
Minhao Cheng

COMP5212: Machine Learning
Lecture 15

Recurrent Neural Network
Neural Machine Translation (NMT)

• Out the translated sentence from an input
sentence

• Training data: a set of input-output pairs
(supervised setting)

• Encoder-decoder approach:

• Encoder: Use (RNN/LSTM) to encode
the input sentence input a latent vector

• Decoder: Use (RNN/LSTM) to generate
a sentence based on the latent vector

Recurrent Neural Network
Neural Machine Translation

Recurrent Neural Network
Attention in NMT

• Usually, each output word is only related to a subset of input words (e.g., for
machine translation)

• Let be the current decoder latent state, be the latent sate for
each input word

• Compute the weight of each state by

•

• Compute the context vector by

u v1, …, vn

p = Softmax(uTv1, …, uTvn)

Vp = p1v1 + … + pnvn

Recurrent Neural Network
Attention in NMT

Transformer
Transformer

• An architecture that replies entirely on attention without using CNN/RNN

• Proposed in ``Attention Is All You Need'' (Vaswani et al., 2017)

• Initially used for neural machine translation

Transformer
Encoder and Decoder

• Self attention layer: the main architecture used in Transformer

• Decoder: will have another attention layer to help it focuses on relevant parts
of input sentences.

Transformer
Encoder

• Each word has a corresponding ``latent
vector'' (initially the word embedding for
each word)

• Each layer of encoder:

• Receive a list of vectors as input

• Passing these vectors to a self-attention
layer

• Then passing them into a feed-foward
layer

• Output a list of vectors

Transformer
Self-attention layer

• Main idea: The actual meaning of each word may be related to other words in the sentence

• The actual meaning (latent vector) of each word is a weighted (attention) combination of other words (latent
vectors) in the sentences

Transformer
Self-attention layer

• Input latent vectors:

• Self-attention parameters:
 (weights for query, key,

value)

• For each word , compute

• Query vector:

• Key vector:

• Value vector:

x1, …, xn

WQ, WK, WV

i

qi = xiWQ

ki = xiWK

vi = xiWV

Transformer
Self-attention layer

• For each word , compute the scores to determine how much focus to place on other input words

• The attention score for word to word :

i

j i qT
i kj

Transformer
Self-attention layer

• For each word , the output vector

•

i

∑
j

sijvj, si = softmax(qT
i k1, …, qT

i kn)

Transformer
Matrix form

• Q = XWQ, K = XWK, V = XWV, Z = softmax(QKT)V

Transformer
Multiply with weight matrix to reshape

• Gather all the outputs

• Multiply with a weight matrix to
reshape

• Then pass to the next fully
connected layer

Z1, …, Zk

Transformer
Overall architecture

Transformer
Sinusoidal Position Encoding

• The above architecture ignores
the sequential information

• Add a positional encoding vector
to each (according to)xi i

Transformer
Positional Embedding

• Sin/cosine functions with different wavelengths (used in the original Transformer)

•

• smooth, parameter-free, inductive

The jth dimension of ith tokenpi[j] = {sin(i ⋅ c
j
d) if j is even

cos(i ⋅ c
j − 1

d) if j is odd

Transformer
Types of positional encoding

• Position embedding: learn a latent vector for each position

• non-smooth, data-driven (learnable), non-inductive

• Relative position embedding:

• For each , use the relative position embedding

• non-smooth, data-driven (learnable), (partial)-inductive

i, j aj−i

Transformer
Positional Encoding

• Neural ODE embedding :

• Model positional embedding as a dynamic linear system

• ``Learning to Encode Position for Transformer with Continuous Dynamical Model. Liu et al., 2020’'

• Learnable Fourier Feature (Li et al., 2021):

•

• : learnable parameters (irrelevant to sequence length)

• ``Learnable Fourier Features for Multi-Dimensional Spatial Positional Encoding. Li et al., 2021’'

• smooth, data-driven (learnable), inductive

px = ϕ(rx, θ)Wp, where rx =
1
D

[cos xWr, sin xWr]

Wr, Wp

Transformer
Residual

Transformer
Whole framework

Contextual embedding
Contextual world representation

• The semantic meaning of a word should depend on its context

• Solution: Train a model to extract contextual representations on text corpus

Contextual embedding
CoVe (McCann et al., 2017)

• Key idea: Train a standard neural
machine translation model

• Take the encoder directly as
contextualized word embeddings

• Problems:

• Translation requires paired (labeled)
data

• The embeddings are tailored to
particular translation corpuses

Contextual embedding
Language model pretraining task

• Predict the next word given the
prefix

• Can be defined on any unlabeled
document

Contextual embedding
ELMo (Peter et al., 2018)

• Key ideas:

• Train a foward and backward
LSTM language model on large
corpus

• Use the hidden states for each
token to compute a vector
representation of each word

• Replace the word embedding by
Elmo's embedding (with fixed
Elmo's LSTM weights)

Contextual embedding
ELMo results

Contextual embedding
BERT

• Key idea: replace LSTM by Transformer

• Define the generated pretraining task by masked language model

• Two pretraining tasks

• Finetune both BERT weights and task-dependent model weights for each
task

Contextual embedding
BERT pretraining loss

• Masked language model: predicting each word by the rest of sentence

• Next sentence prediction: the model receives pairs of sentences as input and learns to predict if the second
sentence is the subsequent sentence in the original document.

Contextual embedding
BERT finetuning

• Keep the pretrained
Transformers

• Replace or append
a layer for the final
task

• Train the whole
model based on the
task-dependent
loss

Contextual embedding
BERT results

Vision Transformer (ViT)
Attemps on applying self-attention to vision

• DETR (Carion et al., 2020): CNN + Self-attention for object detection

• Stand-alone self-attention (Ramachandran et al., 2020)

• …

Vision Transformer (ViT)
Vision Transformer (ViT)

• Partition input image into
patches

• A linear projection to transform each
patch to feature (no convolution)

• Pass tokens into Transformer

K × K

Vision Transformer (ViT)
Vision Transformer (ViT)

• Patches are non-overlapping in the original ViT

• image tokens

• Smaller patch size more input tokens

• Higher computation (memory) cost, (usually) higher accuracy

• Use 1D (learnable) positional embedding

• Inference with higher resolution:

• Keep the same patch size, which leads to longer sequence

• Interpolation for positional embedding

N × N ⇒ (N/K)2

⇒

Vision Transformer (ViT)
ViT Performance

• ViT outperforms CNN with large pretraining

Vision Transformer (ViT)
ViT Performance

• Attention maps of ViT (to input)

Vision Transformer (ViT)
ViT v.s. ResNet

• Can ViT outperform ResNet on
ImageNet without pretraining?

• Deit (Touvron et al., 2021):

• Use very strong data
augmentation

• Use a ResNet teacher and
distill to ViT

Vision Transformer (ViT)
ViT v.s. ResNet

• ViT tends to converge to sharper regions than ResNet

Vision Transformer (ViT)
``Sharpness'' is related to generalization

• Testing can be viewed as a slightly perturbed training distribution

• Sharp minimum performance degrades significantly from training to testing⇒

Vision Transformer (ViT)
Sharpness Aware Minimization (SAM)

• Optimize the worst-case loss within a small neighborhood

•

• is a small constant (hyper-parameter)

• Use 1-step gradient ascent to approximate inner max:

•

• Conduct the following update for each iteration:

•

min
w

max
∥δ∥2≤ϵ

L(w + δ)

ϵ

̂δ = arg max
∥δ∥2≤ϵ

L(w) + ∇L(w)Tδ = ϵ
∇L(w)

∥∇L(w)∥

w ← w − α∇L(w + ̂δ)

Vision Transformer (ViT)
Sharpness Aware Minimization (SAM)

• SAM is a natural way to penalize sharpness region (but requires some
computational overhead)

Vision Transformer (ViT)
ViT v.s. ResNet

Vision Transformer (ViT)
ViT v.s. ResNet

• Let's compare one ViT layer vs one convolution layer

• Reception field: (which input neurons can affect an output neuron)

• CNN: some subarea of image (kernel size)

• Self-attention: the whole image

• there exists self-attention function that cannot be captured by convolution

• Is the function set of self-attention strictly larger than convolution?

• Yes, given enough attention heads

⇒

Vision Transformer (ViT)
How can self-attention do convolution?

• Consider self-attention with relative positional encoding

•

• : query, key, value matrices

• : relative positional encoding (trainable scalars)

• To perform convolution: Set and purely rely on

• Implication: the positional encoding can capture CNN; the query/key matrices can capture context-
aware information beyond convolution

Output = Softmax(
QKT

d
⏟

context aware

+ B
⏟

context agnostic

)V

Q, K, V

Bi,j = b(xi−xj,yi−yj)

Q, K = 0 B

Vision Transformer (ViT)
Swin Transformer (Liu et al., 2021)

• Problems of the original ViT:

• Non-overlapping partition

• Only a single resolution

• Quadratic complexity for
attention computation

• Swin Transformer: hierarchical
and sliding window partitions

Vision Transformer (ViT)
Swin Transformer

• Attention within sub-blocks with shifts to avoid huge attention matrix

Vision Transformer (ViT)
Swin Transformer

