COMP5212: Machine Learning

Lecture 18

Minhao Cheng

Adversarial Training

* Adversarial training [MMS18]:

, minE [max Joss(0,x')
v Hx/_xHooSG

 TRADES

min E, [loss(é’, x)+ A max loss(0, X')]

0 [x"=x|| <€

clean acc
robust reg

Robustness verification
Why

 Many heuristic defense was broken under stronger attacks

* A verified model cannot be attacked by any attacks (including unforeseen
ones)

Robustness verification

Basic formulation

 Consider a binary classification case:

L)

°
Input is a point

(e h
ol obde o
_ J

Neural Network

Output is a score

f(xo) >0 f(xo) <0

Positive
Example

Negative
Example

Robustness verification

Basic formulation

» Suppose f(x,) > 0, can we verify this property:

a m ® =
. ="
.
.

i !
I Safe Goal: Prove
i !
@)
Decision Boundary L xo f(z) >0
N ' For all x 1n the green box
Class +1 o = C (a perturbation around Xo)

Robustness verification

Basic formulation

» Suppose f(x,) > 0, can we verify this property:

C

Input is a set

f(x) > 0,Vx € C

/ g O @ R
b %}@

~

Outputis a

range/set of scores

0.2

< f(x) < 2.2

/

Neural Network

“cat” even in the
WOorst case

Robustness verification

Basic formulation

Assuming f(xz¢) > 0, we solve the optimization problem to find the worst case:

f* = min f(z)

rcC

C is usually a perturbation set “around” g, e.g., C := {z|||z — o[, < €}

f* <0 f* >0
|_| >
L
Label flipped, 0 Provably
not robust! robust!

Is it a hard problem?

Robustness verification

Basic formulation

Multi-class case:

Data perturbed
arbitrarily within
a set

Neural network or
any general
computations

output bounds

(guaranteed score ranges)

23< cat =45
»<>-o.8 < dog <1.2

-4.2 < panda < -0.1
we guarantee that “cat” stays top-1
under input perturbations

Robustness verification

How to solve?

This is the fundamental problem we want to solve (wong & Kolter 2018, Salman et al. 2019):

f* — min Z(L) — Last layer output f(x), at layer L

pre-activation
\ (1) — (@) z(=1) + pld) i €41,---,L} Linear constraints
/2(7;) — o'(z(i)) i €{1,---,L —1} Non-linear, non-convex constraints

, xeC Input perturbations

Z(l) 2(1) 2(2) 2(2) 2(3)

@—» w) ~ RelLU - W® - RelLU - W @

Sharpness Aware Minimization (SAM)

* Jesting can be viewed as a slightly perturbed training distribution

e Sharp minimum = performance degrades significantly from training to testing

Training Function

' Testing Function

Flat Minimum Sharp Minimum

Figure from (Keskar et al., 2017)

Sharpness Aware Minimization (SAM)

* Optimize the worst-case loss within a small neighborhood

min max L(w + o)
wo ||6l,<e

* ¢ is a small constant (hyper-parameter)

 Use 1-step gradient ascent to approximate inner max:

n - V L(w)
o =arg max L(w)+ VL(w)' 0 =€
l5ll,<e |V Lw)|

 Conduct the following update for each iteration:

. w<—w—aVL(w+(§)

Semi-supervised learning

Label Propagation

 Given both labeled and unlabeled data

e |s unlabeled data useful?

a | N\
I
o ; @
I
i
I
_ l /
@
4 e %o, N
P e ®
® /T~ ‘. -
o ! E -7
[O \ @ -
~ I o0 \
==t o0 --" 023
e °o®
_ °0® J

Label Propagation

Semi-supervised learning

 (Graph-based semi-supervised learning:ls unlabeled data useful?
 Encode the unlabeled feature information into graph

 [wo classical approaches:
 Graph-based algorithm (label propagation)

* (Graph-based regularization (manifold regularization)

Label Propagation

Inductive vs Transductive

Inductive (Generalize Transductive (Doesn't
to unseen data) generalize to unseen data)
Supervised SVM, ... X
(labeled data)
Semi-supervised Manifold Label propagation
(labeled + unlabeled) Regularization

Label Propagation

Main idea

« Smoothness Assumption:
* |f two data points are close to each other, their predictions should be similar
 Measure the similarity between data points (similarity graph)

* Enforce the predictions to be similar based on similarity graph

Label Propagation
Similarity Graph

« Assume we have n data points X, ..., X,

« Define the similarity matrix S € R"*"
« §;; = similarity(x;, x;)
* The similarity function can be defined by many ways, for example,
T 2
» similarity(x;, x;) = exp(—7/||x; — x;{[*)
* Sis adensen X n matrix = High computational cost
* Usually, a k-nearest neighbors graph is used:

» §;; # 0 only when j is in i's k-nearest neighbors

Label Propagation

Transductive setting using label propagation

* |nput:

» ¢ labeled training samples x;, ..., X, with
labels yy, ..., y, (each y. is a k dimensional
label vector for multiclass/multilabel
problems)

1 unlabeled training samples x,_ ¢, ..., X/,

 Output: labels y,_ {, ..., ¥y, for all unlabeled
samples

 Main idea: propagate labels through the
similarity matrix

Label Propagation

Label Propagation

* Proposed in Zhu et al., "Semi-supervised Learning using Gaussian Fields and Harmonic Functions''. In ICML 20083.

o T € REHWXE+W). transition matrix such that

: : Sij
.Zj:P(J_)l): f+uS
k=1 "k
. Y € RUHDXK the Jabel matrix. The first £ rows are labels Vis ---» Yp. The rest u rows are initialized by O (will not affect the results).

* The Algorithm:

* Repeat the following steps until convergence:
« Step 1: Propagate labels by the transition matrix: ¥ < TY
« Step 2: Normalize each row of Y

» Step 3: Reset the first £ rows of Ytobe y;, ..., y,

Label Propagation

Label Propagation (convergence)

* The algorithm will converge to a simple solution!

o Step 1 and step 2 can be combined into
e Y« TY,
« where T is the row-normalized matrix of 7

» We focus onrow £ + 1 to £ + u (defined by Y))

(YL) (T T, (Y)
) YU Tuz/” Tuu YU

Label Propagation
Graph Laplacian

 Graph Laplacian:

L=D-S5, whereD is adiagonal matrix with D, = Z Ay
J

« L is positive semi-definite (if S is nonnegative)

 Main property: for any vector Z,

. ZTLZ — Z Slj(zi — Zj)2
]

« Measure the non-smoothness of z according to the similarity matrix S

Label Propagation

Another form of label propagation

Assume we only have one label (binary classification)

Another equivalent form of label propagation:

argmin) S;(5; —)% = $'LY := f(§)
y i
S.t. yl:f =Y

Rf+u

« wherey € is the estimation of the labels.

Optimal solution: V, f(y) =0

Ve+1:u

N Dyp = Spp =S¢y Ve I
_Suf Duu o Suu yu 0

* :}’(Duu_Suu)j\/u_ ufj\;Lﬂ:O

¢ = j}u — (Duu o Suu)_lsufj\]f
¢ = j}u — (I _ Du_ulsuu)_lDu_ulsufj}f

¢ = j}u — (I_ Tuu)_lTufj\;f

Label Propagation

Experimental Results (Zhu et al., 2003)

Figure 3. Harmonic energy minimization on digits “1”’ vs. ‘2” (left) and on all 10 digits (middle) and combining voted-perceptron with

0.65f

06}

0.55T1

05

—— CMN
x 1NN
o RBF

-& - thresh ||

20

4}) 6‘0
labeled set size

a0

100

1
0.9st
ogt
0.83r1 -
08} . a R g ew Q¥
0.75 =~ o 6 '<¢
Q¥ 9
0.7 ™ 0'0 o0 :
/0 /
0.85 - ©-¢ 14
/ —+— CMN
| a @ x 1NN
0.55F ' »d o RBF 1
& -@ - thresh
I IR > S S 11
0 20 40 80 B0 100 120 140 160 180 200

labeled set size

harmonic energy minimization on odd vs. even digits (right)

accuracy

0.95¢

09rf

0.85F

o
m

0.75¢

o
-
T

0.85f

06

0.55F

05

—— CMN
-& - thresh |
- - VP

x 1NN

20

40 60
labeled set size

80

100

accuracy

0.95f -
e -
0.8 // % x x __x
¢ SNSTE Sl

0.85} ; X7

I Wi =
o8t X, <

I 4
0.75r [} /

¢ X7
0.7 ¢ 7

| !
2= | /
.65 ,'/ —— CMN
osh ¢ -& - thresh |

! -
- VP
I X 1NN
0.5 h > . h
!Ile 20 40 €0 80

labeled set size

100

accuracy

accuracy

0.85
osar
0.85}
08r
J5F
0.7
oest ,,,0' + CMN+VP |
- 9 ¢ thresh + VP
0e L - = VP |
0.55 Q” —— CMN
o -@ - thresh
05 _ : -
0 10 20 30 40 50 60 70 B0 80

0.85¢

0.9f

C.85f

o
2]

0.75r

o
-J

C.65¢

0.5f

0.55

0.5
0

labeled set size

100

labeled set size

Figure 4. Harmonic energy minimization on PC vs. MAC (left), baseball vs. hockey (middle), and MS-Windows vs. MAC (right)

/
7
7
Q -X
/ _ -
/ e X X
/ LT X
[ra
| e
7
I
P X
/
]
‘/
4 —— CMN
! - - thresh |
- = VP
x- 1NN
20 40 60 a0 100

Graph Convolutional Neural Network

Node classification problem

+ Given a graph of N nodes, with adjacency matrix A € RV

. Eggtlgpode is associated with a D-dimensional feature citation network

e X € RMD- aach row corresponds to the feature vector of a < / \E\ \
node E\ <H/\

- Observe labels for a subset of nodes: Y € RV*E, only / E/ \
observe a subset of rows, denoted by ¥ ”H/\

* Goal: Predict labels for unlabeled nodes (transductive Target node
setting) or

. test nodes (inductive setting) or test graphs (inductive

setting)

Graph Convolutional Neural Network

Graph Convolution Layer

e GCN: multiple graph convolution layers

Va\

e A: normalized version of A:

~ Va\

A=A+1, D,=)Y A, P=DA
Vv

* Graph convolution:
- Input: features for each node H € R™P?

+1)

* Qutput: features for each node HY"D after gathering neighborhood information

. Convolution: PH": Aggregate features from neighbors

e Convolution + fully-connected layer + nonlinear activation:
« HUFD — G(PH(Z)W(Z)),
. W is the weights for the linear layer

e o(-): usually ReLU function

Graph Convolutional Neural Network

Graph convolutional network

new representation: z

0 02 - 08 09
08 03 0.6 01 0.2]a()
-—) 02 0 | e
0 05 0 01 0
0.3

0.2 - 0 0
Look at each node’s

neighbor nodes in graph learnable weighted matrix: W

Graph Convolutional Neural Network

Graph convolutional network

e Initial features HY = X
e Forlayer[=0,...,L
. 7D = pgOWO, gD = 5z0+Dy

 Use final layer feature HD e RY*K tor classification:

|
Loss = g Zloss(ys, ZH)

sES

» Each row of ZS(L) corresponds to the output score for each label

* Cross-entropy loss for classification

Graph Convolutional Neural Network

Graph convolutional network

. Model parameters: WD, ... WD)
 Can be usedto
* Predict unlabeled nodes in the training set
* Predict testing nodes (not in the training set)

* Predict labels for a new graph

» Also, features extracted by GCN H (L) is usually very useful for other tasks

Graph Convolutional Neural Network
GCN training

* Full Gradient descent in the original paper (Kipf & Welling, 2017):

 Need many iterations (epochs)

» Large memory requirement: O(NDL) for storing all the intermediate
embeddings

e Can we use SGD/Adam?

Graph Convolutional Neural Network

Training GCN is non-trivial

* Loss on a node depends on all its neighbors

* Neighborhood explosion issue during training

* This dependency brings both computation and memory challenges for training
* Previous idea: subsample a smaller number of neighbors

 GraphSAGE (NeurlPS '17), VRGCN (ICML '18)

HE [PTY

Graph Convolutional Neural Network

Graph-batching: more efficient training

 Sample a batch of nodes at each
time (B)

 For each SGD update, conduct
forward and backward

propagation only within B

* No neighborhood explosion
anymore

 May lead to biased gradient
estimator since some links are
discarded in gradient computation

s G20 [F> H]
s G20 [F2 A
s (G2 [F> H]
s [G [P

Graph Convolutional Neural Network
Cluster-GCN

 Graph batching will be perfect if no
between-batch links

* Find partition of the graph to minimize
within-cluster links

« = graph clustering

o Efficient tools such as METIS can cluster
million-scale graphs within few minutes.

Graph Convolutional Neural Network
Cluster-GCN (Cont'd)

e Cluster-GCN: run graph clustering,
then each time sample a batch

Batch C Batch 3 Batch 2 Batch 1

LR

* Equivalent to removing all the edges In
off-diagonal blocks

A

e Multi-cluster trick: ” l
Multiple Cluster GCN enables to build
o Cluster into M cluster (with large M) E l deeper and wider GCNs.
e Each time form batch with k clusters T epoch

 Each between-cluster edge has
chances to be sampled

Graph Convolutional Neural Network
Results (Cluster-GCN)

* Enable training for deeper and wider GCN
* PPI: 5-layer with 2048 hidden units
 Reddit: 4-layer with 128 hidden units

e Used to achieve SoTA results

Table 10: State-of-the-art performance of testing accuracy
reported in recent papers.

PPI Reddit
Table 8: Comparisons of running time, memory and testing accuracy (F1 score) for Amazon2M. FastGCN [1] N/A 93.7
Time Memory Test F1 score Gr aphSAGE [5] 61.2 95.4
VRGCN | Cluster-GCN VRGCN | Cluster-GCN | VRGCN | Cluster-GCN VR-GCN [2] 97.8 96.3
Amazon2M (2-layer) 337s 1223s | 7476 MB 2228 MB 89.03 89.00
Amazon2M (3-layer) 1961s 1523s | 11218 MB 2235 MB 90.21 90.21 GaAN [16] 98.71 96.36
Amazon2M (4-layer) N/A 22895 OOM 2241 MB N/A 90.41 GAT [14] 97.3 N/A
GeniePath [10] | 98.5 N/A
Cluster-GCN 99.36 | 96.60

Graph Convolutional Neural Network
GraphSaint

* A dynamic graph-batching method
* Each time form the batch (cluster) by
 Random walk with restart (from a set of seed nodes)
 Can be viewed as an algorithm to find a community with a given seed

* Better gradient estimator, but worse time complexity (due to dynamically finding a community)

PPI (large version) Reddit
2 X 512 5 X 2048 2 X 128 4 x 128

ClusterGCN 0.903+0.002 0.99440.000 0.9544+0.001 0.966+0.001
GraphSAINT 0.941+0.003 0.995+£0.000 0.966+0.001 0.970+0.001

Graph Convolutional Neural Network
Graph Attention Networks

 Each edge may not contribute equally
* Using attention mechanism to automatically assign weights to each edge:
exp(LeakyReLU(a'[Wh; | Wh]))
.« i Y ey XP(LeakyReLU(aT[Wh; | Wh])

« where /1, hj are the features for node 1 and J at previous layer, W is the GNN weight, a is the additional learnable
parameter for attention

Graph Convolutional Neural Network
SAGN and GAMLP

e Some simple approaches may
also work for node prediction >
problems

Linear —>@—>K —> Linear —>@—> —>K —>»> Linear —>

>
Y

Figure 1: Architecture of common GNNSs.

« SAGN/GAMLP: Directly

generate higher order graphs T Preprocessing T Classifies 777
and conduct prediction, using e s
attention to learn the weight of EI— |
features —5~—>K A ... AR T %*?*
MLP —> I
> Linear

Figure 2: Architecture of SAGN. The multi-hop encoders and post encoder are depicted in form of
MLP. The bottom "linear" refers to the residual linear layer. The symbol &) represents the operation
of summing integrated representation and residual term.

Graph Convolutional Neural Network

Correct and Smooth

* A post-processing method:

* Propagate the residual the correct the prediction of the base model (e.g., MLP or GNN)

* Label propagation to obtain the final output

Dataset Correct and Smooth
D
oy MLP ——(F)—
.0.:.‘ T
Scale 7
Input Features Base Model Prediction t Smooth w/ Labels
(- ‘
-) :\.. ¥
—(=—)— ’, _

Smoothed'R.esiduaI

Train Labels Residual Correlation \ Prediction Correlation /

Figure 1: Overview of our GNN-free model, Correct and Smooth, with a toy example. The left
cluster belongs to orange and the right cluster belongs to blue. We use MLPs for base predictions,
ignoring the graph structure, which we assume gives the same prediction on all nodes in this ex-

ample. After, base predictions are corrected by propagating errors from the training data. Finally,
corrected predictions are smoothed with label propagation.

Graph Convolutional Neural Network

OGB Leaderboard: Node Classification

Scale

Medium

Medium

Small

Large

Medium

Name

ogbn-products

ogbn-proteins

ogbn-arxiv

ogbn-papers100M

ogbn-mag

Rank

1

Package #Nodes
>=1.1.1 2,449,029
>=1.1.1 132,534
>=7.1.1 169,343
>=1.2.0 111,059,956
>=1.2.1 1,939,743
Ext.
Method data
GIANT-XRT+SAGN+MCR+C&S Yes
GIANT-XRT+SAGN+MCR Yes
GIANT-XRT+SAGN+SLE+C&S Yes
(use raw text)
GIANT-XRT+SAGN+SLE (use Yes
raw text)
GIANT-XRT+GAMLP+MCR Yes
GAMLP+RLU+SCR+C&S No
GAMLP+RLU+SCR No
SAGN+SLE (4 stages)+C&S No
SAGN+SLE (4 stages) No

#Edges*

61,859,140

39,561,252

1,166,243

1,615,685,872

21,111,007
Test Validation
Accuracy Accuracy
0.8673 + 0.9387 +
0.0008 0.0002
0.8651 + 0.9389 +
0.0009 0.0002
0.8643 + 0.9352 +
0.0020 0.0005
0.8622 + 0.9363 +
0.0022 0.0005
0.8591 + 0.9402 +
0.0008 0.0004
0.8520 + 0.9304 +
0.0008 0.0005
0.8505 + 0.9292 +
0.0009 0.0005
0.8485 + 0.9302 +
0.0010 0.0003
0.8468 + 0.9309 +
0.0012 0.0007

#Tasks

Split Type

1 Sales rank

112 Species
T Time
1 Time
1 Time
Contact References

Yufei He (CogDL Team)

Yufei He (CogDL Team)

Eli Chien (UIUC)

Eli Chien (UIUC)

Yufei He (CogDL Team)

Yufei He (CogDL Team)

Yufei He (CogDL Team)

Chuxiong Sun (CTRI)

Chuxiong Sun (CTRI)

Paper,
Code

Paper,
Code

Paper,
Code

Paper,
Code

Paper,
Code

Paper,
Code

Paper,
Code

Paper,
Code

Paper,
Code

Task Type

Multi-class classification

Binary classification

Multi-class classification

Multi-class classification

Multi-class classification

#Params

1,154,654

1,154,654

1,548,382

1,548,382

2,144,151

3R335I88]

3,335,831

2,179,678

2,179,678

Hardware

GeForce RTX™
3090 24GB (GPU)

GeForce RTX™
3090 24GB (GPU)

Tesla T4 (16GB
GPU)

Tesla T4 (16GB
GPU)

GeForce RTX™
3090 24GB (GPU)

GeForce RTX™
3090 24GB (GPU)

GeForce RTX™
3090 24GB (GPU)

Tesla V100 (16GB
GPU)

Tesla V100 (16GB
GPU)

Date

Dec 8,
2021

Dec 8,
2021

Nov 8,
2021

Nov 8,
2021

Dec 8,
2021

Dec 8,
2021

Dec 8,
2021

Sep 21,
2021

Sep 21,
2021

Metric

Accuracy

ROC-AUC

Accuracy

Accuracy

Accuracy

