COMP5211: Machine Learning

Lecture 17

Minhao Cheng

Clustering

Supervised versus unsupervised learning

- Supervised learning:
- Learning from labeled observations
- Classification, regression
- Unsupervised learning:
- Learning from unlabeled observations
- Discover hidden patterns
- Clustering (today)

Clustering

Definition

- Given $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and K (number of clusters)
- Output $A\left(x_{i}\right) \in\{1,2, \ldots, K\}$ (cluster membership)

Clustering

Two circles

- Can we split the data into two clusters?

Clustering

Two circles

- Can we split the data into two clusters?

Clustering

Clustering is subjective

- Non-trivial to say on partition is better than others
- Each algorithm has two parts:
- Define the objective function
- Design an algorithm to minimize this objective function

Clustering

K-means

- Partition datasets into $C_{1}, C_{2}, \ldots, C_{k}$ to minimize the following objective:
. $J=\sum_{k=1}^{K} \sum_{x \in C_{k}}\left\|x-m_{k}\right\|_{2}^{2}$
- Where m_{k} is the mean of C_{k}

Clustering

K-means

- Partition datasets into $C_{1}, C_{2}, \ldots, C_{k}$ to minimize the following objective:
. $J=\sum_{k=1}^{K} \sum_{x \in C_{k}}\left\|x-m_{k}\right\|_{2}^{2}$
- Where m_{k} is the mean of C_{k}
- Multiple ways to minimize this objective
- Hierarchical Agglomerative Clustering
- Kmeans Algorithm (Today)
- ...

Clustering

K-means

Clustering

K-means Algorithm

- Re-write objective:
. $J=\sum_{n=1}^{N} \sum_{k=1}^{K} r_{n k}\left\|x_{n}-m_{k}\right\|_{2}^{2}$
- Where $r_{n k} \in\{0,1\}$ is an indicator variable
- $r_{n k}=1$ if and only if $x_{n} \in C_{k}$
- Alternative optimization between $\left\{r_{n k}\right\}$ and $\left\{m_{k}\right\}$
- Fix $\left\{m_{k}\right\}$ and update $\left\{r_{n k}\right\}$
- Fix $\left\{r_{n k}\right\}$ and update $\left\{m_{k}\right\}$

Clustering

K-means Algorithm

- Step 0: initialize $\left\{m_{k}\right\}$ to some values

Clustering

K-means Algorithm

- Step 0: initialize $\left\{m_{k}\right\}$ to some values
- Step 1: Fix $\left\{m_{k}\right\}$ and minimize over $\left\{r_{n k}\right\}$:
. $r_{n k}= \begin{cases}1 & \text { if } k=\arg \min _{j}\left\|x_{n}-m_{j}\right\|_{2}^{2} \\ 0 & \text { otherwise }\end{cases}$

Clustering

K-means Algorithm

- Step 0: initialize $\left\{m_{k}\right\}$ to some values
- Step 1: Fix $\left\{m_{k}\right\}$ and minimize over $\left\{r_{n k}\right\}$:
- $r_{n k}= \begin{cases}1 & \text { if } k=\arg \min _{j}\left\|x_{n}-m_{j}\right\|_{2}^{2} \\ 0 & \text { otherwise }\end{cases}$
- Step 2: Fix $\left\{r_{n k}\right\}$ and minimize over $\left\{m_{k}\right\}$:
- $m_{k}=\frac{\sum_{n} r_{n k} x_{n}}{\sum_{n} r_{n k}}$

Clustering

K-means Algorithm

- Step 0: initialize $\left\{m_{k}\right\}$ to some values
- Step 1: Fix $\left\{m_{k}\right\}$ and minimize over $\left\{r_{n k}\right\}$:
. $r_{n k}= \begin{cases}1 & \text { if } k=\arg \min _{j}\left\|x_{n}-m_{j}\right\|_{2}^{2} \\ 0 & \text { otherwise }\end{cases}$
- Step 2: Fix $\left\{r_{n k}\right\}$ and minimize over $\left\{m_{k}\right\}$:
- $m_{k}=\frac{\sum_{n} r_{n k} x_{n}}{\sum_{n} r_{n k}}$
- Step 3: Return to step 1 unless stopping criterion is met

Clustering
 K-means Algorithm

- Equivalent to the following procedure:
- Step 0: initialize centers $\left\{m_{k}\right\}$ to some values
- Step 1: Assign each x_{n} to the nearest center:
- $A\left(x_{n}\right)=\arg \min _{j}\left\|x_{n}-m_{j}\right\|_{2}^{2}$
- Update cluster:
- $C_{k}=\left\{x_{n}: A\left(x_{n}\right)=k\right\} \forall k=1, \ldots, K$
- Step 2: Calculate mean of each cluster C_{k} :
. $m_{k}=\frac{1}{\left|C_{k}\right|} \sum_{x_{n} \in C_{k}} x_{n}$
- Step 3: Return to step 1 unless stopping criterion is met

Clustering

More on K-means Algorithm

- Always decrease the objective function for each update
- Objective function will remain unchanged when step 1 doesn't change cluster assignment \Rightarrow Converged

Clustering

More on K-means Algorithm

- Always decrease the objective function for each update
- Objective function will remain unchanged when step 1 doesn't change cluster assignment \Rightarrow Converged
- May not convene to global minimum
- Sensitive to initial values

Clustering

More on K-means Algorithm

- Always decrease the objective function for each update
- Objective function will remain unchanged when step 1 doesn't change cluster assignment \Rightarrow Converged
- May not convene to global minimum
- Sensitive to initial values
- Kmeans++: A better way to initialize the clusters

Clustering

Graph Clustering

- Given a graph $G=(V, E, W)$
- $V:$ nodes $\left\{v_{1}, \ldots, v_{n}\right\}$
- E : edges $\left\{e_{1}, \ldots, e_{m}\right\}$
- W : weight matrix
- $W_{i j}= \begin{cases}w_{i j}, & \text { if }(i, j) \in E \\ 0, & \text { otherwise }\end{cases}$
- Goal: Partition V into k clusters of nodes
- $V=V_{1} \cup V_{2} \cup \ldots \cup V_{k}, \quad V_{i} \cap V_{j}=\varphi, \forall i, j$

Clustering

Similarity Graph

- Example: similarity graph
- Given samples x_{1}, \ldots, x_{n}
- Weight (similarities) indicates "closeness of samples"

Similarity Graph: G(V,E,W)

V - Vertices (Data points)
$\mathrm{E}-$ Edge if similarity >0
W - Edge weights (similarities)

Partition the graph so that edges within a group have large weights and edges across groups have small weights.

Clustering
 Similarity graph

- E.g., Gaussian kernel $W_{i j}=e^{-\left\|x_{i}-x_{j}\right\|^{2} / \sigma^{2}}$

Data clustering

$$
\boldsymbol{G}=\{\mathbf{V}, \mathbf{E}\}
$$

Clustering

Social graph

- Nodes: users in social network
- Edges: $W_{i j}=1$ if user i and j are friends, otherwise $W_{i j}=0$
| Graph Representation | Matrix Representation

Node	$\mathbf{1}$	$\mathbf{2}$	3	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	8	$\mathbf{9}$
$\mathbf{1}$	-	1	1	1	0	0	0	0	0
2	1	-	1	0	0	0	0	0	0
3	1	1	-	1	0	0	0	0	0
4	1	0	1	-	1	1	0	0	0
5	0	0	0	1	-	1	1	1	0
6	0	0	0	1	1	-	1	1	0
7	0	0	0	0	1	1	-	1	1
8	0	0	0	0	1	1	1	-	0
9	0	0	0	0	0	0	1	0	-

Clustering

Partitioning into two clusters

- Partition graph into two sets V_{1}, V_{2} to minimize the cut value:

$$
\cdot \operatorname{cut}\left(V_{1}, V_{2}\right)=\sum_{v_{i} \in V_{1}, v_{j} \in V_{2}} W_{i j}
$$

Clustering

Partitioning into two clusters

- Partition graph into two sets V_{1}, V_{2} to minimize the cut value:

$$
\cdot \operatorname{cut}\left(V_{1}, V_{2}\right)=\sum_{v_{i} \in V_{1}, v_{j} \in V_{2}} W_{i j}
$$

- Also, the size of V_{1}, V_{2} needs to be similar (balance)

Clustering

Partitioning into two clusters

- Partition graph into two sets V_{1}, V_{2} to minimize the cut value:
. $\operatorname{cut}\left(V_{1}, V_{2}\right)=\sum_{v_{i} \in V_{1}, v_{j} \in V_{2}} W_{i j}$
- Also, the size of V_{1}, V_{2} needs to be similar (balance)
- One classical way of enforcing balance:

$$
\min _{V} \operatorname{cut}\left(V_{1}, V_{2}\right)
$$

$$
V_{1}, V_{2}
$$

- s.t. $\left|V_{1}\right|=\left|V_{2}\right|, V_{1} \cup V_{2}=\{1, \ldots, n\}, V_{1} \cap V_{2}=\varphi$
- \Rightarrow This is NP-hard (cannot be solved in polynomial time)

Clustering

Kernaghan-Lin Algorithm

- Start with some partitioning V_{1}, V_{2}
- Calculate change in cut if 2 vertices are swapped
- Swap the vertices (1 in $V_{1} \& 1$ in V_{2}) that decease the cut the most
- Iterate until convergence

Clustering

Kernaghan-Lin Algorithm

- Start with some partitioning V_{1}, V_{2}
- Calculate change in cut if 2 vertices are swapped
- Swap the vertices (1 in $V_{1} \& 1$ in V_{2}) that decease the cut the most
- Iterate until convergence
- Used when we need exact balanced clusters (e.g. circuit design)

Clustering

Objective function that consider balance

- Ratio-Cut:
- $\min _{V_{1}, V_{2}}\left\{\frac{\operatorname{cut}\left(V_{1}, V_{2}\right)}{\left|V_{1}\right|}+\frac{\operatorname{cut}\left(V_{1}, V_{2}\right)}{\left|V_{2}\right|}\right\}:=R C\left(V_{1}, V_{2}\right)$
- Normalized-Cut:
- $\min _{V_{1}, V_{2}}\left\{\frac{\operatorname{cut}\left(V_{1}, V_{2}\right)}{\operatorname{deg}\left(V_{1}\right)}+\frac{\operatorname{cut}\left(V_{1}, V_{2}\right)}{\operatorname{deg}\left(V_{2}\right)}\right\}:=R C\left(V_{1}, V_{2}\right)$
- Where $\operatorname{deg}\left(V_{c}\right):=\quad \sum_{i, j}=\operatorname{links}\left(V_{c}, V\right)$

$$
v_{i} \in \overline{V_{c}(i, j) \in E}
$$

Clustering

Cut example

$\operatorname{Cut}($ Red $)=1$
Cut(Green) $=2$
Ratio-Cut(Red) $=\frac{1}{1}+\frac{1}{8}=\frac{9}{8}$
Ratio-Cut(Green) $=\frac{2}{5}+\frac{2}{4}=\frac{18}{20}$
Normalized-Cut(Red) $=\frac{1}{1}+\frac{1}{27}=\frac{28}{27}$
Normalized-Cut(Green) $=\frac{2}{12}+\frac{2}{16}=\frac{14}{48}$

Minimizing Normalizedcut is even better for Green due to density constraint (volume)

Clustering

Generalize to k clusters

- Ratio-Cut:
$\min _{V_{1}, \ldots, V_{k}} \sum_{c=1}^{k} \frac{\operatorname{cut}\left(V_{c}, V-V_{c}\right)}{\left|V_{c}\right|}$
- Normalized-Cut:
$\min _{V_{1}, \ldots, V_{k}} \sum_{c=1}^{k} \frac{\operatorname{cut}\left(V_{c}, V-V_{c}\right)}{\operatorname{deg}\left(V_{c}\right)}$

Clustering

Reformulation

- Recall $\operatorname{deg}\left(V_{c}\right)=\operatorname{links}\left(V_{c}, V\right)$
- Define a diagonal matrix
- $D=\left[\begin{array}{cccc}\operatorname{deg}\left(v_{1}\right) & 0 & 0 & \ldots \\ 0 & \operatorname{deg}\left(v_{2}\right) & 0 & \ldots \\ 0 & 0 & \operatorname{deg}\left(v_{3}\right) & \ldots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right]$
- $y_{c}=\{0,1\}^{n}$: indicator vector for the c-th cluster

Clustering

Reformulation

- Recall $\operatorname{deg}\left(V_{c}\right)=\operatorname{links}\left(V_{c}, V\right)$
- Define a diagonal matrix

$$
D=\left[\begin{array}{cccc}
\operatorname{deg}\left(v_{1}\right) & 0 & 0 & \ldots \\
0 & \operatorname{deg}\left(v_{2}\right) & 0 & \ldots \\
0 & 0 & \operatorname{deg}\left(v_{3}\right) & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- $y_{c}=\{0,1\}^{n}$: indicator vector for the c-th cluster
- We have

$$
\begin{array}{r}
y_{c}^{T} y_{c}=\left|V_{c}\right| \\
y_{c}^{T} D y_{c}=\operatorname{deg}\left(V_{c}\right) \\
y_{c}^{T} W y_{c}=\operatorname{links}\left(V_{c}, V_{c}\right)
\end{array}
$$

Clustering

Ratio Cut

$$
\begin{aligned}
R C\left(V_{1}, \ldots, V_{k}\right) & =\sum_{c=1}^{k} \frac{\operatorname{cut}\left(V_{c}, V-V_{c}\right)}{\left|V_{C}\right|} \\
& =\sum_{c=1}^{k} \frac{\operatorname{deg}\left(V_{c}\right)-\operatorname{links}\left(V_{c}, V_{c}\right)}{\left|V_{C}\right|} \\
& =\sum_{c=1}^{k} \frac{y_{c}^{T} D y_{c}-y_{c}^{T} W y_{c}}{y_{c}^{T} y_{c}} \\
& =\sum_{c=1}^{k} \frac{y_{c}^{T}(D-W) y_{c}}{y_{c}^{T} y_{c}} \\
& =\sum_{c=1}^{k} \frac{y_{c}^{T} L y_{c}}{y_{c}^{T} y_{c}} \quad \text { (L=D-W is "Graph Laplacian") }
\end{aligned}
$$

Clustering
 More on graph laplacian

- L is symmetric positive semi-definite

Clustering

Solving Ratio-Cut

- We have shown Ratio-Cut is equivalent to
. RCut $=\sum_{c=1}^{k} \frac{y_{c}^{T} L y_{c}}{y_{c}^{T} y_{c}}=\sum_{c=1}^{k}\left(\frac{y_{c}}{\left\|y_{c}\right\|}\right)^{T} L\left(\frac{y_{c}}{\left\|y_{c}\right\|}\right)$
- Define $\bar{y}_{c}=y_{c} /\left\|y_{c}\right\|$ (normalized indicator),
- $Y=\left[\bar{y}_{1}, \bar{y}_{2}, \ldots, \bar{y}_{k}\right] \Rightarrow Y^{T} Y=I$

Clustering

Solving Ratio-Cut

- We have shown Ratio-Cut is equivalent to
. RCut $=\sum_{c=1}^{k} \frac{y_{c}^{T} L y_{c}}{y_{c}^{T} y_{c}}=\sum_{c=1}^{k}\left(\frac{y_{c}}{\left\|y_{c}\right\|}\right)^{T} L\left(\frac{y_{c}}{\left\|y_{c}\right\|}\right)$
- Define $\bar{y}_{c}=y_{c} /\left\|y_{c}\right\|$ (normalized indicator),
- $Y=\left[\bar{y}_{1}, \overline{y_{2}}, \ldots, \bar{y}_{k}\right] \Rightarrow Y^{T} Y=I$
- Relaxed to real valued problem
- min $\operatorname{Trace}\left(Y^{T} L Y\right)$ $Y^{T} Y=I$

Clustering

Solving Ratio-Cut

- We have shown Ratio-Cut is equivalent to
. $\mathrm{RCut}=\sum_{c=1}^{k} \frac{y_{c}^{T} L y_{c}}{y_{c}^{T} y_{c}}=\sum_{c=1}^{k}\left(\frac{y_{c}}{\left\|y_{c}\right\|}\right)^{T} L\left(\frac{y_{c}}{\left\|y_{c}\right\|}\right)$
- Define $\overline{y_{c}}=y_{c} /\left\|y_{c}\right\|$ (normalized indicator),
- $Y=\left[\bar{y}_{1}, \overline{y_{2}}, \ldots, \bar{y}_{k}\right] \Rightarrow Y^{T} Y=I$
- Relaxed to real valued problem
- $\min _{Y^{T} Y=I} \operatorname{Trace}\left(Y^{T} L Y\right)$
- Solution: Eigenvectors corresponding to the smallest k eigenvalues of L

Clustering

Solving Ratio-Cut

- Let $Y^{*} \in \mathbb{R}^{n \times k}$ be these eigenvectors. Are we done?

Clustering

Solving Ratio-Cut

- Let $Y^{*} \in \mathbb{R}^{n \times k}$ be these eigenvectors. Are we done?
- No, Y^{*} does not have $0 / 1$ values (not indicators)
- (Since we are solving a relaxed problem)
- Solution: Run k-means on the rows of Y^{*}

Clustering

Solving Ratio-Cut

- Let $Y^{*} \in \mathbb{R}^{n \times k}$ be these eigenvectors. Are we done?
- No, Y^{*} does not have $0 / 1$ values (not indicators)
- (Since we are solving a relaxed problem)
- Solution: Run k-means on the rows of Y^{*}
- Summary of Spectral clustering algorithms:
- Compute $Y^{*} \in \mathbb{R}^{n \times k}$: eigenvectors corresponds to k smallest eigenvalues of (normalized) Laplacian matrix
- Run k-means to cluster rows of Y^{*}

Clustering

Eigenvectors of Laplacian

- If graph is disconnected (k connected components), Laplacian is block diagonal and first k Eigen-vectors are:

Clustering

Eigenvectors of Laplacian

- What if the graph is connected?

Clustering

Eigenvectors of Laplacian

- What if the graph is connected?
- There will be only one smallest eigenvalue/eigenvector:
- $L \mathbf{1}=(D-A) \mathbf{1}=0$
- $\left(\mathbf{1}=[1,1, \ldots, 1]^{T}\right.$ is the eigenvector with eigenvalue 0$)$

Clustering

Eigenvectors of Laplacian

- What if the graph is connected?
- There will be only one smallest eigenvalue/eigenvector:
- $L \mathbf{1}=(D-A) \mathbf{1}=0\left(\mathbf{1}=[1,1, \ldots, 1]^{T}\right.$ is the eigenvector with eigenvalue 0$)$
- However, the 2nd to k-th smallest eigenvectors are still useful for clustering

$1^{\text {st }}$ evec is constant since graph is connected

.47
.52
-.47
-.52

Sign of $2^{\text {nd }}$ evec indicates blocks

Clustering

Normalized Cut

- Rewirte Normalized Cut:

$$
N C u t=\sum_{c=1}^{k} \frac{\operatorname{cut}\left(V_{c}, V-V_{c}\right)}{\operatorname{deg}\left(V_{c}\right)}
$$

$$
\quad=\sum_{c=1}^{k} \frac{y_{c}^{T}(D-A) y_{c}}{y_{c}^{T} D y_{c}}
$$

. Let $\tilde{y}_{c}=\frac{D^{1 / 2} y_{c}}{\left\|D^{1 / 2} y_{c}\right\|}$,then

$$
\text { . NCut }=\sum_{c=1}^{k} \frac{\tilde{y}_{c}^{T} D^{-1 / 2}(D-A) D^{-1 / 2} \tilde{y}_{c}}{\tilde{y}_{c}^{T} \tilde{y}_{c}}
$$

- Normalized Laplacian:

$$
\text { - } \tilde{L}=D^{-1 / 2}(D-A) D^{-1 / 2}=I-D^{-1 / 2} A D^{-1 / 2}
$$

- Normalized Cut \rightarrow eigenvectors correspond to the smallest eigenvalues

Clustering

Kmeans vs Spectral Clustering

- Kmeans: decision boundary is linear
- Spectral clustering: boundary can be non-convex curves
- σ in $W_{i j}=e^{\frac{-\left\|x_{i}-x_{j}\right\|^{2}}{\sigma^{2}}}$ controls the clustering results (focus on local or global structure)

Clustering

Kmeans vs Spectral Clustering

original data (with kmeans clustering)

Spectral clustering with normalized Laplacian, sigma $=0.2$

Spectral clustering with normalized Laplacian, sigma $=0.01$

Spectral clustering with normalized Laplacian, sigma= 0.6

,ectral clustering with normalized Laplacian, sigma $=0.05$

Spectral clustering with normalized Laplacian, sigma= 0.9

