAS Reason 1: sharpness of the solution

- A good continuous solution doesn't imply a good discrete solution
- Gap between continuous and discrete solutions can be estimated by sharpness
 - Standard DARTS lead to "Sharp solutions" (large Hessian)

Differentiable NAS Reason 1: sharpness of the solution

DARTS training leads to sharp local minimums

Validation error of supernet **Test error of final architecture**

Dominant eigenvalue of Hessian

Differentiable NAS Reason 2: Skip connection domination

- Supernet accuracy ↑
- Weight for skip connection ↑
- Weight for convolution \downarrow

Differentiable NAS Reason 2: Skip connection domination

- Supernet accuracy ↑
- Weight for skip connection ↑
- Weight for convolution \downarrow

Formally, we proved that for the optimal supernet, as number of layers goes to infinity, $\alpha_{\rm skip}$ \uparrow 1 and $\alpha_{\rm conv}$ \downarrow 0

Improvements over DARTS

- Supernet Training
 - Usually aim to make superset more "discreterizable"
 - Balance exploration and exploitation
- Scalability
 - How to use more blocks in searching?
 - Reduce memory overhead to directly search on larger problems
- Architecture Selection
 - Does architecture weight α really indicate their performance

Supernet training: Distribution learning

- Rethink DARTS as a distribution learning problem
 - For each edge, $[\alpha_1, ..., \alpha_k]$ defines a distribution over operations
 - We eventually "sample" an architecture from this distribution
 - How to learn $[\alpha_1, ..., \alpha_k]$ based on gradient-based optimization?
- Benefits:
 - Performance will be preserved better after discretization
 - Reduced training time in some cases

Supernet training: Distribution learning **Gumbel softmax**

- Gumbel-max: this is equivalent to

Sampling from a distribution $i \sim \alpha_i / \sum_{i'} \alpha_{i'}$ (can't backprop from i to **a**) $i = \arg \max_{i'} \{G_{i'} + \log(\alpha_i)\}$

where each $G_{i'} \sim \text{Gumbel}(0,1)$

0

$$z_i = rac{\exp(G_i + \log G_i)}{\sum_{i'} \exp(G_{i'} + \log G_i)}$$

This enables back-propagation to $[\alpha_1, \ldots, \alpha_K]$ (reparameterization trick) Ο SNAS: use Gumbel softmax with annealed temperature in DARTS

Gumbel-softmax: using softmax with temperature annealed to be close to zero $\log(lpha_i))/\gamma$ $-\log(\alpha_{i'}))/\gamma$

Supernet training: Distribution learning DrNAS

• Assume architecture parameters $[\alpha_1$ Distribution:

 $[\alpha_1,\ldots,\alpha_K]\sim \mathrm{Dir}([\beta_1,\ldots,\beta_K])$

- Dirichlet distribution samples from the standard K-1 simplex
 - $\beta \ll 1$ leads to sparse samples with high variance
 - *β* ≫1 leads to dense samples with low variance (for sufficient exploration)

Assume architecture parameters $[\alpha_1, \ldots, \alpha_K]$ are sampled from Dirichlet

Supernet training: Distribution learning DrNAS

DrNAS objective: Point estimation \rightarrow distribution learning 0 $\min_{\beta} E_{q(\alpha|\beta)}[L_{val}(w^*(\alpha), \alpha)] + \lambda d(\beta, \beta), \quad s.t.$ $w^* = \arg \min L_{train}(w, \alpha), \quad q(\alpha|\beta) \sim Dir(\beta)$

Gradient computation: Ο

$$\frac{d\alpha_{i}}{d\beta_{j}} = -\frac{\frac{\partial F_{Beta}}{\partial\beta_{j}}(\alpha_{j}|\beta_{j},\beta_{tot}-\beta_{j})}{f_{Beta}(\alpha_{j}|\beta_{j},\beta_{tot}-\beta_{j})} \times \left(\frac{\delta_{ij}-\alpha_{i}}{1-\alpha_{j}}\right)$$

Architecture selection: magnitude of *B* Ο

Supernet training: Distribution learning DrNAS

- On NAS-Bench-201
 - Achieve oracle when searching on CIFAR-100 0 DrNAS (73.51) vs SNAS (69.34) vs DARTS (38.97)

Method	CIFAR-10		CIFAR-100		ImageNet-16-120	
Methou	validation	test	validation	test	validation	test
ResNet	90.83	93.97	70.42	70.86	44.53	43.63
Random (baseline)	90.93 ± 0.36	93.70 ± 0.36	70.60 ± 1.37	70.65 ± 1.38	42.92 ± 2.00	42.96 ± 2.15
RSPS	84.16 ± 1.69	87.66 ± 1.69	45.78 ± 6.33	46.60 ± 6.57	31.09 ± 5.65	30.78 ± 6.12
Reinforce	91.09 ± 0.37	93.85 ± 0.37	70.05 ± 1.67	70.17 ± 1.61	43.04 ± 2.18	43.16 ± 2.28
ENAS	39.77 ± 0.00	54.30 ± 0.00	10.23 ± 0.12	10.62 ± 0.27	16.43 ± 0.00	16.32 ± 0.00
DARTS (1st)	39.77 ± 0.00	54.30 ± 0.00	38.57 ± 0.00	38.97 ± 0.00	18.87 ± 0.00	18.41 ± 0.00
DARTS (2nd)	39.77 ± 0.00	54.30 ± 0.00	38.57 ± 0.00	38.97 ± 0.00	18.87 ± 0.00	18.41 ± 0.00
GDAS	90.01 ± 0.46	93.23 ± 0.23	24.05 ± 8.12	24.20 ± 8.08	40.66 ± 0.00	41.02 ± 0.00
SNAS	90.10 ± 1.04	92.77 ± 0.83	69.69 ± 2.39	69.34 ± 1.98	$\textbf{42.84} \pm \textbf{1.79}$	43.16 ± 2.64
DSNAS	89.66 ± 0.29	93.08 ± 0.13	30.87 ± 16.40	31.01 ± 16.38	40.61 ± 0.09	41.07 ± 0.09
PC-DARTS	89.96 ± 0.15	93.41 ± 0.30	67.12 ± 0.39	67.48 ± 0.89	40.83 ± 0.08	41.31 ± 0.22
DrNAS	91.55 ± 0.00	94.36 ± 0.00	73.49 ± 0.00	73.51 ± 0.00	46.37 ± 0.00	46.34 ± 0.00
optimal	91.61	94.37	73.49	73.51	46.77	47.31

Supernet training **Perturbation-based regularization**

A smoother landscape will make supernet robust to discreterization

Supernet training Perturbation-based regularization

- Make supernet robust to α perturbation
 - Since we need to perturb it to a discrete architecture in the final stage
- Mathematically, we hope the superset robust to random or adversarial (worst-case) perturbation of α

Supernet training Perturbation-based regularization

- Make supernet robust to α perturbation
 - Since we need to perturb it to a discrete architecture in the final stage
- Mathematically, we hope the superset robust to random or adversarial (worst-case) perturbation of α

Supernet training **SmoothDARTS**

- On NAS-Bench-1Shot1
 - Continues to discover better architectures Ο
 - Anneal Hessian to a low level Ο

Architecture Selection Architecture Selection in DARTS

(e) Search end

Architecture Selection Architecture Selection in DARTS

- Recall the skip-domination problem:
 - Ο
 - *a* values may not really represent the *"importance"* of each operation Ο

For the optimal supernet with infinite number of layers: $lpha_{
m skip} \uparrow 1$ and $lpha_{
m conv} \downarrow 0$ Skip connection stands out if we select the best operation based on *a* Does $\alpha_{skip} > \alpha_{conv}$ mean skip connection is better than convolution?

Architecture Selection Does α represent operation strength?

- Probably Not!
- S2: (Skip_connect, sep_conv_3x3)
 - Skip connections dominate according to *a*
 - But the accuracy of S2 supernet benefits from more convolutions

Magnitude-base selection

a s from more convolutions

Progressive tuning selection

Architecture Selection Does α represent operation strength?

- Same observations on large space: DARTS space
 - Magnitude of *a* deviates from accuracy of the supernet Ο
 - Ο

Figure: Magnitude of α vs Accuracy after choosing one operation

Some operations with small *a* are in fact more important for supernet

- Evaluate the importance of an operation o by:
 - Compute the drop of validation accuracy when o is removed (no need for further training)
- Use this to choose the best o for an edge
- Fine-tune the solution, and move to the next edge
- "Pertubation-based selection" (PT for short)

Dataset	Space	DARTS	DARTS+PT (Ours)
	S1	3.84	3.50
C10	S2	4.85	2.79
	S 3	3.34	2.49
	S4	7.20	2.64
	S1	29.46	24.48
C100	S2	26.05	23.16
C100	S 3	28.90	22.03
	S4	22.85	20.80
	S1	4.58	2.62
SVHN	S2	3.53	2.53
	S3	3.41	2.42
	S4	3.05	2.42

PT consistently improves over the original magnitude-based selection

• Performance improves with more searching epochs

Figure: Test accuracy vs search epoch on NAS-Bench-201 space

Architecture	Test Error (%)	Search Cost (GPU days)	Search Method
DARTS (1st) (Liu et al., 2019)	3.00 ± 0.14	0.4	differentiable
DARTS (2nd) (Liu et al., 2019)	2.76 ± 0.09	1.0	differentiable
SNAS (moderate) (Xie et al., 2019)	2.85 ± 0.02	1.5	differentiable
DrNAS (Chen et al., 2020)	2.54 ± 0.03	0.4	differentiable
NASP (Yao et al., 2019)	2.83 ± 0.09	0.1	differentiable
SDARTS-ADV (Chen & Hsieh, 2020)	2.61 ± 0.02	1.3	differentiable
ProxylessNAS (Cai et al., 2019) [†]	2.08	4.0	differentiable
PC-DARTS (Xu et al., 2020)	2.57 ± 0.07	0.1	differentiable
DrNAS (with progressive learning)	2.46 ± 0.03	0.6	differentiable
DARTS+PT (Wang et al., 2020)	2.61 ± 0.08	0.8	differentiable
SDARTS-ADV+PT	2.54 ± 0.01	0.8	differentiable

[†] Obtained on a different space with PyramidNet as the backbone.

Table 3: Darts+PT on S1-S4 (test error (%)).

Dataset	Space	DARTS	Darts+PT (Ours)	Darts+PT (fix α)*
	S1	3.84	3.50	2.86
C10	S2	4.85	2.79	2.59
CIU	S3	3.34	2.49	2.52
	S4	7.20	2.64	2.58
	S1	29.46	24.48	24.40
C100	S2	26.05	23.16	23.30
C100	S3	28.90	22.03	21.94
	S4	22.85	20.80	20.66
	S1	4.58	2.62	2.39
CVUN	S2	3.53	2.53	2.32
SVIIN	S 3	3.41	2.42	2.32
	S 4	3.05	2.42	2.39

