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Clustering
Supervised versus unsupervised learning

• Supervised learning:


• Learning from labeled observations


• Classification, regression


• Unsupervised learning:


• Learning from unlabeled observations


• Discover hidden patterns


• Clustering (today)



Clustering
Definition

• Given  and  (number of clusters)


• Output  (cluster membership)

{x1, x2, …, xn} K

A(xi) ∈ {1,2,…, K}
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Two circles
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Clustering
Two circles

• Can we split the data into two clusters?



Clustering
Clustering is subjective

• Non-trivial to say on partition is 
better than others


• Each algorithm has two parts:


• Define the objective function


• Design an algorithm to 
minimize this objective 
function



Clustering
K-means 

• Partition datasets into  to minimize the following objective:


• 


• Where  is the mean of 

C1, C2, …, Ck

J =
K

∑
k=1

∑
x∈Ck

∥x − mk∥2
2

mk Ck



Clustering
K-means 

• Partition datasets into  to minimize the following objective:


• 


• Where  is the mean of 


• Multiple ways to minimize this objective


• Hierarchical Agglomerative Clustering


• Kmeans Algorithm (Today)


• …

C1, C2, …, Ck

J =
K

∑
k=1

∑
x∈Ck

∥x − mk∥2
2

mk Ck



Clustering
K-means 



Clustering
K-means Algorithm

• Re-write objective:


• 


• Where  is an indicator variable


•  if and only if 


• Alternative optimization between  and 


• Fix  and update 


• Fix  and update 

J =
N

∑
n=1

K

∑
k=1

rnk∥xn − mk∥2
2

rnk ∈ {0,1}

rnk = 1 xn ∈ Ck

{rnk} {mk}

{mk} {rnk}

{rnk} {mk}
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• Step 0: initialize  to some values {mk}



Clustering
K-means Algorithm

• Step 0: initialize  to some values 


• Step 1: Fix  and minimize over :


•  

{mk}

{mk} {rnk}

rnk = {1 if k = arg minj ∥xn − mj∥2
2

0 otherwise



Clustering
K-means Algorithm

• Step 0: initialize  to some values 


• Step 1: Fix  and minimize over :


•  


• Step 2: Fix  and minimize over :


•

{mk}

{mk} {rnk}

rnk = {1 if k = arg minj ∥xn − mj∥2
2

0 otherwise

{rnk} {mk}

mk =
∑n rnkxn

∑n rnk



Clustering
K-means Algorithm

• Step 0: initialize  to some values 


• Step 1: Fix  and minimize over :


•  


• Step 2: Fix  and minimize over :


• 


• Step 3: Return to step 1 unless stopping criterion is met

{mk}

{mk} {rnk}

rnk = {1 if k = arg minj ∥xn − mj∥2
2

0 otherwise

{rnk} {mk}

mk =
∑n rnkxn

∑n rnk



Clustering
K-means Algorithm

• Equivalent to the following procedure:


• Step 0: initialize centers  to some values 


• Step 1: Assign each  to the nearest center:


• 


• Update cluster:


• 


• Step 2: Calculate mean of each cluster :


• 


• Step 3: Return to step 1 unless stopping criterion is met

{mk}

xn

A(xn) = arg min
j

∥xn − mj∥2
2

Ck = {xn : A(xn) = k} ∀k = 1,…, K

Ck

mk =
1

|Ck | ∑
xn∈Ck

xn



Clustering
More on K-means Algorithm

• Always decrease the objective function for each update


• Objective function will remain unchanged when step 1 doesn’t change cluster 
assignment  Converged⇒
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• May not convene to global minimum


• Sensitive to initial values
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Clustering
More on K-means Algorithm

• Always decrease the objective function for each update


• Objective function will remain unchanged when step 1 doesn’t change cluster 
assignment  Converged


• May not convene to global minimum


• Sensitive to initial values


• Kmeans++: A better way to initialize the clusters

⇒



Clustering
Graph Clustering

• Given a graph 


•  nodes 


•  edges 


•  weight matrix


• 


• Goal: Partition  into  clusters of nodes


•

G = (V, E, W)

V : {v1, …, vn}

E : {e1, …, em}

W :

Wij = {wij, if (i, j) ∈ E
0, otherwise

V k

V = V1 ∪ V2 ∪ … ∪ Vk, Vi ∩ Vj = φ, ∀i, j



Clustering
Similarity Graph

• Example: similarity graph


• Given samples 


• Weight (similarities) indicates 
“closeness of samples”

x1, …, xn



Clustering
Similarity graph

• E.g., Gaussian kernel Wij = e−∥xi−xj∥2/σ2



Clustering
Social graph

• Nodes: users in social network


• Edges:  if user  and  are friends, otherwise Wij = 1 i j Wij = 0



Clustering
Partitioning into two clusters

• Partition graph into two sets  to minimize the cut value: 


•

V1, V2

cut(V1, V2) = ∑
vi∈V1,vj∈V2

Wij



Clustering
Partitioning into two clusters

• Partition graph into two sets  to minimize the cut value: 


•



• Also, the size of  needs to be similar (balance)

V1, V2

cut(V1, V2) = ∑
vi∈V1,vj∈V2

Wij

V1, V2



Clustering
Partitioning into two clusters

• Partition graph into two sets  to minimize the cut value: 


•



• Also, the size of  needs to be similar (balance)


• One classical way of enforcing balance:


• 


•  This is NP-hard (cannot be solved in polynomial time)

V1, V2

cut(V1, V2) = ∑
vi∈V1,vj∈V2

Wij

V1, V2

min
V1,V2

cut(V1, V2)

s.t. |V1 | = |V2 | , V1 ∪ V2 = {1,…, n}, V1 ∩ V2 = φ

⇒



Clustering
Kernaghan-Lin Algorithm

• Start with some partitioning 


• Calculate change in cut if 2 vertices are swapped


• Swap the vertices (1 in  & 1 in  ) that decease the cut the most


• Iterate until convergence

V1, V2

V1 V2



Clustering
Kernaghan-Lin Algorithm

• Start with some partitioning 


• Calculate change in cut if 2 vertices are swapped


• Swap the vertices (1 in  & 1 in  ) that decease the cut the most


• Iterate until convergence


• Used when we need exact balanced clusters (e.g. circuit design)

V1, V2

V1 V2



Clustering
Objective function that consider balance

• Ratio-Cut:


• 


• Normalized-Cut:


• 


• Where 

min
V1,V2

{
cut(V1, V2)

|V1 |
+

cut(V1, V2)
|V2 |

} := RC(V1, V2)

min
V1,V2

{
cut(V1, V2)

deg(V1)
+

cut(V1, V2)
deg(V2)

} := RC(V1, V2)

deg(Vc) := ∑
vi∈Vc,(i,j)∈E

Wi,j = links(Vc, V)



Clustering
Cut example



Clustering
Generalize to k clusters

• Ratio-Cut:


• 


• Normalized-Cut:


•

min
V1,…,Vk

k

∑
c=1

cut(Vc, V − Vc)
|Vc |

min
V1,…,Vk

k

∑
c=1

cut(Vc, V − Vc)
deg(Vc)



Clustering
Reformulation

• Recall 


• Define a diagonal matrix


•



• : indicator vector for the c-th cluster

deg(Vc) = links(Vc, V)

D =

deg(v1) 0 0 …
0 deg(v2) 0 …
0 0 deg(v3) …
⋮ ⋮ ⋮ ⋱

yc = {0,1}n



Clustering
Reformulation

• Recall 


• Define a diagonal matrix


•



• : indicator vector for the c-th cluster


• We have 


•

deg(Vc) = links(Vc, V )

D =

deg(v1) 0 0 …
0 deg(v2) 0 …
0 0 deg(v3) …
⋮ ⋮ ⋮ ⋱

yc = {0,1}n

yT
c yc = |Vc |

yT
c Dyc = deg(Vc)

yT
c Wyc = links(Vc, Vc)



Clustering
Ratio Cut

•

RC(V1, …, Vk) =
k

∑
c=1

cut(Vc, V − Vc)
|VC |

=
k

∑
c=1

deg(Vc) − links(Vc, Vc)
|VC |

=
k

∑
c=1

yT
c Dyc − yT

c Wyc

yT
c yc

=
k

∑
c=1

yT
c (D − W)yc

yT
c yc

=
k

∑
c=1

yT
c Lyc

yT
c yc

(L=D-W is "Graph Laplacian")



Clustering
More on graph laplacian

•  is symmetric positive semi-definiteL



Clustering
Solving Ratio-Cut

• We have shown Ratio-Cut is equivalent to


• 


• Define  (normalized indicator),


•

RCut =
k

∑
c=1

yT
c Lyc

yT
c yc

=
k

∑
c=1

(
yc

∥yc∥
)TL(

yc

∥yc∥
)

ȳc = yc/∥yc∥

Y = [ȳ1, ȳ2, …, ȳk] ⇒ YTY = I



Clustering
Solving Ratio-Cut

• We have shown Ratio-Cut is equivalent to


• 


• Define  (normalized indicator),


• 


• Relaxed to real valued problem


•

RCut =
k

∑
c=1

yT
c Lyc

yT
c yc

=
k

∑
c=1

(
yc

∥yc∥
)TL(

yc

∥yc∥
)

ȳc = yc/∥yc∥

Y = [ȳ1, ȳ2, …, ȳk] ⇒ YTY = I

min
YTY=I

Trace(YTLY)



Clustering
Solving Ratio-Cut

• We have shown Ratio-Cut is equivalent to


• 


• Define  (normalized indicator),


• 


• Relaxed to real valued problem


• 


• Solution: Eigenvectors corresponding to the smallest k eigenvalues of L

RCut =
k

∑
c=1

yT
c Lyc

yT
c yc

=
k

∑
c=1

(
yc

∥yc∥
)TL(

yc

∥yc∥
)

ȳc = yc/∥yc∥

Y = [ȳ1, ȳ2, …, ȳk] ⇒ YTY = I

min
YTY=I

Trace(YTLY)



Clustering
Solving Ratio-Cut

• Let  be these eigenvectors. Are we done?Y* ∈ ℝn×k



Clustering
Solving Ratio-Cut

• Let  be these eigenvectors. Are we done?


• No,  does not have 0/1 values (not indicators)


• (Since we are solving a relaxed problem)


• Solution: Run k-means on the rows of 

Y* ∈ ℝn×k

Y*

Y*



Clustering
Solving Ratio-Cut

• Let  be these eigenvectors. Are we done?


• No,  does not have 0/1 values (not indicators)


• (Since we are solving a relaxed problem)


• Solution: Run k-means on the rows of 


• Summary of Spectral clustering algorithms:


• Compute : eigenvectors corresponds to  smallest eigenvalues of 
(normalized) Laplacian matrix


• Run k-means to cluster rows of 

Y* ∈ ℝn×k

Y*

Y*

Y* ∈ ℝn×k k

Y*



Clustering
Eigenvectors of Laplacian

• If graph is disconnected (  connected components), Laplacian is block 
diagonal and first  Eigen-vectors are:

k
k



Clustering
Eigenvectors of Laplacian

• What if the graph is connected?



Clustering
Eigenvectors of Laplacian

• What if the graph is connected?


• There will be only one smallest eigenvalue/eigenvector:


• 


• (  is the eigenvector with eigenvalue 0)

L1 = (D − A)1 = 0

1 = [1,1,…,1]T



Clustering
Eigenvectors of Laplacian

• What if the graph is connected?


• There will be only one smallest eigenvalue/eigenvector:


•   (  is the eigenvector with eigenvalue 0)


• However, the 2nd to k-th smallest eigenvectors are still useful for clustering

L1 = (D − A)1 = 0 1 = [1,1,…,1]T



Clustering
Normalized Cut

• Rewirte Normalized Cut:


•



• Let ,then


• 


• Normalized Laplacian:


• 


• Normalized Cut  eigenvectors correspond to the smallest eigenvalues

NCut =
k

∑
c=1

cut(Vc, V − Vc)
deg(Vc)

=
k

∑
c=1

yT
c (D − A)yc

yT
c Dyc

ỹc =
D1/2yc

∥D1/2yc∥

NCut =
k

∑
c=1

ỹc
TD−1/2(D − A)D−1/2ỹc

ỹc
T ỹc

L̃ = D−1/2(D − A)D−1/2 = I − D−1/2AD−1/2

→



Clustering
Kmeans vs Spectral Clustering

• Kmeans: decision boundary is linear


• Spectral clustering: boundary can be non-convex curves


•  in  controls the clustering results (focus on local or global 
structure)
σ Wij = e

−∥xi − xj∥2

σ2



Clustering
Kmeans vs Spectral Clustering


