COMP5211: Machine Learning Lecture 17

Minhao Cheng

Clustering Supervised versus unsupervised learning

- Supervised learning:
 - Learning from labeled observations
 - Classification, regression
- Unsupervised learning:
 - Learning from unlabeled observations
 - Discover hidden patterns \bullet
 - Clustering (today)

Clustering Definition

- Given $\{x_1, x_2, \dots, x_n\}$ and K (number of clusters)
- Output $A(x_i) \in \{1, 2, \dots, K\}$ (cluster membership)

Clustering **Two circles**

• Can we split the data into two clusters?

Clustering **Two circles**

Clustering **Clustering is subjective**

- Non-trivial to say on partition is better than others
- Each algorithm has two parts:
 - Define the objective function
 - Design an algorithm to minimize this objective function

Clustering **K-means**

$$J = \sum_{k=1}^{K} \sum_{x \in C_k} \|x - m_k\|_2^2$$

• Where m_k is the mean of C_k

• Partition datasets into C_1, C_2, \ldots, C_k to minimize the following objective:

Clustering **K-means**

• Partition datasets into C_1, C_2, \ldots, C_k to minimize the following objective:

$$J = \sum_{k=1}^{K} \sum_{x \in C_k} \|x - m_k\|_2^2$$

- Where m_k is the mean of C_k
- Multiple ways to minimize this objective
 - Hierarchical Agglomerative Clustering
 - Kmeans Algorithm (Today)

. . .

Clustering K-means

• Re-write objective:

•
$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - m_k||_2^2$$

• Where $r_{nk} \in \{0,1\}$ is an indicator variable

•
$$r_{nk} = 1$$
 if and only if $x_n \in C_k$

- Alternative optimization between $\{r_{nk}\}$ and $\{m_k\}$
 - Fix $\{m_k\}$ and update $\{r_{nk}\}$
 - Fix $\{r_{nk}\}$ and update $\{m_k\}$

• Step 0: initialize $\{m_k\}$ to some values

- Step 0: initialize $\{m_k\}$ to some values
- Step 1: Fix $\{m_k\}$ and minimize over $\{r_{nk}\}$: • $r_{nk} = \begin{cases} 1 & \text{if } k = \arg \min_j ||x_n - m_j||_2^2 \\ 0 & \text{otherwise} \end{cases}$

- Step 0: initialize $\{m_k\}$ to some values
- Step 1: Fix $\{m_k\}$ and minimize over $\{r_{nk}\}$:

 $r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|x_n - m_j\|_2^2 \\ 0 & \text{otherwise} \end{cases}$

• Step 2: Fix $\{r_{nk}\}$ and minimize over $\{m_k\}$:

$$m_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}$$

- Step 0: initialize $\{m_k\}$ to some values
- Step 1: Fix $\{m_k\}$ and minimize over $\{r_{nk}\}$:

•
$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_j \|x_n - m_j\|_2^2 \\ 0 & \text{otherwise} \end{cases}$$

• Step 2: Fix $\{r_{nk}\}$ and minimize over $\{m_k\}$:

$$m_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}$$

• Step 3: Return to step 1 unless stopping criterion is met

- Equivalent to the following procedure:
 - Step 0: initialize centers $\{m_k\}$ to some values
 - Step 1: Assign each x_n to the nearest center:

•
$$A(x_n) = \arg\min_j ||x_n - m_j||_2^2$$

- Update cluster:
 - $C_k = \{x_n : A(x_n) = k\} \ \forall k = 1, ..., K$
- Step 2: Calculate mean of each cluster C_k :

•
$$m_k = \frac{1}{|C_k|} \sum_{x_n \in C_k} x_n$$

• Step 3: Return to step 1 unless stopping criterion is met

Clustering More on K-means Algorithm

- Always decrease the objective function for each update
- Objective function will remain unchanged when step 1 doesn't change cluster assignment ⇒ Converged

Clustering **More on K-means Algorithm**

- Always decrease the objective function for each update
- Objective function will remain unchanged when step 1 doesn't change cluster assignment \Rightarrow Converged
- May not convene to global minimum
 - Sensitive to initial values

Clustering **More on K-means Algorithm**

- Always decrease the objective function for each update
- Objective function will remain unchanged when step 1 doesn't change cluster assignment \Rightarrow Converged
- May not convene to global minimum
 - Sensitive to initial values
- Kmeans++: A better way to initialize the clusters

Clustering **Graph Clustering**

- Given a graph G = (V, E, W)
 - $V: nodes \{v_1, ..., v_n\}$
 - E : edges $\{e_1, ..., e_m\}$
 - W: weight matrix

•
$$W_{ij} = \begin{cases} w_{ij}, & \text{if } (i,j) \in E \\ 0, & \text{otherwise} \end{cases}$$

- Goal: Partition V into k clusters of nodes
 - $V = V_1 \cup V_2 \cup \ldots \cup V_k$, $V_i \cap V_j = \varphi$, $\forall i, j$

Clustering Similarity Graph

- Example: similarity graph
- Given samples x_1, \ldots, x_n
- Weight (similarities) indicates "closeness of samples"

Partition the graph so that edges within a group have large weights and edges across groups have small weights.

Clustering Similarity graph

• E.g., Gaussian kernel $W_{ij} = e^{-\|x_i - x_j\|^2 / \sigma^2}$

Data clustering

 $G = \{V, E\}$

Clustering Social graph

- Nodes: users in social network
- Edges: $W_{ij} = 1$ if user *i* and *j* are friends, otherwise $W_{ij} = 0$

Graph Representation

Matrix Representation

2	3	4	5	6	7	8	9
1	1	1	0	0	0	0	0
-	1	0	0	0	0	0	0
1	-	1	0	0	0	0	0
0	1	-	1	1	0	0	0
0	0	1	-	1	1	1	0
0	0	1	1	-	1	1	0
0	0	0	1	1	-	1	1
0	0	0	1	1	1	-	0
0	0	0	0	0	1	0	-

Clustering **Partitioning into two clusters**

• Partition graph into two sets V_1, V_2 to minimize the cut value: $\operatorname{cut}(V_1, V_2) = \sum_{v_i \in V_1, v_j \in V_2} W_{ij}$

Clustering **Partitioning into two clusters**

- Partition graph into two sets V_1, V_2 to minimize the cut value: $\mathbf{Cut}(V_1, V_2) = \sum W_{ij}$ $v_i \in V_1, v_i \in V_2$
- Also, the size of V_1 , V_2 needs to be similar (balance)

Clustering **Partitioning into two clusters**

• Partition graph into two sets V_1, V_2 to minimize the cut value:

•
$$\operatorname{cut}(V_1, V_2) = \sum_{v_i \in V_1, v_j \in V_2} W_{ij}$$

- Also, the size of V_1, V_2 needs to be similar (balance)
- One classical way of enforcing balance: min $\operatorname{cut}(V_1, V_2)$ V_{1}, V_{2}

s.t. $|V_1| = |V_2|, V_1 \cup V_2 = \{1, ..., n\}, V_1 \cap V_2 = \varphi$

• \Rightarrow This is NP-hard (cannot be solved in polynomial time)

Clustering **Kernaghan-Lin Algorithm**

- Start with some partitioning V_1, V_2
- Calculate change in cut if 2 vertices are swapped
- Swap the vertices (1 in V_1 & 1 in V_2) that decease the cut the most
- Iterate until convergence

Clustering Kernaghan-Lin Algorithm

- Start with some partitioning V_1, V_2
- Calculate change in cut if 2 vertices are swapped
- Swap the vertices (1 in V_1 & 1 in V_2) that decease the cut the most
- Iterate until convergence
- Used when we need exact balanced clusters (e.g. circuit design)

Clustering **Objective function that consider balance**

Ratio-Cut:

• Normalized-Cut:

Clustering **Cut example**

Cut(Red) = 1Cut(Green) = 2Ratio-Cut(Red) = $\frac{1}{1} + \frac{1}{8} = \frac{9}{8}$ Ratio-Cut(Green) = $\frac{2}{5} + \frac{2}{4} = \frac{18}{20}$ Normalized-Cut(Red) = $\frac{1}{1} + \frac{1}{27} = \frac{28}{27}$ Normalized-Cut(Green) = $\frac{2}{12} + \frac{2}{16} = \frac{14}{48}$

Minimizing Normalizedcut is even better for Green due to density constraint (volume)

Clustering Generalize to k clusters

• Ratio-Cut:

• Normalized-Cut:

$$\min_{V_1,\ldots,V_k} \sum_{c=1}^k \frac{\operatorname{cut}(V_c, V - V_c)}{\operatorname{deg}(V_c)}$$

Clustering Reformulation

- Recall deg (V_c) = links (V_c, V)
- Define a diagonal matrix

Clustering Reformulation

- Recall $\deg(V_c) = \operatorname{links}(V_c, V)$
- Define a diagonal matrix

$$D = \begin{bmatrix} \deg(v_1) & 0 & 0 & \dots \\ 0 & \deg(v_2) & 0 & \dots \\ 0 & 0 & \deg(v_3) & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

- $y_c = \{0,1\}^n$: indicator vector for the c-th cluster
- We have

$$y_c^T y_c = |V_c|$$
$$y_c^T D y_c = \deg(V_c)$$
$$y_c^T W y_c = \lim ks(V_c, V_c)$$

Clustering Ratio Cut

$$RC(V_{1}, ..., V_{k}) = \sum_{c=1}^{k} \frac{\operatorname{cut}(V_{c}, V - V_{c})}{|V_{c}|}$$

$$= \sum_{c=1}^{k} \frac{\operatorname{deg}(V_{c}) - \operatorname{links}(V_{c}, V_{c})}{|V_{c}|}$$

$$= \sum_{c=1}^{k} \frac{y_{c}^{T} D y_{c} - y_{c}^{T} W y_{c}}{y_{c}^{T} y_{c}}$$

$$= \sum_{c=1}^{k} \frac{y_{c}^{T} (D - W) y_{c}}{y_{c}^{T} y_{c}}$$

$$= \sum_{c=1}^{k} \frac{y_{c}^{T} L y_{c}}{y_{c}^{T} y_{c}} \quad (L=D-W \text{ is "Graph I})$$

Laplacian")

Clustering More on graph laplacian

• *L* is symmetric positive semi-definite

We have shown Ratio-Cut is equivalent to

- Define $\bar{y}_c = y_c / ||y_c||$ (normalized indicator),
 - $Y = [\bar{y_1}, \bar{y_2}, \dots, \bar{y_k}] \Rightarrow Y^T Y = I$

• We have shown Ratio-Cut is equivalent to

• RCut =
$$\sum_{c=1}^{k} \frac{y_c^T L y_c}{y_c^T y_c} = \sum_{c=1}^{k} (\frac{y_c}{\|y_c\|})^T L$$

- Define $\bar{y_c} = y_c / ||y_c||$ (normalized indicator),
 - $Y = [\bar{y_1}, \bar{y_2}, \dots, \bar{y_k}] \Rightarrow Y^T Y = I$
- Relaxed to real valued problem
 - $\min_{Y^T Y = I} \operatorname{Trace}(Y^T L Y)$

 $\left(\frac{y_c}{\|y_c\|}\right)$

• We have shown Ratio-Cut is equivalent to

• RCut =
$$\sum_{c=1}^{k} \frac{y_c^T L y_c}{y_c^T y_c} = \sum_{c=1}^{k} (\frac{y_c}{\|y_c\|})^T L(\frac{y_c}{\|y_c\|})$$

• Define $\bar{y_c} = y_c / ||y_c||$ (normalized indicator),

•
$$Y = [\bar{y_1}, \bar{y_2}, \dots, \bar{y_k}] \Rightarrow Y^T Y = I$$

Relaxed to real valued problem

•
$$\min_{Y^T Y=I} \operatorname{Trace}(Y^T L Y)$$

Solution: Eigenvectors corresponding to the smallest k eigenvalues of L

• Let $Y^* \in \mathbb{R}^{n \times k}$ be these eigenvectors. Are we done?

- Let $Y^* \in \mathbb{R}^{n \times k}$ be these eigenvectors. Are we done?
- No, Y^* does not have 0/1 values (not indicators)
 - (Since we are solving a **relaxed** problem)
- Solution: Run k-means on the rows of Y^*

- Let $Y^* \in \mathbb{R}^{n \times k}$ be these eigenvectors. Are we done?
- No, Y^* does not have 0/1 values (not indicators)
 - (Since we are solving a **relaxed** problem)
- Solution: Run k-means on the rows of Y^*
- Summary of Spectral clustering algorithms:
 - Compute $Y^* \in \mathbb{R}^{n \times k}$: eigenvectors corresponds to k smallest eigenvalues of (normalized) Laplacian matrix
 - Run k-means to cluster rows of Y^*

• If graph is disconnected (k connected components), Laplacian is block diagonal and first k Eigen-vectors are:

• What if the graph is connected?

- What if the graph is connected?
- There will be only one smallest eigenvalue/eigenvector:
 - $L\mathbf{1} = (D A)\mathbf{1} = 0$
 - $(\mathbf{1} = [1, 1, ..., 1]^T$ is the eigenvector with eigenvalue 0)

- What if the graph is connected?
- There will be only one smallest eigenvalue/eigenvector:
 - $L\mathbf{1} = (D A)\mathbf{1} = 0$ $(\mathbf{1} = [1, 1, ..., 1]^T$ is the eigenvector with eigenvalue 0)
- However, the 2nd to k-th smallest eigenvectors are still useful for clustering

1	1	.2	0
1	1	0	.1
.2	0	1	1
0	.1	1	1

since graph is connected

Sign of 2nd evec indicates blocks

Clustering **Normalized Cut**

• Rewirte Normalized Cut:

 $NCut = \sum_{c=1}^{k} \frac{\operatorname{cut}(V_c, V - V_c)}{\deg(V_c)}$ • $= \sum_{c=1}^{k} \frac{y_c^T (D - A) y_c}{y_c^T D y_c}$ • Let $\tilde{y_c} = \frac{D^{1/2} y_c}{\|D^{1/2} y_c\|}$, then • $NCut = \sum_{c=1}^{k} \frac{\tilde{y}_{c}^{T} D^{-1/2} (D-A) D^{-1/2} \tilde{y}_{c}}{\tilde{y}_{c}^{T} \tilde{y}_{c}}$

• Normalized Laplacian:

•
$$\tilde{L} = D^{-1/2}(D-A)D^{-1/2} = I - D^{-1/2}AD^{-1/2}$$

• Normalized Cut \rightarrow eigenvectors correspond to the smallest eigenvalues

Clustering **Kmeans vs Spectral Clustering**

- Kmeans: decision boundary is linear
- Spectral clustering: boundary can be non-convex curves

•
$$\sigma$$
 in $W_{ij} = e^{\frac{-\|x_i - x_j\|^2}{\sigma^2}}$ controls the ostructure)

clustering results (focus on local or global

Clustering **Kmeans vs Spectral Clustering**

original data (with kmeans clustering)

Spectral clustering with normalized Laplacian, sigma= 0.01

Spectral clustering with normalized Laplacian, sigma= 0.2

-0.5

-1.0

Spectral clustering with normalized Laplacian, sigma= 0.6

0.0

Spectral clustering with normalized Laplacian, sigma= 0.9

