COMP5212: Machine Learning Lecture 15

Minhao Cheng

Recurrent Neural Network Neural Machine Translation (NMT)

- Out the translated sentence from an input sentence
- Training data: a set of input-output pairs (supervised setting)
- Encoder-decoder approach:
 - Encoder: Use (RNN/LSTM) to encode the input sentence input a latent vector
 - Decoder: Use (RNN/LSTM) to generate a sentence based on the latent vector

Recurrent Neural Network Neural Machine Translation

Recurrent Neural Network Attention in NMT

- Usually, each output word is only related to a subset of input words (e.g., for machine translation)
- Let u be the current decoder latent state, v_1, \ldots, v_n be the latent sate for each input word
- Compute the weight of each state by

•
$$p = \operatorname{Softmax}(u^T v_1, \dots, u^T v_n)$$

Compute the context vector by $Vp = p_1v_1 + \ldots + p_nv_n$

Recurrent Neural Network Attention in NMT

Transformer Transformer

- An architecture that replies entirely on attention without using CNN/RNN
- Proposed in ``Attention Is All You Need'' (Vaswani et al., 2017)
- Initially used for neural machine translation

Transformer **Encoder and Decoder**

- Self attention layer: the main architecture used in Transformer
- of input sentences.

Decoder: will have another attention layer to help it focuses on relevant parts

Transformer Encoder

- Each word has a corresponding ``latent vector'' (initially the word embedding for each word)
- Each layer of encoder:
 - Receive a list of vectors as input
 - Passing these vectors to a self-attention layer
 - Then passing them into a feed-foward layer
 - Output a list of vectors

- Main idea: The actual meaning of each word may be related to other words in the sentence
- The actual meaning (latent vector) of each word is a weighted (attention) combination of other words (latent vectors) in the sentences

\$ The_ animal_ didn_ _ t_ cross_ the_ street_ because_ it_ was_ too_ tire d_{-}

- Input latent vectors: x_1, \ldots, x_n
- Self-attention parameters:
 W^Q, W^K, W^V (weights for query, key, value)
- For each word *i*, compute
 - Query vector: $q_i = x_i W^Q$
 - Key vector: $k_i = x_i W^K$
 - Value vector: $v_i = x_i W^V$

- - The attention score for word j to word $i: q_i^T k_j$

• For each word i, compute the scores to determine how much focus to place on other input words

• For each word *i*, the output vector

$$\sum_{j} s_{ij} v_j, \quad s_i = \operatorname{softmax}(q_i^T k_1, \dots, q_i^T k_n)$$

Transformer **Matrix form**

• $Q = XW^Q$, $K = XW^K$, $V = XW^V$, $Z = \operatorname{softmax}(QK^T)V$

Transformer Multiply with weight matrix to reshape

- Gather all the outputs Z_1, \ldots, Z_k
- Multiply with a weight matrix to reshape
- Then pass to the next fully connected layer

1) Concatenate all the attention heads

Zo		Z 1		Z 2		Z 3		Z 4		Z 5		Z 6		Z 7							

2) Multiply with a weight matrix W^o that was trained jointly with the model

Х

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

=

WO

Transformer **Overall architecture**

5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

Ζ

Transformer Sinusoidal Position Encoding

- The above architecture ignores the sequential information
- Add a positional encoding vector to each x_i (according to i)

Transformer Positional Embedding

• Sin/cosine functions with different wavelengths (used in the original Transformer)

The jth dimension of ith token $p_i[j] =$

$$= \begin{cases} \sin(i \cdot c^{\frac{j}{d}}) \text{ if} \\ \cos(i \cdot c^{\frac{j-1}{d}}) \end{cases}$$

• smooth, parameter-free, inductive

- j is even
- if j is odd

Transformer Types of positional encoding

- Position embedding: learn a latent vector for each position
 - non-smooth, data-driven (learnable), non-inductive
- Relative position embedding:
 - For each i, j, use the relative position embedding a_{i-i}
 - non-smooth, data-driven (learnable), (partial)-inductive

Transformer **Positional Encoding**

- Neural ODE embedding :
 - Model positional embedding as a dynamic linear system
- Learnable Fourier Feature (Li et al., 2021):

•
$$p_x = \phi(r_x, \theta) W_p$$
, where $r_x = \frac{1}{D} [\cos x W_r, \sin \theta]$

- W_r, W_p : learnable parameters (irrelevant to sequence length)
- smooth, data-driven (learnable), inductive

"Learning to Encode Position for Transformer with Continuous Dynamical Model. Liu et al., 2020"

 $\sin x W_r$]

"Learnable Fourier Features for Multi-Dimensional Spatial Positional Encoding. Li et al., 2021"

Transformer Residual

Transformer Whole framework

Contextual embedding Contextual world representation

• The semantic meaning of a word should depend on its context

open a bank account

[0.9, -0.2, 1.6, ...] [-1.9, -0.4, 0.1, ...]on the river bank

Solution: Train a model to extract contextual representations on text corpus

Contextual embedding CoVe (McCann et al., 2017)

- Key idea: Train a standard neural machine translation model
- Take the encoder directly as contextualized word embeddings
- **Problems:**
 - Translation requires paired (labeled) data
 - The embeddings are tailored to particular translation corpuses

Contextual embedding Language model pretraining task

- Predict the next word given the prefix
- Can be defined on any unlabeled document

Contextual embedding ELMo (Peter et al., 2018)

- Key ideas:
 - Train a foward and backward LSTM language model on large corpus
 - Use the hidden states for each token to compute a vector representation of each word
- LSTM Layer #2
- LSTM Layer #1
- Replace the word embedding by Elmo's embedding (with fixed Elmo's LSTM weights)

to

Contextual embedding ELMo results

TASK	PREVIOUS SOTA		OUR BASELIN	ELMO + E BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2/9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

Contextual embedding BERT

- Key idea: replace LSTM by Transformer
- Define the generated pretraining task by masked language model
- Two pretraining tasks
- Finetune both BERT weights and task-dependent model weights for each task

Contextual embedding BERT pretraining loss

- Masked language model: predicting each word by the rest of sentence
- sentence is the subsequent sentence in the original document.

• Next sentence prediction: the model receives pairs of sentences as input and learns to predict if the second

Contextual embedding BERT finetuning

- Keep the pretrained Transformers
- Replace or append a layer for the final task
- Train the whole model based on the task-dependent IOSS

Contextual embedding BERT results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Vision Transformer (ViT) Attemps on applying self-attention to vision

- DETR (Carion et al., 2020): CNN + Self-attention for object detection Stand-alone self-attention (Ramachandran et al., 2020)

Vision Transformer (ViT) Vision Transformer (ViT)

- Partition input image into $K \times K$ patches
- A linear projection to transform each patch to feature (no convolution)
- Pass tokens into Transformer

Vision Transformer (ViT) Vision Transformer (ViT)

- Patches are non-overlapping in the original ViT
- $N \times N$ image $\Rightarrow (N/K)^2$ tokens
- Smaller patch size \Rightarrow more input tokens
 - Higher computation (memory) cost, (usually) higher accuracy
- Use 1D (learnable) positional embedding
- Inference with higher resolution:
 - Keep the same patch size, which leads to longer sequence
 - Interpolation for positional embedding

Vision Transformer (ViT) **ViT Performance**

• ViT outperforms CNN with large pretraining

Vision Transformer (ViT) **ViT Performance**

• Attention maps of ViT (to input)

Vision Transformer (ViT) ViT v.s. ResNet

- Can ViT outperform ResNet on ImageNet without pretraining?
- Deit (Touvron et al., 2021):
 - Use very strong data augmentation
 - Use a ResNet teacher and distill to ViT

Vision Transformer (ViT) ViT v.s. ResNet

ViT tends to converge to sharper regions than ResNet

(a) ResNet

Leading eigenvalue of Hessian: 179.8

(b) ViT

Leading eigenvalue of Hessian: 738.8

Vision Transformer (ViT) **`Sharpness''** is related to generalization

- Testing can be viewed as a slightly perturbed training distribution
- Sharp minimum \Rightarrow performance degrades significantly from training to testing

Figure from (Keskar et al., 2017)

Vision Transformer (ViT) **Sharpness Aware Minimization (SAM)**

- Optimize the worst-case loss within a small neighborhood lacksquare
 - $\min_{w} \max_{\|\delta\|_2 \le \epsilon} L(w + \delta)$
 - ϵ is a small constant (hyper-parameter)
- Use 1-step gradient ascent to approximate inner max:

$$\hat{\delta} = \arg \max_{\|\delta\|_2 \le \epsilon} L(w) + \nabla L(w)^T \delta = \epsilon \frac{\nabla}{\|\nabla\|}$$

Conduct the following update for each iteration:

•
$$w \leftarrow w - \alpha \nabla L(w + \hat{\delta})$$

7L(w)

TL(w)

Vision Transformer (ViT) **Sharpness Aware Minimization (SAM)**

• SAM is a natural way to penalize sharpness region (but requires some computational overhead)

Vision Transformer (ViT) ViT v.s. ResNet

Model	#params	Throughput (img/sec/core)	ImageNet	Real	V2	ImageNet-R	ImageNet-C			
ResNet										
ResNet-50-SAM	25M	2161	76.7 (+0.7)	83.1 (+0.7)	64.6 (+1.0)	23.3 (+1.1)	46.5 (+1.9)			
ResNet-101-SAM	44M	1334	78.6 (+0.8)	84.8 (+0.9)	66.7 (+1.4)	25.9 (+1.5)	51.3 (+2.8)			
ResNet-152-SAM	60M	935	79.3 (+0.8)	84.9 (+0.7)	67.3 (+1.0)	25.7 (+0.4)	52.2 (+2.2)			
ResNet-50x2-SAM	98M	891	79.6 (+1.5)	85.3 (+1.6)	67.5 (+1.7)	26.0 (+2.9)	50.7 (+3.9)			
ResNet-101x2-SAM	173M	519	80.9 (+2.4)	86.4 (+2.4)	69.1 (+2.8)	27.8 (+3.2)	54.0 (+4.7)			
ResNet-152x2-SAM	236M	356	81.1 (+1.8)	86.4 (+1.9)	69.6 (+2.3)	28.1 (+2.8)	55.0 (+4.2)			
Vision Transformer										
ViT-S/32-SAM	23M	6888	70.5 (+2.1)	77.5 (+2.3)	56.9 (+2.6)	21.4 (+2.4)	46.2 (+2.9)			
ViT-S/16-SAM	22M	2043	78.1 (+3.7)	84.1 (+3.7)	65.6 (+3.9)	24.7 (+4.7)	53.0 (+6.5)			
ViT-S/14-SAM	22M	1234	78.8 (+4.0)	84.8 (+4.5)	67.2 (+5.2)	24.4 (+4.7)	54.2 (+7.0)			
ViT-S/8-SAM	22M	333	81.3 (+5.3)	86.7 (+5.5)	70.4 (+6.2)	25.3 (+6.1)	55.6 (+8.5)			
ViT-B/32-SAM	88M	2805	73.6 (+4.1)	80.3 (+5.1)	60.0 (+4.7)	24.0 (+4.1)	50.7 (+6.7)			
ViT-B/16-SAM	87M	863	79.9 (+5.3)	85.2 (+5.4)	67.5 (+6.2)	26.4 (+6.3)	56.5 (+9.9)			
MLP-Mixer										
Mixer-S/32-SAM	19M	11401	66.7 (+2.8)	73.8 (+3.5)	52.4 (+2.9)	18.6 (+2.7)	39.3 (+4.1)			
Mixer-S/16-SAM	18M	4005	72.9 (+4.1)	79.8 (+4.7)	58.9 (+4.1)	20.1 (+4.2)	42.0 (+6.4)			
Mixer-S/8-SAM	20M	1498	75.9 (+5.7)	82.5 (+6.3)	62.3 (+6.2)	20.5 (+5.1)	42.4 (+7.8)			
Mixer-B/32-SAM	60M	4209	72.4 (+9.9)	79.0 (+10.9)	58.0 (+10.4)	22.8 (+8.2)	46.2 (12.4)			
Mixer-B/16-SAM	59M	1390	77.4 (+11.0)	83.5 (+11.4)	63.9 (+13.1)	24.7 (+10.2)	48.8 (+15.0)			
Mixer-B/8-SAM	64M	466	79.0 (+10.4)	84.4 (+10.1)	65.5 (+11.6)	23.5 (+9.2)	48.9 (+16.9)			

Vision Transformer (ViT) ViT v.s. ResNet

- Let's compare one ViT layer vs one convolution layer
- Reception field: (which input neurons can affect an output neuron)
 - CNN: some subarea of image (kernel size)
 - Self-attention: the whole image
 - \Rightarrow there exists self-attention function that cannot be captured by convolution
- Is the function set of self-attention strictly larger than convolution?
 - Yes, given enough attention heads

Vision Transformer (ViT) How can self-attention do convolution?

Consider self-attention with relative positional encoding

context aware

- Q, K, V: query, key, value matrices
- $B_{i,j} = b_{(x_i x_i, y_i y_i)}$: relative positional encoding (trainable scalars)
- To perform convolution: Set Q, K = 0 and purely rely on B
- Implication: the positional encoding can capture CNN; the query/key matrices can capture contextaware information beyond convolution

Vision Transformer (ViT) Swin Transformer (Liu et al., 2021)

- Problems of the original ViT:
 - Non-overlapping partition
 - Only a single resolution
 - Quadratic complexity for attention computation
- Swin Transformer: hierarchical and sliding window partitions

(a) Swin Transformer (ours)

Vision Transformer (ViT) **Swin Transformer**

Attention within sub-blocks with shifts to avoid huge attention matrix

Vision Transformer (ViT) Swin Transformer

(a) Regu	lar Im	ageNet-	1K traiı	ned models							
method	image	#naram	FI OD	throughput	ImageNet						
method	size	#param.	rlors	(image / s)	top-1 acc.						
RegNetY-4G [48]	224^{2}	21M	4.0G	1156.7	80.0						
RegNetY-8G [48]	224^{2}	39M	8.0G	591.6	81.7	(b) Im	ageNet	-22K pr	e-traine	d models	
RegNetY-16G [48]	224^{2}	84M	16.0G	334.7	82.9	mathod	image	#norom		throughput	ImageNet
EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6	method	size	#param.	. FLOPS	(image / s)	top-1 acc.
EffNet-B4 [58]	380^{2}	19M	4.2G	349.4	82.9	R-101x3 [38]	384 ²	388M	204.6G	-	84.4
EffNet-B5 [58]	456^{2}	30M	9.9G	169.1	83.6	R-152x4 [38]	480^{2}	937M	840.5G	-	85.4
EffNet-B6 [58]	528^{2}	43M	19.0G	96.9	84.0	ViT-B/16 [20]	384 ²	86M	55.4G	85.9	84.0
EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	84.3	ViT-L/16 [20]	384 ²	307M	190.7G	27.3	85.2
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	77.9	Swin-B	224 ²	88M	15.4G	278.1	85.2
ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	76.5	Swin-B	384 ²	88M	47.0G	84.7	86.4
DeiT-S [63]	224^{2}	22M	4.6G	940.4	79.8	Swin-L	384 ²	197M	103.9G	42.1	87.3
DeiT-B [63]	224^{2}	86M	17.5G	292.3	81.8						
DeiT-B [63]	384^{2}	86M	55.4G	85.9	83.1						
Swin-T	224^{2}	29M	4.5G	755.2	81.3						
Swin-S	224^{2}	50M	8.7G	436.9	83.0						
Swin-B	224^{2}	88M	15.4G	278.1	83.5						
Swin-B	384 ²	88M	47.0G	84.7	84.5						