COMP5212: Machine Learning Lecture 14

Minhao Cheng

Convolutional Neural Network Residual Networks

Very deep convnets do not train well —vanishing gradient problem

Convolutional Neural Network Residual Networks

Key idea: introduce "pass through" into each layer

• Thus, only residual needs to be learned

Convolutional Neural Network Residual Networks

method	top-1 err.	top-5 err.
VGG [41] (ILSVRC'14)	-	8.43 [†]
GoogLeNet [44] (ILSVRC'14)	-	7.89
VGG [41] (v5)	24.4	7.1
PReLU-net [13]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	19.38	4.49

Table 4. Error rates (%) of single-model results on the ImageNet validation set (except [†] reported on the test set).

Neural Networks for NLP

Powerful language model Modeling agents, beliefs and actions

Pat watches a demonstration of a bowling ball and a leaf being dropped at the same time in a vacuum chamber. Pat, who is a physicist, predicts that the bowling ball and the leaf will fall at the same rate.

Changing the last sentence of the prompt, we get:

... Pat, who has never seen this demonstration before, predicts that the bowling ball will fall to the ground first. This is incorrect. In a vacuum chamber, there is no air

Powerful language model **Generating code**

```
5 // Determine whether the sentiment of text is positive
     Use a web service
6 //
 7 async function isPositive(text: string): Promise<boolean> {
8
       method: "POST",
 9
       body: `text=${text}`,
10
       headers: {
11
         "Content-Type": "application/x-www-form-urlencoded",
12
13
       },
14
     });
     const json = await response.json();
15
     return json.label === "pos";
16
17 }
```

const response = await fetch(`http://text-processing.com/api/sentiment/`, {

Powerful language model Multitask assistant

I need to throw a dinner party for 6 people who are vegetarian. Can you suggest a 3-course menu with a chocolate dessert?

[Microsoft Bing]

(Also see OpenAl's ChatGPT, Google's Bard, Anthropic's Claude)

Sure, I can suggest a 3-course menu with a chocolate dessert for your vegetarian dinner party. Here are some possible options:

- Starter: Wild Mushroom Tartlets with Onion Sauce¹ or Vegan Popcorn Tofu Nuggets²
- Main: Vegan Butternut Squash Mac² or Vegetarian Three-Bean Chili³
- Dessert: Chocolate Lava Cake⁴ or Chocolate Pasta with Chocolate Hazelnut Cream Sauce, White Chocolate Shavings, and Fresh Berries⁴

I hope this helps you plan your party. Enjoy! 😊

Learn more: 1. booths.co.uk +10 more

How to let computer understand natural language?

Word representation

Previously commonest NLP solution: Use, e.g., **WordNet**, a thesaurus containing lists of **synonym sets** and **hypernyms** ("is a" relationships)

e.g., synonym sets containing "good"

```
noun: good
noun: good, goodness
noun: good, goodness
noun: commodity, trade_good, good
adj: good
adj (sat): full, good
adj (sat): full, good
adj (sat): estimable, good, honorable, resp
adj (sat): beneficial, good
adj (sat): good
adj (sat): good, just, upright
...
adverb: well, good
adverb: thoroughly, soundly, good
```

″.	e.g., hypernyms of "panda":
, 'r':'adv'}))	<pre>from nltk.corpus import wordnet as wn panda = wn.synset("panda.n.01") hyper = lambda s: s.hypernyms() list(panda.closure(hyper))</pre>
spectable	<pre>[Synset('procyonid.n.01'), Synset('carnivore.n.01'), Synset('placental.n.01'), Synset('mammal.n.01'), Synset('vertebrate.n.01'), Synset('chordate.n.01'), Synset('chordate.n.01'), Synset('animal.n.01'), Synset('organism.n.01'), Synset('organism.n.01'), Synset('living_thing.n.01'), Synset('whole.n.02'), Synset('object.n.01'), Synset('physical_entity.n.01'), Synset('entity.n.01')]</pre>

Word representation

In traditional NLP, we regard words as discrete symbols: hotel, conference, motel – a localist representation

Such symbols for words can be represented by one-hot vectors: motel = [00000000010000]hotel = [000000100000]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Means one 1, the rest 0s

Word representation **Problems**

Example: in web search, if a user searches for "Seattle motel", we would like to match documents containing "Seattle hotel"

But:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]hotel = [000000100000]

These two vectors are orthogonal There is no natural notion of **similarity** for one-hot vectors!

Solution:

- Could try to rely on WordNet's list of synonyms to get similarity? •
 - But it is well-known to fail badly: incompleteness, etc.
- Instead: learn to encode similarity in the vectors themselves

Learning word embeddings word vectors

- Use large (unlabeled) corpus to learn a useful word representation
 - Learn a vector for each word based on the corpus
 - Hopefully the vector represents some semantic meaning
 - Two different perspectives but led to similar results:
 - Glove (Pennington et al., 2014)
 - Word2vec (Mikolov et al., 2013)

Representing words by their context

- Distributional semantics: A word's meaning is given by the words that frequently appear close-by
 - "You shall know a word by the company it keeps" (J. R. Firth 1957: 11)
 - One of the most successful ideas of modern statistical NLP!
- When a word w appears in a text, its **context** is the set of words that appear nearby (within a fixed-size window).
- We use the many contexts of w to build up a representation of w
 - ...government debt problems turning into **banking** crises as happened in 2009... ...saying that Europe needs unified **banking** regulation to replace the hodgepodge...
- ...India has just given its **banking** system a shot in the arm...

Learning word embeddings **Context information**

it in an *L*-sized window:

•
$$W_{i-L-2}, W_{i-L-1}, \frac{W_{i-L}, \cdots, W_{i-1}, W_{i-1}}{Contexts of w_i}$$

Get a collection of (word, context) pairs, denoted by D.

• For each word w_i , define the "contexts" of the word as the words surrounding

 $V_i, W_{i+1}, \cdots, W_{i+L}, W_{i+L+1}, \cdots$

contexts of w_i

Learning word embeddings Examples

Source Text

The	quick	brown	fox	jumps	over	the	lazy	dog.	\rightarrow	(the, quick) (the, brown)
			-							
The	quick	brown	fox	jumps	over	the	lazy	dog.		(quick, the) (quick, brown) (quick, fox)
The	quick	brown	fox	jumps	over	the	lazy	dog.	→	(brown, the) (brown, quick) (brown, fox) (brown, jumps)
The	quick	brown	fox	jumps	over	the	lazy	dog.	—	(fox, quick) (fox, brown) (fox, jumps) (fox, over)

Training
Samples

Learning word embeddings Use bag-of-word model

- Idea 1: Use the bag-of-word model to ``describe'' each word
- Assume we have context words c_1, \dots, c_d in the corpus, compute
 - $\#(w, c_i) :=$ number of times the pair (w, c_i) appears in D
- For each word w, form a d

 dimensional (sparse) vector to
 describe w

•
$$#(w, c_1), \cdots, #(w, c_d),$$

Learning word embeddings **PMI/PPMI Representation**

• Instead of using co-occurrent count #(w, c), we can define pointwise mutual information:

•
$$\mathsf{PMI}(w,c) = \log(\frac{\hat{P}(w,c)}{\hat{P}(w)\hat{P}(c)}) = \log\frac{\#(w,c)}{\#(w)\#(c)},$$

• $\#(w) = \sum \#(w, c)$: number of times word w occurred in D $\#(c) = \sum \#(w, c)$: number of times context *c* occurred

- D: number of pairs in D \bullet
- Positive PMI (PPMI) usually achieves better performance:
 - PPMI(w, c) = max(PMI(w, c), 0)
- M^{PPMI}: a *n* by *d* word feature matrix, each row is a word and each column is a context

Learning word embeddings PPMI Matrix

Learning word embeddings **Generalized Low-rank Embedding**

• SVD basis will minimize

•
$$\min_{W,V} ||M^{\mathsf{PPMI}} - WV^T||_F^2$$

- Glove (Pennington et al., 2014)
 - Negative sampling (less weights to 0s in M^{PPMI})
 - Adding bias term:

• $M^{\mathsf{PPMI}} \approx WV^T + b_w e^T + eb_c^T$

• Use W or V as the word embedding matrix

Learning word embeddings Word2vec (Mikolov et al., 2013)

- A neural network model for learning word embeddings
- Main idea:
 - Predict the target words based on the neighbors (CBOW)
 - Predict neighbors given the target words (Skip-gram)

context word	target word	context wo
i	like natura	langua
i	like natura	al langua
i	like natura	allangua
i	like natura	l langua

ord

age processing

age processing

ge processing

age processing

Learning word embeddings **CBOW (Continuous Bag-of-Word model)**

Predict the target words based on the neighbors

Learning word embeddings Skip-gram

Predict neighbors using target word

Learning word embeddings More on skip-gram

- Every word has two embeddings:
 - v_i serves as the role of target
 - u_i serves as the role of context
- Model probability as softmax:

•
$$P(o \ c) = \frac{e^{u_o^T v_c}}{\sum_{w=1}^W e^{u_w^T v_c}}$$

• Learn the probability $P(w_{t+j} | w_t)$: the probability to see w_{t+j} in target word w_t 's neighborhood

Learning word embeddings **Results**

• The low-dimensional embeddings are (often) meaningful:

Male-Female

Verb tense

Country-Capital

Representation for sentence/document Word vectors + linear model

- Example: text classification (e.g., sentiment prediction, review score prediction)
- Linear model: $y \approx \text{sign}(w^T x)$ (e.g., by linear SVM/logistic regression)
- *w_i*: the ``contribution'' of each word

Representation for sentence/document Word vectors + Fully connected network

- $f(x) = W_L \sigma(W_{L-1} \cdots \sigma(W_0 x))$
- The first layer W_0 is a d_1 by d matrix:
 - Each column w_i is a d_1 dimensional representation of *i*-th word (word embedding)
 - $W_0 x = x_1 w_1 + x_2 w_2 + \dots + x_d w_d$ is a linear combination of these vectors
 - W_0 is also called the word embedding matrix
 - Final prediction can be viewed as an L-1 layer network on $W_0 \boldsymbol{x}$ (average of word embeddings)
- Not capturing the sequential information

Recurrent Neural Network Time series/Sequence data

- Input: $\{x_1, x_2, \dots, x_T\}$
 - Each x_t is the feature at time step t
 - Each x_t can be a d-dimensional vector
- Output: $\{y_1, y_2, \dots, y_T\}$
 - Each y_t is the output at step t
 - Multi-class output or Regression output:
 - $y_t \in \{1, 2, \dots, L\}$ or $y_t \in \mathbb{R}$

Recurrent Neural Network Example: Time Series Prediction

- Climate Data:
 - x_t : temperature at time t
 - y_t : temperature (or temperature change) at time t + 1
- Stock Price: Predicting stock price

Recurrent Neural Network Example: Language Modeling

The

cat is ?

Recurrent Neural Network Example: Language Modeling

The cat

- x_t : one-hot encoding to represent the word at step t ([0,...,0,1,0,...,0])
- y_t : the next word
 - $y_t \in \{1, \dots, V\}$ V: Vocabulary size

Recurrent Neural Network Example: POS Tagging

- Part of Speech Tagging:
 - Labeling words with their Part-Of-Speech (Noun, Verb, Adjective, ...)
 - *x_t*: a vector to represent the word at step *t*
 - y_t : label of word t

Recurrent Neural Network Example: POS Tagging

- x_t : *t*-th input
- s_t : hidden state at time t (`memory'' of the network)
 - $s_t = f(Ux_t + Ws_{t-1})$
 - W: transition matrix, U: word embedding matrix, s_0 usually set to be 0
- Predicted output at time *t*:
 - $o_t = \arg\max_i (Vs_t)_i$

Recurrent Neural Network Recurrent Neural Network (RNN)

- Training: Find U, W, V to minimize empirical loss:
- Loss of a sequence: •

$$\sum_{t=1}^{T} loss(Vs_t, y_t)$$

- $(s_t \text{ is a function of } U, W, V)$
- Loss on the whole dataset: \bullet
 - Average loss over all sequences
- Solved by SGD/Adam

Recurrent Neural Network RNN: Text Classification

- Not necessary to output at each step
- Text Classification:
 - sentence \rightarrow category
 - Output only at the final step
- Model: add a fully connected network to the final embedding

Recurrent Neural Network Multi-layer RNN

Recurrent Neural Network Problems of Classical RNN

- Hard to capture long-term dependencies
- Hard to solve (vanishing gradient problem)
- Solution:
 - LSTM (Long Short Term Memory networks)
 - GRU (Gated Recurrent Unit)
 - •

Recurrent Neural Network LSTM

• RNN:

• LSTM:

Recurrent Neural Network Neural Machine Translation (NMT)

- Out the translated sentence from an input sentence
- Training data: a set of input-output pairs (supervised setting)
- Encoder-decoder approach:
 - Encoder: Use (RNN/LSTM) to encode the input sentence input a latent vector
 - Decoder: Use (RNN/LSTM) to generate a sentence based on the latent vector

Recurrent Neural Network Neural Machine Translation

Recurrent Neural Network Attention in NMT

- Usually, each output word is only related to a subset of input words (e.g., for machine translation)
- Let u be the current decoder latent state, v_1, \ldots, v_n be the latent sate for each input word
- Compute the weight of each state by

•
$$p = \operatorname{Softmax}(u^T v_1, \dots, u^T v_n)$$

Compute the context vector by $Vp = p_1v_1 + \ldots + p_nv_n$

Recurrent Neural Network Attention in NMT

