
Minhao Cheng

COMP5212: Machine Learning
Lecture 18

Adversarial Training

• Adversarial training [MMS18]:

•

• TRADES

•

min
θ

𝔼x[max
∥x′ −x∥∞≤ϵ

loss(θ, x′)]

min
θ

𝔼x[loss(θ, x)

clean acc

+ λ max
∥x′ −x∥∞≤ϵ

loss(θ, x′)

robust reg

]

Robustness verification
Why

• Many heuristic defense was broken under stronger attacks

• A verified model cannot be attacked by any attacks (including unforeseen
ones)

Robustness verification
Basic formulation

• Consider a binary classification case:

Robustness verification
Basic formulation

• Suppose , can we verify this property:f(x0) > 0

Robustness verification
Basic formulation

• Suppose , can we verify this property:f(x0) > 0

Robustness verification
Basic formulation

Robustness verification
Basic formulation

Robustness verification
How to solve?

Sharpness Aware Minimization (SAM)

• Testing can be viewed as a slightly perturbed training distribution

• Sharp minimum performance degrades significantly from training to testing⇒

Sharpness Aware Minimization (SAM)

• Optimize the worst-case loss within a small neighborhood

•

• is a small constant (hyper-parameter)

• Use 1-step gradient ascent to approximate inner max:

•

• Conduct the following update for each iteration:

•

min
w

max
∥δ∥2≤ϵ

L(w + δ)

ϵ

̂δ = arg max
∥δ∥2≤ϵ

L(w) + ∇L(w)Tδ = ϵ
∇L(w)

∥∇L(w)∥

w ← w − α∇L(w + ̂δ)

Label Propagation
Semi-supervised learning

• Given both labeled and unlabeled data

• Is unlabeled data useful?

Label Propagation
Semi-supervised learning

• Graph-based semi-supervised learning:Is unlabeled data useful?

• Encode the unlabeled feature information into graph

• Two classical approaches:

• Graph-based algorithm (label propagation)

• Graph-based regularization (manifold regularization)

Label Propagation
Inductive vs Transductive

Label Propagation
Main idea

• Smoothness Assumption:

• If two data points are close to each other, their predictions should be similar

• Measure the similarity between data points (similarity graph)

• Enforce the predictions to be similar based on similarity graph

Label Propagation
Similarity Graph

• Assume we have data points

• Define the similarity matrix

•

• The similarity function can be defined by many ways, for example,

•

• is a dense matrix High computational cost

• Usually, a k-nearest neighbors graph is used:

• only when is in 's k-nearest neighbors

n x1, …, xn

S ∈ ℝn×n

Sij = similarity(xi, xj)

similarity(xi, xj) = exp(−γ∥xi − xj∥2)

S n × n ⇒

Sij ≠ 0 j i

Label Propagation
Transductive setting using label propagation

• Input:

• labeled training samples with
labels (each is a dimensional
label vector for multiclass/multilabel
problems)

• unlabeled training samples

• Output: labels for all unlabeled
samples

• Main idea: propagate labels through the
similarity matrix

ℓ x1, …, xℓ
y1, …, yℓ yi k

u xℓ+1, …, xℓ+u

yℓ+1, …, yℓ+u

Label Propagation
Label Propagation

• Proposed in Zhu et al., ``Semi-supervised Learning using Gaussian Fields and Harmonic Functions''. In ICML 2003.

• : transition matrix such that

•

• : the label matrix. The first rows are labels . The rest rows are initialized by 0 (will not affect the results).

• The Algorithm:

• Repeat the following steps until convergence:

• Step 1: Propagate labels by the transition matrix:

• Step 2: Normalize each row of

• Step 3: Reset the first rows of to be

T ∈ ℝ(ℓ+u)×(ℓ+u)

Tij = P(j → i) =
Sij

∑ℓ+u
k=1 Skj

Y ∈ ℝ(ℓ+u)×k ℓ y1, …, yℓ u

Y ← TY

Y

ℓ Y y1, …, yℓ

Label Propagation
Label Propagation (convergence)

• The algorithm will converge to a simple solution!

• Step 1 and step 2 can be combined into

•

• where is the row-normalized matrix of

• We focus on row to (defined by)

•

Y ← T̄Y,

T̄ T

ℓ + 1 ℓ + u YU

(YL
YU) ← (T̄ℓℓ T̄ℓu

T̄uℓ T̄uu) (YL
YU)

Label Propagation
Graph Laplacian

• Graph Laplacian:

•

• is positive semi-definite (if is nonnegative)

• Main property: for any vector ,

•

• Measure the non-smoothness of according to the similarity matrix

L = D − S, where D is a diagonal matrix with Dii = ∑
j

Sij

L S

z

zTLz = ∑
i,j

Sij(zi − zj)2

z S

Label Propagation
Another form of label propagation

• Assume we only have one label (binary classification)

• Another equivalent form of label propagation:

•

• where is the estimation of the labels.

• Optimal solution:

•

•

•

•

•

arg min
̂y ∑

i,j

Sij(̂yi − ̂yj)2 = ̂yTL ̂y := f(̂y)

s.t. ̂y1:ℓ = y
̂y ∈ ℝℓ+u

∇ ̂yℓ+1:u
f(̂y) = 0

⇒ (Dℓℓ − Sℓℓ −Sℓu

−Suℓ Duu − Suu) (̂yℓ

̂yu) = (?
0)

⇒ (Duu − Suu) ̂yu − Suℓ ̂yℓ = 0

⇒ ̂yu = (Duu − Suu)−1Suℓ ̂yℓ

⇒ ̂yu = (I − D−1
uu Suu)−1D−1

uu Suℓ ̂yℓ

⇒ ̂yu = (I − T̄uu)−1T̄uℓ ̂yℓ

Label Propagation
Experimental Results (Zhu et al., 2003)

Graph Convolutional Neural Network
Node classification problem

• Given a graph of nodes, with adjacency matrix

• Each node is associated with a -dimensional feature
vector.

• : each row corresponds to the feature vector of a
node

• Observe labels for a subset of nodes: , only
observe a subset of rows, denoted by

• Goal: Predict labels for unlabeled nodes (transductive
setting) or

• test nodes (inductive setting) or test graphs (inductive
setting)

N A ∈ ℝN×N

D

X ∈ ℝN×D

Y ∈ ℝN×L

YS

Graph Convolutional Neural Network
Graph Convolution Layer

• GCN: multiple graph convolution layers

• : normalized version of :

•

• Graph convolution:

• Input: features for each node

• Output: features for each node after gathering neighborhood information

• Convolution: : Aggregate features from neighbors

• Convolution + fully-connected layer + nonlinear activation:

•

• is the weights for the linear layer

• : usually ReLU function

̂A A

Ã = A + I, D̃uv = ∑
v

Ãuv, P = D̃−1 ̂A

H(l) ∈ ℝn×D

H(l+1)

PH(l)

H(l+1) = σ(PH(l)W(l)),

W(l)

σ(⋅)

Graph Convolutional Neural Network
Graph convolutional network

Graph Convolutional Neural Network
Graph convolutional network

• Initial features

• For layer

•

• Use final layer feature for classification:

•

• Each row of corresponds to the output score for each label

• Cross-entropy loss for classification

H(0) := X

l = 0,…, L

Z(l+1) = PH(l)W(l), H(l+1) = σ(Z(l+1)),

H(L) ∈ ℝN×K

Loss =
1

|S | ∑
s∈S

loss(ys, Z(L)
s)

Z(L)
s

Graph Convolutional Neural Network
Graph convolutional network

• Model parameters:

• Can be used to

• Predict unlabeled nodes in the training set

• Predict testing nodes (not in the training set)

• Predict labels for a new graph

• Also, features extracted by GCN is usually very useful for other tasks

W(1), ⋯, W(L)

H(L)

Graph Convolutional Neural Network
GCN training

• Full Gradient descent in the original paper (Kipf & Welling, 2017):

• Need many iterations (epochs)

• Large memory requirement: for storing all the intermediate
embeddings

• Can we use SGD/Adam?

O(NDL)

Graph Convolutional Neural Network
Training GCN is non-trivial

• Loss on a node depends on all its neighbors

• Neighborhood explosion issue during training

• This dependency brings both computation and memory challenges for training

• Previous idea: subsample a smaller number of neighbors

• GraphSAGE (NeurIPS '17), VRGCN (ICML '18)

Graph Convolutional Neural Network
Graph-batching: more efficient training

• Sample a batch of nodes at each
time ()

• For each SGD update, conduct
forward and backward
propagation only within

• No neighborhood explosion
anymore

• May lead to biased gradient
estimator since some links are
discarded in gradient computation

B

B

Graph Convolutional Neural Network
Cluster-GCN

• Graph batching will be perfect if no
between-batch links

• Find partition of the graph to minimize
within-cluster links

• graph clustering

• Efficient tools such as METIS can cluster
million-scale graphs within few minutes.

⇒

Graph Convolutional Neural Network
Cluster-GCN (Cont'd)

• Cluster-GCN: run graph clustering,
then each time sample a batch

• Equivalent to removing all the edges in
off-diagonal blocks

• Multi-cluster trick:

• Cluster into cluster (with large)

• Each time form batch with clusters

• Each between-cluster edge has
chances to be sampled

M M

k

Graph Convolutional Neural Network
Results (Cluster-GCN)

• Enable training for deeper and wider GCN

• PPI: 5-layer with 2048 hidden units

• Reddit: 4-layer with 128 hidden units

• Used to achieve SoTA results

Graph Convolutional Neural Network
GraphSaint

• A dynamic graph-batching method

• Each time form the batch (cluster) by

• Random walk with restart (from a set of seed nodes)

• Can be viewed as an algorithm to find a community with a given seed

• Better gradient estimator, but worse time complexity (due to dynamically finding a community)

Graph Convolutional Neural Network
Graph Attention Networks

• Each edge may not contribute equally

• Using attention mechanism to automatically assign weights to each edge:

•

• where are the features for node and at previous layer, is the GNN weight, is the additional learnable
parameter for attention

αi,j =
exp(LeakyReLU(aT[Whi ∣ Whj]))

∑k∈Ni
exp(LeakyReLU(aT[Whi ∣ Whk]))

hi, hj i j W a

Graph Convolutional Neural Network
SAGN and GAMLP

• Some simple approaches may
also work for node prediction
problems

• SAGN/GAMLP: Directly
generate higher order graphs
and conduct prediction, using
attention to learn the weight of
features

Graph Convolutional Neural Network
Correct and Smooth

• A post-processing method:

• Propagate the residual the correct the prediction of the base model (e.g., MLP or GNN)

• Label propagation to obtain the final output

Graph Convolutional Neural Network
OGB Leaderboard: Node Classification

