COMP5212: Machine Learning

Lecture 18: Adversarial Machine Learning

Sen LI Zeyu QIN

Machine learning

Beyond Accuracy

TESLA AUTOPILOT —

Researchers trick Tesla Autopilot into
steering into oncoming traffic

Stickers that are invisible to drivers and fool autopilot.

DAN GOODIN - 4/1/2019, 8:50 PM

__________ /Misguided direction _ __ __ __ __ __ __

esmm\ormal driving direct ionq

The ll}r;-hinn]lourpnst
WorldViews
Syrian hackers claim AP hack that tipped stock market by
S136 billion. Is it terrorism?

AP The Associated Press ©

Breaking: Two Explosions in the White
House and Barack Obama is injured

@ Feply T3 Retwest W Favorite eee More

T e DD EODDAR

By Max Fisher

SPEED
LIMIT

Microsoft silences its new A.l bot Tay, after
Twitter users teach it racism [Updated]

Sarah Perez @sarahintampa / 10:16 am EDT « March 24, 2016] comment

Microsoft’s © newly launched A.l.-powered bot called Tay, which was responding to tweets and chats on
GroupMe and Kik, has already been shut down due to concerns with its inability to recognize when it was
making offensive or racist statements. Of course, the bot wasn't coded to be racist, but it “learns” from
those it interacts with. And naturally, given that this is the Internet, one of the first things online users
taught Tay was how to be racist, and how to spout back ill-informed or inflammatory political opinions.
[Update: Microsoft now says it's “making adjustments” to Tay in light of this problem.]

Trustworthy ML

What and why

* Not alchemy
* Explainability
e Security
* Privacy
* Fairness

* |Integrity

* Establish model understanding

Responsibility

@

AT BREREMNTFER B
(2021)

EXEFAEGRAF aREREEFRB P
ERIVERAEZL2ZEHR P OATLERA
2021 £ 10 A

Robustness

~

Lung Cancer

_ Diagnosis)

NDEPENDENT
HIGH-LEVEL EXPERT GROUP ON
ARTIFICIAL INTELLIGENCE
ST UP Y T ELROPEAN COMMISRON

ETHICS GUIDELINES
FOR TRUSTWORTHY Al

Fairness

THE NATIONAL SECURITY COMMISSION
ON ARTIFICIAL INTELLIGENCE

2.
Technical
robustness
and safety

6. 3.
Societal and Privacy and
environmental data
well-being i governance

5.
Diversity, non- 4,
discrimination Transparency
and faimess \

Trustworthy ML

Integrity

* [raining-time integrity and Testing-time integrity

Attack Category

Attack Target

Attack Mechanism

Training Process

Inference Process

Backdoor Attack

Adversarial Attack

Data Poisoning

Misclassify attacked samples;

Behave normal on benign samples.

Misclassify attacked samples;

Behave normal on benign samples.

Reduce model generalization.

Excessive learning ability
of models.

Behavior differences

between models and humans.

Overfitting to bad
local optima.

Under control.

Out of control.

Can only modify
the training set.

Out of control.

Attackers need to generate
adversarial perturbation through
an iterative optimization process.

Out of control.

Testing time Iintegrity

Adversarial examples

 An adversarial example can easily
fool a deep network

 Robustness is critical in real systems

+ 0.001x

stop sign speed limit 40

Adversarial examples

Definition

. Given a K-way multi-class classification model f: R — {1,..., K} and an
original example X, the goal is to generate an adversarial example x such that

. Xisclosetox, and argmaxf(x) # argmaxf,(x,)
i i

» i.e., x has a different prediction with x, by model f.

Adversarial example

Attack as an optimization problem

» Craft adversarial example by solving

., argmin |[x — x,||” +c - h(x)
X

¢ |lx — xOHZ: the distortion

Adversarial example

Attack as an optimization problem

» Craft adversarial example by solving

., argmin |[x — x,||” +c - h(x)
X

¢ |lx — xOHZ: the distortion

» /1(x): loss to measure the successfulness of attack

Adversarial example

Attack as an optimization problem

» Craft adversarial example by solving

., argmin |[x — x,||” +¢ - h(x)
X

o |lx — xOH2: the distortion

* Ji(x): loss to measure the successfulness of
attack

» Untargeted attack: success if arg max;]j-(x) £ Vo

. h(x) = max{ fyo(x) — max f;(x),0}

J 7&)’()

| argmax; f;(x)

logit layer

How to find adversarial examples
White-box vs black-box setting

» Attackers knows the model structure and weights (white-box)
 Can query the model to get probability output (soft-label)
 Can query the model to get label output (hard-label)

* No information about the model (universal)

Adversarial example
White-box setting

. argmin ||x — x,||* + ¢ - A(x)
X

 Model (network structure and weights) is revealed to attacker
« = gradient of 4(x) can be computed

« — attacker minimizes the objective by gradient descent

Adversarial example

White-box adversarial attack

o C&W attack [CW17]:

. h(x) = max{ [Z,, (x) — max Z(x)], — K}
JFY

» Where Z(x) is the pre-softmax layer output

Adversarial example

White-box adversarial attack

« If there is [|x — x|, constraint, we could turn to solve by

e FGSM attack [GSS15]:
o X prij+CS>(xO + O(Sign(VXOK(Ha X, Y)))

. PGD attack [KGB17, MMS18]

+1

o« X'« proj.. o(x"+ asign(V.,.£(0,x,y)))

Adversarial example
Black-box Soft-label Setting

* Black-box Soft Label setting (practical setting):
» Structure and weights of deep network are not revealed to attackers
» Attacker can query the ML model and get the

—> f(x)
—> f(x,)

—> f(x,)

Black box (can’t see f)

 Cannot compute gradient V.

Soft-label Black-box Adversarial attack

o Soft-label Black-box: query to get the probability output
» Key problem: how to estimate gradient?
 Gradient-based [CZS17,IEAL18]:
v - h(x + fu) — h(x) |
° X ﬁ
* (Genetic algorithm [ASC19]

Uu

Soft-label Black-box Adversarial attack

e Query based
e Transfer based:

e Train a substitute model and conduct the white-box attack

Hard-label Black-box Attack

e Model is not known to the attacker

o Attacker can make query and observe hard-label multi-class output

0
1
X —> f —> f(x)= .
K

e (K: number of classes)

Why Hard-label

* More practical setting for attacker
* Discrete and complex models (e.g quantization, projection, detection)

 Framework friendly

The difficulty

 Hard-label attack on a simple 3-layer neural network yields a discontinuous
optimization problem

(a) neural network f(x) (D) h(Z(x))

Reformulation

* We reformulate the attack optimization
problem (untargeted attack):

*
X (optimal adversarial example)

0* = argmin g(0)
0

. where g(6)) = argmin,_, <f(x0 + A) 7 yo)

 @: the direction of adversarial example

Examples

Two things unaddressed

0* = argmin g(60)
%

. where g(6) = argmin,_,, (f(xo + ﬂﬁ) 7)’0)

» How to estimate g(0)

« How to find 6%

Computing Function Value

« Can't compute the gradient of g

» However, we can compute the function value of g using queries of f(-)

* |Implemented using fine-grained search + binary search

Estimation of ¢(0)

* Fine-grained search

e Binary search / \

» Prediction unchanged enlarge g ‘ ||%n

K- ---0-----0-><-o

A=1 A= A=3
Original image

* Prediction changed shrink g

How to optimize g(6)

» The gradient of g is available by

V() ~ g(9+ﬂ2) —80)

« One u is too noisy, better to use multiple u (~ 20)

Uu

» Zeroth order optimization for minimizing 2(6)

Algorithm

Algorithm 1 OPT attack (ICLR"19)

1. Input: Hard-label model f, original image xgq, initial 6.

2: fort=20,1,2,...,7Tdo

3; Randomly choose u from a zero-mean Gaussian distribution
4: Evaluate g(6;) and g(0: + Su)
5
6
7/

Compute gzg(0t+5u)—g(0t) U

p
Update 6111 =60; —n8

return xo + g(07)0r

Algorithm
Algorithm 2 OPT attack (ICLR "19)

- Input: Hard-label model f, original image xq, initial 6.

- fort=0,1,2,...,7do

Randomly choose u; from a zero-mean Gaussian distribution
-valuate g(6¢) and g(6; + pu)

Compute g = 80 Bl’ﬁ’) —80) ,

Update 6iy1 = 60: —ni§
- return xo + g(07)07

S & W s WY =

» 2(0,)) and g(0, + fu) in the gradient estimation takes most of queries, how to further reduce it?

Sign is enough!
 Binary search to estimate g(0) in the gradient estimation takes most of

queries.

 Gradient sign is powerful | (FGSM)

 How to get the gradient sign efficiently ?

Single query oracle

(0 + €u)
|10 + eul|

+1, f(x() + 2(0)

—1, Otherwise.

_ sign(g(0 + eu) — g(0)) = {) = Yo

Class Y,

Original Image X,

Sign-OPT attack

Algorithm 3 Sign-OPT attack (ICLR '20)

Input: Hard-label model f, original image Xo, initial 8
fort=1,2,...,7T do

Randomly sample uq, ..., ug from a Gaussian or Uniform distribution
-valuate g(6;)

Update 6,1 < 0; — ng

“valuate g(6;) using the same search algorithm

Transferability of Adversarial Examples

a.k.a Adversarial Transferability

Zeyu Qin

HKUST, Al Safety Group

Adversarial Examples

Input space Model Output space
Y
Adversarial
—
Small difference in input space Large difference in output space

> Imperceptible: ||@qq0 — x| < €
» Misclassified: y # Prediction(xqqy)

Severe Threats from Black-box Attacks

» In real scenarios, the users always get access to the DNN applications by querying API.

» The adversary does not know any knowledge about the target model M, such as
parameters, the architecture, and possibly the dataset.

Query (Attack) (Q
Attack
methods
Feedback: label or score

Black-box Attacks

» Query-based attacks: only utilizing the feedback from M

— Only know the model feedback for each query (labels or confidence scores) from Mr.

— By iteratively querying M, the attackers generate x4, based on exact feedback of each
query.

— It is more practical and only needs dozens of queries to generate the successful attacks.

Query
Feedback J

Feedback: label or score

G Attacks Query (Attack) (Q

Black-box Attacks

» Transfer attacks: using x.4, from Mg to attack M

— The attackers can utilize same dataset to train the surrogate model Mg
— Generating @4, (white-box attacks) on Mg, then attacking M.

— Don't need to iteratively query but it is not practical and performs poor attack performance.

Attacks Query(Attack) (Q

How to generate adversarial examples (white-box attacks)

» generating attacks
argmin f(x?) := L(M(xz*?), y,),

gadv
st |z — x|, <€, 2 €[0,1]

where p norm could be £, ¢2 or ¢1 norm. L could be CE loss, and M(-) is Softmax output
or logits (returned feedback under black-box setting).

Multi-step Projection Gradient Method (PGD) [1]:

2" Projg(gaavy (€ — o - sign (VL (M (%), y,)))
B ={z* 0,1 N[z —af| , <}

[1]. Alexey Kurakin, lan Goodfellow, Samy Bengio, " Adversarial examples in the physical world”, Arxiv 2017

Transfer attacks

» Taking the targeted attack as an example, the general formulation of many existing transfer
attack methods can be written as follows:

min E(M‘g(ac“d“; 0),y:). (1)

zadveB, ()

where L is the adversarial loss function computed on surrogate model M?® vy, is target
label.

» Then, the attackers use %% from M to attack the target model, M7 .

Transfer attacks overfits to Mg

> The existing transfer attack methods exhibit poor transferability on Mt (not successfully
attacking M)

> 1.4, severely depends on (overfits to) the decision boundaries of Mg and there are huge
differences of decision boundaries between Mg and M. [1,2]

© transfer attacks from surrogate model

Boundary of surrogate model

Boundary of targeted model

[1] Tramer et al., Ensemble Adversarial Training: Attacks and Defenses, ICLR 2018.

[2] Demontis et al., Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks, ACM CCS
2019.

How can we improve transfer attack performance?

» Remember our goal: to improve x,4, on unseen models (but trained on the same
training dataset, like ImageNet). (‘Sample’ Generalization)

» It seems like the other important problem: to improve M on unseen data. (Model

Generalization)

» Sample Generalization < Model Generalization ?

Inspiration from Improving Model Generalization

» You could borrow some advanced optimization methods to generate x4, like
momentum [1,3], and variance reduction [4].

» Strong Augmentations: like crop and resizing [2] and Mixup [5].

» Unseen models: we could use much more diverse models during attack generation: model
ensembling [6]

— More diverse architectures

— Bayesian model sampling (adding noise on parameters of M)

[1] Dong et al., Boosting Adversarial Attacks with Momentum, CVPR 2018.

[2] Xie et al., Improving transferability of adversarial examples with input diversity, CVPR 2019.

[3] Lin et al., Nesterov Accelerated Gradient and Scale Invariance for Adversarial Attacks, ICLR 2020.

[4] Wang et al., Enhancing the Transferability of Adversarial Attacks through Variance Tuning, CVPR 2021.
[5] Xiaosen Wang et al., Admix: Enhancing the Transferability of Adversarial Attacks, ICCV 2021.

[6] Tramer et al., Ensemble Adversarial Training: Attacks and Defenses, ICLR 2018.

Poor targeted attack performance

Figure from the recent NeurlPS 2021 paper:

Table 1: Targeted transfer success rates (%) in the single-model transfer setting. We consider
three attacks with different loss functions: cross-entropy (CE), Poincaré distance with Triplet loss
(Po+Trip) [21], and the logit loss. Results with 20/100/300 iterations are reported.

Attack Source Model: Res50 Source Model: Densel21
i —sDensel21 —VGG16 —Inc-v3 —Res50 —VGG16 —Inc-v3

CE 26.9/39.4/42.6 17.3/27.3/30.4 2.4/3.8/4.1 | 13.1/17.3/19.4 7.7/10.8/10.9 1.9/3.3/3.5
Po+Trip | 26.7/53.0/54.7 18.8/34.2/34.4 2.9/6.0/5.9 | 10.1/14.7/14.7 6.7/8.3/7.7 2.1/3.0/2.7
Logit 29.3/63.3/72.5 24.0/55.7/62.7 3.0/7.2/9.4 | 17.2/39.7/43.7 13.5/35.3/38.7 2.7/6.9/7.6

Source Model: VGG16 Source Model: Inc-v3
—Res50 —Densel21 —Inc-v3 —Res50 —Densel21 —VGG16

CE 0.7/0.4/0.6 0.5/0.3/0.1 0/0.1/0 0.6/2.1/2.4 0.8/2.5/2.9 0.7/1.6/2.0
Po+Trip 0.6/0.8/0.5 0.6/0.6/0.7 0.2/0.1/0.1 0.6/2.0/2.5 0.8/3.1/3.3 0.5/2.1/2.0
Logit 3.3/8.7/11.2 3.6/11.7/13.2 0.2/0.7/0.9 0.8/1.6/2.9 1.2/2.8/5.3 0.7/2.2/3.7

Attack

Further Improving Transferability

» Qin et al., propose a new perspective to interpret the adversarial transferability, the flatness
of (adversarial) loss landscape of %% on M?.

» The 2% located at the flat local minimum is less sensitive to the changes of decision
boundary (the difference of M and MT). Therefore, it could have better adversarial
transferability.

A
L Lsign(Vye prarL(x* +nR47)) L 0) L(MS(x; 6), ;)
—_— (x5 n 4 r
(ye) LQM® (07,3
sign(VyeL(xt +nRAPY))
Flat minimum
_ <—> Sharp minimum
xt|4+ nrAP xP9e xt v xP9d i

(a) (b)

[1] Qin et al., [1] Boosting the Transferability of Adversarial Attacks with Reverse Adversarial Perturbation, NeurlPS 2022.

Finding x4, located at a local flat region

» Qin et al., encourage that not only x4, itself has low loss value, but also the points
in the vicinity of x,4, have similarly low loss values.

» Qin et al., proposes to minimize the maximal loss value within a local neighborhood

region around T, .

» The maximal loss is implemented by perturbing .4, (adding perturbation n) to maximize
the adversarial loss, named Reverse Adversarial Perturbation (RAP). So, we aim to solve
this problem,

min L (MS (:Badv + Nado; 0)) yt)
Tado €EB ()

Where,
Nady = argmaxL (Mg (Taan +m;0) ,y1)

7l o <en

> First we visualize the loss landscape around %% on M* by plotting the loss variations.
We can observe that RAP could help find 2% located at the flat region.

Flatness

A Closer Look at RAP

—— Baseline —— Baseline+RAP
| MI DI MTDI
140 50 60
120
40 50
100
40
80 30
30
60 2
40 2
10
20 10
0 0 0
-20 -10 0 10 20 -20 -10 0 10 20 -20 -10 0 10 20 -20 -10 0 10 20
Magnitude a Magnitude a Magnitude a Magnitude a

RAP achieves the better attack performance

» Combined with existing attacks, RAP further boosts their transferability for both
untargeted and targeted attacks.
The below tables show the transfer targeted attack performance (M*® = MT).

Attack

Dense-121

ResNet-50 —
VGG-16

Inc-v3

Res-50

DenseNet-121—>
VGG-16

Inc-v3

MTDI / +RAP / +RAP-LS
MTDSI / +RAP / +RAP-LS
MTDAI / +RAP / +RAP-LS

749 /1782 / 885
86.3 / 88.4 / 93.3
914 /89.4 / 93.6

62.8 / 72.9 / 81.5
701/ 71.7 / 84.7
79.9 / 79.0 / 86.3

109 /283 / 33.2
38.1 /518 /58.0
50.8 / 57.1 / 64.1

449/ 64.3 / 74.5
55.0 /71.2 / 75.8
69.1/74.2 / 82.1

38.5 / 55.0 / 65.5
420 /584 /62.3
547 / 631/ 69.3

7.7/23.0/265
19.8 / 39.0 / 39.2
32,0 / 435/ 49.3

Attack VGG-16 — Inc-v3—>
ac Res-50 Dense-121 Incv3 Res-50 Dense-121 VGG-16
MTDI / +RAP / +RAP-LS | 11.8/16.7 /229 13.7/194/27.4 07/34/4.6 18/83/75 41/148/134 29/80/98
MTDSI / +RAP / +RAP-LS | 31.0 /35.3 / 38.7 41.7/444/49.6 96/152/137 | 56/11.9 /107 104/21.2/209 42/8.9/86

MTDAI / +RAP / +RAP-LS

36.2 /39.0 / 43.1

48.0 / 45.1 / 55.2

11.6 / 17.1 / 17.6

9.6 /13.6 / 16.7

17.9 / 27.5 / 31.6

8.4 /120 /121

Adversarial Defense Methods

Adversarial Training

Test-time Integrity

Adversarial examples

N

%

 An adversarial example can easily
fool a deep network

LR

*

-
N\

2

 Robustness is critical in real systems

+ 0.001x

stop sign speed limit 40

Adversarial example

White-box adversarial attack

« If there is [|x — x|, constraint, we could turn to solve by

e FGSM attack [GSS15]:
o X pr0jx+cs>(x0 + OlSign(VXOK(Ha X,)’)))

. PGD attack [KGB17, MMS18]

. X~ projx+§(xt + asign(V,.£(0,x,y)))

Adversarial defense

Adversarial training

* Adversarial training [MMS18]:

n191np(9), where p(0) = E(,,)p I?Eegx L(6,x+ 4, y)

* Solve the inner loop by

xH_l — HX—I-S (xt -+ Désgn(VxL(el Xy y)))

Adversarial training

Capacity is crucial

MNIST
- Natural
100| e——s—o—o—— | 100 , —=—= —3 | 100 A = FGSM
2> 80 80 80 ke 1 - PGD
g 60 60 60 Y 01 —
O 40 40 40 S ===
éﬁ 20 20 20 2 0.01
0 o=—a—88—2% 3 0O e o ® e o 0 <C
12 4 8 16 1_ 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Capacity scale Capacity scale Capacity scale Capacity scale
CIFARI10
Simple| Wide Simple| Wide Simple| Wide Simple| Wide
Natural 92.7% (95.2% 87.4% 190.3% 79.4% |87.3% 0.00357{0.00371
FGSM 27.5% |32.7% 90.9% (95.1% 51.7% |56.1% 0.0115 |0.00557
PGD 0.8% | 3.5% 0.0% | 0.0% 43.7% |45.8% 1.11 | 0.0218
(a) Standard training (b) FGSM training (c) PGD training (d) Training Loss

Figure 4: The effect of network capacity on the performance of the network. We trained MNIST and
CIFAR10 networks of varying capacity on: (a) natural examples, (b) with FGSM-made adversarial
examples, (c) with PGD-made adversarial examples. In the first three plots/tables of each dataset,
we show how the standard and adversarial accuracy changes with respect to capacity for each
training regime. In the final plot/table, we show the value of the cross-entropy loss on the
adversarial examples the networks were trained on. This corresponds to the value of our saddle
point formulation (2.1) for different sets of allowed perturbations.

Adversarial training

Problems

 Huge overhead
* |ncrease training time by an order magnitude (7x if 7 step PGD)

 Fast method like FGSM doesn’t work

* Easily be attacked by strong attackers such as C&W attack

Fast Adversarial training

Algorithm 3 FGSM adversarial training for I’ epochs, given some radius €, N PGD steps, step size
o, and a dataset of size M for a network fy

fort=1...7Tdo
for:=1... M do
// Perform FGSM adversarial attack
6 = Uniform(—e, €)
0 =0+ a-sign(Vsl(fo(wi +9),v:))
6 = max(min(d, €), —¢)
0 =0 — Vol(fo(x; +9),y;) // Update model weights with some optimizer, e.g. SGD
end for
end for

The magic of random initialization

Method Standard accuracy PGD (e = 8/255) Time (min)
FGSM + DAWNBench

+ zero 1nit 85.18% 0.00% 12.37

+ early stopping 71.14% 38.86% 7.89

+ previous 1nit 86.02% 42.37% 12.21

+ random 1nit 85.32% 44.01% 12.33

+ a = 10/255 step size 83.81% 46.06% 12.17

+ a = 16/255 step size 86.05% 0.00% 12.06

+ early stopping 70.93% 40.38% 3.81

“Free” (m = 8) (Shafahi et al., 2019)" 85.96% 46.33% 785

+ DAWNBench 78.38% 46.18% 20.91

PGD-7 (Madry et al., 2017)? 87.30% 45.80% 4965.71

+ DAWNBench 82.46% 50.69% 68.8

DAWNBench Improvement

Reduce # of training epochs

* Cyclic learning rate

 Mixed-precision arithmetic

0.2

0.1

0.0 1

0

|
o

(a) CIFARI1O

0.4 4

0.2 1

0.0 15 | | r
0 5 10 15

(b) ImageNet

Catastrophic overfitting

mmms PGD Test

FGSM Train

% Error

50 -

20

m—— PGD Test

FGSM Train

100 A
75—\ /

0 5
0

|
0

10

|
15

Epochs

20

