
Minhao Cheng

COMP5212: Machine Learning
Lecture 14

Convolutional Neural Network
Residual Networks

• Very deep convnets do not train well —vanishing gradient problem

Convolutional Neural Network
Residual Networks

• Key idea: introduce ``pass through'' into each layer

• Thus, only residual needs to be learned

Convolutional Neural Network
Residual Networks

Neural Networks for NLP

Powerful language model
Modeling agents, beliefs and actions

Powerful language model
Generating code

Powerful language model
Multitask assistant

How to let computer understand
natural language?

Word representation

Word representation

Word representation
Problems

Learning word embeddings
word vectors

• Use large (unlabeled) corpus to learn a useful
word representation

• Learn a vector for each word based on the
corpus

• Hopefully the vector represents some semantic
meaning

• Two different perspectives but led to similar
results:

• Glove (Pennington et al., 2014)

• Word2vec (Mikolov et al., 2013)

Learning word embeddings
Context information

• For each word , define the ``contexts'' of the word as the words surrounding
it in an -sized window:

•

• Get a collection of (word, context) pairs, denoted by .

wi
L

wi−L−2, wi−L−1, wi−L, ⋯, wi−1

contexts of wi

, wi, wi+1, ⋯, wi+L

contexts of wi

, wi+L+1, ⋯

D

Learning word embeddings
Examples

Learning word embeddings
Use bag-of-word model

• Idea 1: Use the bag-of-word model
to ``describe'' each word

• Assume we have context words
 in the corpus, compute

•

• For each word , form a
-dimensional (sparse) vector to
describe

•

c1, ⋯, cd

#(w, ci) := number of times the pair(w, ci) appears in D

w d

w

#(w, c1), ⋯, #(w, cd),

Learning word embeddings
PMI/PPMI Representation

• Instead of using co-occurrent count , we can define pointwise mutual information:

•

• : number of times word occurred in

• : number of times context occurred

• : number of pairs in

• Positive PMI (PPMI) usually achieves better performance:

•

• : a by word feature matrix, each row is a word and each column is a context

#(w, c)

PMI(w, c) = log(
̂P(w, c)

̂P(w) ̂P(c)
) = log

#(w, c) |D |
#(w)#(c)

,

#(w) = ∑
c

#(w, c) w D

#(c) = ∑
w

#(w, c) c

|D | D

PPMI(w, c) = max(PMI(w, c),0)

MPPMI n d

Learning word embeddings
PPMI Matrix

Learning word embeddings
Generalized Low-rank Embedding

• SVD basis will minimize

•

• Glove (Pennington et al., 2014)

• Negative sampling (less weights to 0s in)

• Adding bias term:

•

• Use or as the word embedding matrix

min
W,V

∥MPPMI − WVT∥2
F

MPPMI

MPPMI ≈ WVT + bweT + ebT
c

W V

Learning word embeddings
Word2vec (Mikolov et al., 2013)

• A neural network model for learning word embeddings

• Main idea:

• Predict the target words based on the neighbors (CBOW)

• Predict neighbors given the target words (Skip-gram)

Learning word embeddings
CBOW (Continuous Bag-of-Word model)

• Predict the target words based on the neighbors

Learning word embeddings
Skip-gram

• Predict neighbors using target word

Learning word embeddings
More on skip-gram

• Learn the probability : the probability to see in target word 's neighborhood

• Every word has two embeddings:

• serves as the role of target

• serves as the role of context

• Model probability as softmax:

•

P(wt+j |wt) wt+j wt

vi

ui

P(o |c) =
euT

o vc

∑W
w=1 euT

wvc

Learning word embeddings
Results

• The low-dimensional embeddings are (often) meaningful:

Representation for sentence/document
Word vectors + linear model

• Example: text classification (e.g., sentiment prediction, review score
prediction)

• Linear model: (e.g., by linear SVM/logistic regression)

• : the ``contribution'' of each word

y ≈ sign(wTx)

wi

Representation for sentence/document
Word vectors + Fully connected network

•

• The first layer is a by matrix:

• Each column is a dimensional representation of -th word （word embedding)

• is a linear combination of these vectors

• is also called the word embedding matrix

• Final prediction can be viewed as an layer network on (average of word
embeddings)

• Not capturing the sequential information

f(x) = WLσ(WL−1⋯σ(W0x))

W0 d1 d

wi d1 i

W0x = x1w1 + x2w2 + ⋯ + xdwd

W0

L − 1 W0x

Recurrent Neural Network
Time series/Sequence data

• Input:

• Each is the feature at time step

• Each can be a -dimensional vector

• Output:

• Each is the output at step

• Multi-class output or Regression output:

•

{x1, x2, ⋯, xT}

xt t

xt d

{y1, y2, ⋯, yT}

yt t

yt ∈ {1,2,⋯, L} or yt ∈ ℝ

Recurrent Neural Network
Example: Time Series Prediction

• Climate Data:

• : temperature at time

• : temperature (or temperature
change) at time

• Stock Price: Predicting stock price

xt t

yt
t + 1

Recurrent Neural Network
Example: Language Modeling

Recurrent Neural Network
Example: Language Modeling

• : one-hot encoding to represent the
word at step

• : the next word

•

xt
t ([0,…,0,1,0,…,0])

yt

yt ∈ {1,⋯, V} V: Vocabulary size

Recurrent Neural Network
Example: POS Tagging

• Part of Speech Tagging:

• Labeling words with their Part-
Of-Speech (Noun, Verb,
Adjective, …)

• : a vector to represent the
word at step

• : label of word

xt
t

yt t

Recurrent Neural Network
Example: POS Tagging

• : -th input

• : hidden state at time (``memory’' of the network)

•

• : transition matrix, : word embedding matrix, usually set to be 0

• Predicted output at time :

•

xt t

st t

st = f(Uxt + Wst−1)

W U s0

t

ot = arg max
i

(Vst)i

Recurrent Neural Network
Recurrent Neural Network (RNN)

• Training: Find to minimize empirical loss:

• Loss of a sequence:

•

• (is a function of)

• Loss on the whole dataset:

• Average loss over all sequences

• Solved by SGD/Adam

U, W, V

T

∑
t=1

loss(Vst, yt)

st U, W, V

Recurrent Neural Network
RNN: Text Classification

• Not necessary to output at each step

• Text Classification:

•

• Output only at the final step

• Model: add a fully connected network
to the final embedding

sentence → category

Recurrent Neural Network
Multi-layer RNN

Recurrent Neural Network
Problems of Classical RNN

• Hard to capture long-term dependencies

• Hard to solve (vanishing gradient problem)

• Solution:

• LSTM (Long Short Term Memory networks)

• GRU (Gated Recurrent Unit)

• …

Recurrent Neural Network
LSTM

• RNN:

• LSTM:

Recurrent Neural Network
Neural Machine Translation (NMT)

• Out the translated sentence from an input
sentence

• Training data: a set of input-output pairs
(supervised setting)

• Encoder-decoder approach:

• Encoder: Use (RNN/LSTM) to encode
the input sentence input a latent vector

• Decoder: Use (RNN/LSTM) to generate
a sentence based on the latent vector

Recurrent Neural Network
Neural Machine Translation

Recurrent Neural Network
Attention in NMT

• Usually, each output word is only related to a subset of input words (e.g., for
machine translation)

• Let be the current decoder latent state, be the latent sate for
each input word

• Compute the weight of each state by

•

• Compute the context vector by

u v1, …, vn

p = Softmax(uTv1, …, uTvn)

Vp = p1v1 + … + pnvn

Recurrent Neural Network
Attention in NMT

