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Recurrent Neural Network
Neural Machine Translation (NMT)

• Out the translated sentence from an input 
sentence


• Training data: a set of input-output pairs 
(supervised setting)


• Encoder-decoder approach: 


• Encoder: Use (RNN/LSTM) to encode 
the input sentence input a latent vector


• Decoder: Use (RNN/LSTM) to generate 
a sentence based on the latent vector



Recurrent Neural Network
Neural Machine Translation



Recurrent Neural Network
Attention in NMT

• Usually, each output word is only related to a subset of input words (e.g., for 
machine translation)


• Let  be the current decoder latent state,   be the latent sate for 
each input word


• Compute the weight of each state by


• 


• Compute the context vector by 

u v1, …, vn

p = Softmax(uTv1, …, uTvn)

Vp = p1v1 + … + pnvn



Recurrent Neural Network
Attention in NMT



Transformer
Transformer

• An architecture that replies entirely on attention without using CNN/RNN


• Proposed in ``Attention Is All You Need'' (Vaswani et al., 2017)


• Initially used for neural machine translation



Transformer
Encoder and Decoder

• Self attention layer: the main architecture used in Transformer


• Decoder: will have another attention layer to help it focuses on relevant parts 
of input sentences.



Transformer
Encoder

• Each word has a corresponding ``latent 
vector'' (initially the word embedding for 
each word)


• Each layer of encoder: 


• Receive a list of vectors as input


• Passing these vectors to a self-attention 
layer


• Then passing them into a feed-foward 
layer 


• Output a list of vectors



Transformer
Self-attention layer

• Main idea: The actual meaning of each word may be related to other words in the sentence


• The actual meaning (latent vector) of each word is a weighted (attention) combination of other words (latent 
vectors) in the sentences



Transformer
Self-attention layer

• Input latent vectors: 


• Self-attention parameters: 
 (weights for query, key, 

value)


• For each word , compute 


• Query vector:  


• Key vector: 


• Value vector: 

x1, …, xn

WQ, WK, WV

i

qi = xiWQ

ki = xiWK

vi = xiWV



Transformer
Self-attention layer

• For each word , compute the scores to determine how much focus to place on other input words


• The attention score for word  to word : 

i

j i qT
i kj



Transformer
Self-attention layer

• For each word , the output vector


•

i

∑
j

sijvj, si = softmax(qT
i k1, …, qT

i kn)



Transformer
Matrix form

• Q = XWQ, K = XWK, V = XWV, Z = softmax(QKT)V



Transformer
Multiply with weight matrix to reshape

• Gather all the outputs 


• Multiply with a weight matrix to 
reshape


• Then pass to the next fully 
connected layer

Z1, …, Zk



Transformer
Overall architecture



Transformer
Sinusoidal Position Encoding

• The above architecture ignores 
the sequential information


• Add a positional encoding vector 
to each  (according to )xi i



Transformer
Positional Embedding

• Sin/cosine functions with different wavelengths (used in the original Transformer)


• 


• smooth, parameter-free, inductive

The jth dimension of ith tokenpi[ j] = {sin(i ⋅ c
j
d) if j is even

cos(i ⋅ c
j − 1

d ) if j is odd



Transformer
Types of positional encoding

• Position embedding: learn a latent vector for each position


• non-smooth, data-driven (learnable), non-inductive


• Relative position embedding: 


• For each , use the relative position embedding 


• non-smooth, data-driven (learnable), (partial)-inductive

i, j aj−i



Transformer
Positional Encoding

• Neural ODE embedding :


• Model positional embedding as a dynamic linear system 


• ``Learning to Encode Position for Transformer with Continuous   Dynamical Model. Liu et al., 2020’'


• Learnable Fourier Feature (Li et al., 2021): 


• 


• : learnable parameters (irrelevant to sequence length)


• ``Learnable Fourier Features for Multi-Dimensional Spatial  Positional Encoding. Li et al., 2021’'


• smooth, data-driven (learnable), inductive

px = ϕ(rx, θ)Wp,  where rx =
1
D

[cos xWr, sin xWr]

Wr, Wp



Transformer
Residual



Transformer
Whole framework



Contextual embedding
Contextual world representation

• The semantic meaning of a word should depend on its context 


• Solution: Train a model to extract contextual representations on text corpus



Contextual embedding
CoVe (McCann et al., 2017)

• Key idea: Train a standard neural 
machine translation model


• Take the encoder directly as 
contextualized word embeddings


• Problems: 


• Translation requires paired (labeled) 
data


• The embeddings are tailored to 
particular translation corpuses



Contextual embedding
Language model pretraining task

• Predict the next word given the 
prefix


• Can be defined on any unlabeled 
document



Contextual embedding
ELMo (Peter et al., 2018)

• Key ideas:


• Train a foward and backward 
LSTM language model on large 
corpus 


• Use the hidden states for each 
token to compute a vector 
representation of each word


• Replace the word embedding by 
Elmo's embedding (with fixed  
Elmo's LSTM weights)



Contextual embedding
ELMo results



Contextual embedding
BERT

• Key idea: replace LSTM by Transformer


• Define the generated pretraining task by masked language model


• Two pretraining tasks


• Finetune both BERT weights and task-dependent model weights for each 
task



Contextual embedding
BERT pretraining loss

• Masked language model: predicting each word by the rest of sentence


• Next sentence prediction: the model receives pairs of sentences as input and learns to predict if the second 
sentence is the subsequent sentence in the original document. 



Contextual embedding
BERT finetuning

• Keep the pretrained 
Transformers


• Replace or append 
a layer for the final 
task


• Train the whole 
model based on the 
task-dependent 
loss



Contextual embedding
BERT results



Vision Transformer (ViT)
Attemps on applying self-attention to vision

• DETR (Carion  et al., 2020): CNN + Self-attention for object detection


• Stand-alone self-attention (Ramachandran et al., 2020)


• …



Vision Transformer (ViT)
Vision Transformer (ViT)

• Partition input image into  
patches


• A linear projection to transform each 
patch to feature (no convolution)


• Pass tokens into Transformer

K × K



Vision Transformer (ViT)
Vision Transformer (ViT)

• Patches are non-overlapping in the original ViT


•  image   tokens


• Smaller patch size  more input tokens


• Higher computation (memory) cost, (usually) higher accuracy


• Use 1D (learnable) positional embedding 


• Inference with higher resolution: 


• Keep the same patch size, which leads to longer sequence


• Interpolation for positional embedding

N × N ⇒ (N/K)2

⇒



Vision Transformer (ViT)
ViT Performance

• ViT outperforms CNN with large pretraining



Vision Transformer (ViT)
ViT Performance

• Attention maps of ViT (to input)



Vision Transformer (ViT)
ViT v.s. ResNet

• Can ViT outperform ResNet on 
ImageNet without pretraining?


• Deit (Touvron et al., 2021): 


• Use very strong data 
augmentation


• Use a ResNet teacher and 
distill to ViT



Vision Transformer (ViT)
ViT v.s. ResNet

• ViT tends to converge to sharper regions than ResNet



Vision Transformer (ViT)
``Sharpness'' is related to generalization

• Testing can be viewed as a slightly perturbed training distribution


• Sharp minimum  performance degrades significantly from training to testing⇒



Vision Transformer (ViT)
Sharpness Aware Minimization (SAM)

• Optimize the worst-case loss within a small neighborhood


• 


•  is a small constant (hyper-parameter)


• Use 1-step gradient ascent to approximate inner max:


• 


• Conduct the following update for each iteration:


•

min
w

max
∥δ∥2≤ϵ

L(w + δ)

ϵ

̂δ = arg max
∥δ∥2≤ϵ

L(w) + ∇L(w)Tδ = ϵ
∇L(w)

∥∇L(w)∥

w ← w − α∇L(w + ̂δ)



Vision Transformer (ViT)
Sharpness Aware Minimization (SAM)

• SAM is a natural way to penalize sharpness region (but requires some 
computational overhead)



Vision Transformer (ViT)
ViT v.s. ResNet



Vision Transformer (ViT)
ViT v.s. ResNet

• Let's compare one ViT layer vs one convolution layer


• Reception field: (which input neurons can affect an output neuron)


• CNN: some subarea of image (kernel size)


• Self-attention: the whole image


•  there exists self-attention function that cannot be captured by convolution


• Is the function set of self-attention strictly larger than convolution? 


• Yes, given enough attention heads

⇒



Vision Transformer (ViT)
How can self-attention do convolution?

• Consider self-attention with relative positional encoding


•



• : query, key, value matrices


• : relative positional encoding (trainable scalars) 


• To perform convolution: Set  and purely rely on 


• Implication: the positional encoding can capture CNN; the query/key matrices can capture context-
aware information beyond convolution

Output = Softmax(
QKT

d
⏟

context aware

+ B
⏟

context agnostic

)V

Q, K, V

Bi,j = b(xi−xj,yi−yj)

Q, K = 0 B



Vision Transformer (ViT)
Swin Transformer (Liu et al., 2021)

• Problems of the original ViT:


• Non-overlapping partition


• Only a single resolution


• Quadratic complexity for 
attention computation


• Swin Transformer: hierarchical 
and sliding window partitions



Vision Transformer (ViT)
Swin Transformer

• Attention within sub-blocks with shifts to avoid huge attention matrix



Vision Transformer (ViT)
Swin Transformer


