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Machine learning
Beyond Accuracy



Trustworthy ML
What and why

• Not alchemy


• Explainability


• Security


• Privacy


• Fairness


• Integrity


• …


• Establish model understanding



Trustworthy ML
Integrity

• Training-time integrity and Testing-time integrity



Testing time integrity
Adversarial examples

•  An adversarial example can easily 
fool a deep network


• Robustness is critical in real systems



Adversarial examples
Definition

• Given a -way multi-class classification model  and an 
original example , the goal is to generate an adversarial example  such that


• 


• i.e.,  has a different prediction with  by model $f$. 

K f : ℝd → {1,…, K}
x0 x

x is close to x0  and  arg max
i

fi(x) ≠ arg max
i

fi(x0)

x x0



Adversarial example
Attack as an optimization problem

• Craft adversarial example by solving


• 


• : the distortion

arg min
x

∥x − x0∥2 +c ⋅ h(x)

∥x − x0∥2



Adversarial example
Attack as an optimization problem

• Craft adversarial example by solving


• 


• : the distortion


• : loss to measure the successfulness of attack

arg min
x

∥x − x0∥2 +c ⋅ h(x)

∥x − x0∥2

h(x)



Adversarial example
Attack as an optimization problem

• Craft adversarial example by solving


• 


• : the distortion


• : loss to measure the successfulness of 
attack


• Untargeted attack: success if 


•

arg min
x

∥x − x0∥2 +c ⋅ h(x)

∥x − x0∥2

h(x)

arg maxj fj(x) ≠ y0

h(x) = max{fy0
(x) − max

j≠y0
fj(x),0}



How to find adversarial examples
White-box vs black-box setting

• Attackers knows the model structure and weights (white-box)


• Can query the model to get probability output (soft-label)


• Can query the model to get label output (hard-label)


• No information about the model (universal)



Adversarial example
White-box setting

• 


• Model (network structure and weights) is revealed to attacker


•  gradient of  can be computed


•  attacker minimizes the objective by gradient descent

arg min
x

∥x − x0∥2 + c ⋅ h(x)

⇒ h(x)
⇒



Adversarial example
White-box adversarial attack

• C&W attack [CW17]:


• 


• Where  is the pre-softmax layer output

h(x) = max{[Zy0
(x) − max

j≠y
Zj(x)], − κ}

Z(x)



Adversarial example
White-box adversarial attack

• If there is  constraint, we could turn to solve by 


• FGSM attack [GSS15]:


• 


• PGD attack [KGB17, MMS18]


•

∥x − x0∥∞

x ← projx+*(x0 + αsign(∇x0
ℓ(θ, x, y)))

xt+1 ← projx+*(xt + αsign(∇xtℓ(θ, x, y)))



Adversarial example
Black-box Soft-label Setting

• Black-box Soft Label setting (practical setting): 


• Structure and weights of deep network are not revealed to attackers


•  Attacker can query the ML model and get the probability output


• Cannot compute gradient ∇x



Soft-label Black-box Adversarial attack

• Soft-label Black-box: query to get the probability output 


• Key problem: how to estimate gradient?


• Gradient-based [CZS17,IEAL18]:


• 


• Genetic algorithm [ASC19]

∇x = h(x + βu) − h(x)
β

⋅ u



Soft-label Black-box Adversarial attack

• Query based


• Transfer based:


• Train a substitute model and conduct the white-box attack 



Hard-label Black-box Attack

• Model is not known to the attacker


• Attacker can make query and observe hard-label multi-class output


• ( : number of classes)K



Why Hard-label

• More practical setting for attacker


• Discrete and complex models (e.g quantization, projection, detection)


• Framework friendly



The difficulty

• Hard-label attack on a simple 3-layer neural network yields a discontinuous 
optimization problem



Reformulation

• We reformulate the attack optimization 
problem (untargeted attack):


• 


• : the direction of adversarial example

θ* = arg min
θ

g(θ)

where  g(θ) = argminλ>0 (f(x0 + λ
θ

∥θ∥ ) ≠ y0)
θ



Examples



Two things unaddressed

•



• How to estimate 


• How to find 

θ* = arg min
θ

g(θ)

where  g(θ) = argminλ>0 (f(x0 + λ
θ

∥θ∥ ) ≠ y0)
g(θ)

θ*



Computing Function Value

• Can't compute the gradient of 


• However, we can compute the function value of  using queries of 


• Implemented using fine-grained search + binary search 

g

g f( ⋅ )



Estimation of g(θ)

• Fine-grained search


• Binary search


• Prediction unchanged enlarge 


• Prediction changed shrink 

g

g



How to optimize g(θ)

• The gradient of  is available by 


• 


• One  is too noisy, better to use multiple  ( )


• Zeroth order optimization for minimizing 

g

∇g(θ) ≈ g(θ + βu) − g(θ)
β

⋅ u

u u ∼ 20
g(θ)



Algorithm



Algorithm

•  and  in the gradient estimation takes most of queries, how to further reduce it?g(θt) g(θt + βu)



Sign is enough!

• Binary search to estimate  in the gradient estimation takes most of 
queries.


• Gradient sign is powerful ! (FGSM)


• How to get the gradient sign efficiently ?

g(θ)



Single query oracle

• sign(g(θ + ϵu) − g(θ)) = {+1, f(x0 + g(θ) (θ + ϵu)
∥θ + ϵu∥ ) = y0,

−1, Otherwise.

Original Image X0

Class Y0



Sign-OPT attack



Transferability of Adversarial Examples

a.k.a Adversarial Transferability

Zeyu Qin

HKUST, AI Safety Group



Adversarial Examples

I Imperceptible: kxadv � xkp  ✏

I Misclassified: y 6= Prediction(xadv)



Severe Threats from Black-box Attacks

I In real scenarios, the users always get access to the DNN applications by querying API.

I The adversary does not know any knowledge about the target model MT , such as

parameters, the architecture, and possibly the dataset.



Black-box Attacks

I Query-based attacks: only utilizing the feedback from MT

– Only know the model feedback for each query (labels or confidence scores) from MT .

– By iteratively querying MT , the attackers generate xadv based on exact feedback of each

query.

– It is more practical and only needs dozens of queries to generate the successful attacks.



Black-box Attacks

I Transfer attacks: using xadv from MS to attack MT

– The attackers can utilize same dataset to train the surrogate model MS

– Generating xadv (white-box attacks) on MS , then attacking MT .

– Don’t need to iteratively query but it is not practical and performs poor attack performance.



How to generate adversarial examples (white-box attacks)

I generating attacks

argmin
xadv

f(xadv) := L(M(xadv),yt),

s.t. kxadv � xkp  ✏, xadv 2 [0, 1]

where p norm could be `1, `2 or `1 norm. L could be CE loss, and M(·) is Softmax output

or logits (returned feedback under black-box setting).

Multi-step Projection Gradient Method (PGD) [1]:

xadv  ProjB(xadv)

�
x� ↵ · sign

�
rL

�
M

�
xadv

�
,yt

���

B =
�
xadv | [0, 1] \

��xadv � x
��
1  ✏

 

[1]. Alexey Kurakin, lan Goodfellow, Samy Bengio, ”Adversarial examples in the physical world”, Arxiv 2017



Transfer attacks

I Taking the targeted attack as an example, the general formulation of many existing transfer

attack methods can be written as follows:

min
xadv2B✏(x)

L(Ms(xadv;✓), yt). (1)

where L is the adversarial loss function computed on surrogate model MS
, yt is target

label.

I Then, the attackers use xadv
from MS

to attack the target model, MT
.



Transfer attacks overfits to MS

I The existing transfer attack methods exhibit poor transferability on MT (not successfully

attacking MT )

I xadv severely depends on (overfits to) the decision boundaries of MS and there are huge

di↵erences of decision boundaries between MS and MT . [1,2]

[1] Tramer et al., Ensemble Adversarial Training: Attacks and Defenses, ICLR 2018.

[2] Demontis et al., Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks, ACM CCS

2019.



How can we improve transfer attack performance?

I Remember our goal: to improve xadv on unseen models (but trained on the same

training dataset, like ImageNet). (’Sample’ Generalization)

I It seems like the other important problem: to improve M on unseen data. (Model

Generalization)

I Sample Generalization , Model Generalization ?



Inspiration from Improving Model Generalization

I You could borrow some advanced optimization methods to generate xadv, like

momentum [1,3], and variance reduction [4].

I Strong Augmentations: like crop and resizing [2] and Mixup [5].

I Unseen models: we could use much more diverse models during attack generation: model

ensembling [6]

– More diverse architectures

– Bayesian model sampling (adding noise on parameters of Ms)

[1] Dong et al., Boosting Adversarial Attacks with Momentum, CVPR 2018.

[2] Xie et al., Improving transferability of adversarial examples with input diversity, CVPR 2019.

[3] Lin et al., Nesterov Accelerated Gradient and Scale Invariance for Adversarial Attacks, ICLR 2020.

[4] Wang et al., Enhancing the Transferability of Adversarial Attacks through Variance Tuning, CVPR 2021.

[5] Xiaosen Wang et al., Admix: Enhancing the Transferability of Adversarial Attacks, ICCV 2021.

[6] Tramer et al., Ensemble Adversarial Training: Attacks and Defenses, ICLR 2018.



Poor targeted attack performance

Figure from the recent NeurIPS 2021 paper:



Further Improving Transferability

I Qin et al., propose a new perspective to interpret the adversarial transferability, the flatness

of (adversarial) loss landscape of xadv
on MS

.

I The xadv
located at the flat local minimum is less sensitive to the changes of decision

boundary (the di↵erence of MS
and MT

). Therefore, it could have better adversarial

transferability.

(a) (b)

[1] Qin et al., [1] Boosting the Transferability of Adversarial Attacks with Reverse Adversarial Perturbation, NeurIPS 2022.



Finding xadv located at a local flat region

I Qin et al., encourage that not only xadv itself has low loss value, but also the points

in the vicinity of xadv have similarly low loss values.

I Qin et al., proposes to minimize the maximal loss value within a local neighborhood

region around xadv.

I The maximal loss is implemented by perturbing xadv (adding perturbation n) to maximize

the adversarial loss, named Reverse Adversarial Perturbation (RAP). So, we aim to solve

this problem,

min
xadv2B✏(x)

L (MS (xadv + nadv;✓) , yt)

Where,

nadv = argmax
knk1✏n

L (MS (xadv + n;✓) , yt)



A Closer Look at RAP

I First we visualize the loss landscape around xadv
on MS

by plotting the loss variations.

We can observe that RAP could help find xadv
located at the flat region.



RAP achieves the better attack performance

I Combined with existing attacks, RAP further boosts their transferability for both

untargeted and targeted attacks.

The below tables show the transfer targeted attack performance (MS =)MT
).

Attack
ResNet-50 =) DenseNet-121=)

Dense-121 VGG-16 Inc-v3 Res-50 VGG-16 Inc-v3

MTDI / +RAP / +RAP-LS 74.9 / 78.2 / 88.5 62.8 / 72.9 / 81.5 10.9 / 28.3 / 33.2 44.9 / 64.3 / 74.5 38.5 / 55.0 / 65.5 7.7 / 23.0 / 26.5

MTDSI / +RAP / +RAP-LS 86.3 / 88.4 / 93.3 70.1 / 77.7 / 84.7 38.1 / 51.8 / 58.0 55.0 / 71.2 / 75.8 42.0 / 58.4 / 62.3 19.8 / 39.0 / 39.2

MTDAI / +RAP / +RAP-LS 91.4 / 89.4 / 93.6 79.9 / 79.0 / 86.3 50.8 / 57.1 / 64.1 69.1 / 74.2 / 82.1 54.7 / 63.1 / 69.3 32.0 / 43.5 / 49.3

Attack
VGG-16 =) Inc-v3=)

Res-50 Dense-121 Inc-v3 Res-50 Dense-121 VGG-16

MTDI / +RAP / +RAP-LS 11.8 / 16.7 / 22.9 13.7 / 19.4 / 27.4 0.7 / 3.4 / 4.6 1.8 / 8.3 / 7.5 4.1 / 14.8 / 13.4 2.9 / 8.0 / 9.8

MTDSI / +RAP / +RAP-LS 31.0 / 35.3 / 38.7 41.7 / 44.4 / 49.6 9.6 / 15.2 / 13.7 5.6 / 11.9 / 10.7 10.4 / 21.2 / 20.9 4.2 / 8.9 / 8.6

MTDAI / +RAP / +RAP-LS 36.2 / 39.0 / 43.1 48.0 / 45.1 / 55.2 11.6 / 17.1 / 17.6 9.6 / 13.6 / 16.7 17.9 / 27.5 / 31.6 8.4 / 12.0 / 12.1



Adversarial Defense Methods
Adversarial Training



Test-time integrity
Adversarial examples

•  An adversarial example can easily 
fool a deep network


• Robustness is critical in real systems



Adversarial example
White-box adversarial attack

• If there is  constraint, we could turn to solve by 


• FGSM attack [GSS15]:


• 


• PGD attack [KGB17, MMS18]


•

∥x − x0∥∞

x ← projx+%(x0 + αsign(∇x0
ℓ(θ, x, y)))

xt+1 ← projx+%(xt + αsign(∇xtℓ(θ, x, y)))



Adversarial defense
Adversarial training

• Adversarial training [MMS18]:


• 


• Solve the inner loop by 


•



Adversarial training
Capacity is crucial



Adversarial training
Problems

• Huge overhead


• Increase training time by an order magnitude (7x if 7 step PGD)


• Fast method like FGSM doesn’t work


• Easily be attacked by strong attackers such as C&W attack



Fast Adversarial training



The magic of random initialization



DAWNBench Improvement
Reduce # of training epochs

• Cyclic learning rate


• Mixed-precision arithmetic



Catastrophic overfitting


