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Convolutional Neural Network
Residual Networks

• Very deep convnets do not train well —vanishing gradient problem



Convolutional Neural Network
Residual Networks

• Key idea: introduce ``pass through'' into each layer


• Thus, only residual needs to be learned



Convolutional Neural Network
Residual Networks



Neural Networks for NLP



Powerful language model
Modeling agents, beliefs and actions



Powerful language model
Generating code 



Powerful language model
Multitask assistant



How to let computer understand 
natural language?



Word representation



Word representation



Word representation
Problems



Learning word embeddings
word vectors

• Use large (unlabeled) corpus to learn a useful 
word representation


• Learn a vector for each word based on the 
corpus


• Hopefully the vector represents some semantic 
meaning


• Two different perspectives but led to similar 
results:


• Glove (Pennington et al., 2014)


• Word2vec (Mikolov et al., 2013)





Learning word embeddings
Context information

• For each word , define the ``contexts'' of the word as the words surrounding 
it in an -sized window:


•



• Get a collection of (word, context) pairs, denoted by .

wi
L

wi−L−2, wi−L−1, wi−L, ⋯, wi−1

contexts of wi

, wi, wi+1, ⋯, wi+L

contexts of wi

, wi+L+1, ⋯
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Learning word embeddings
Examples



Learning word embeddings
Use bag-of-word model

• Idea 1: Use the bag-of-word model 
to ``describe'' each word


• Assume we have context words 
 in the corpus, compute


• 


• For each word , form a 
-dimensional (sparse) vector to 
describe 


•

c1, ⋯, cd

#(w, ci) :=  number of times the pair(w, ci) appears in D

w d

w

#(w, c1), ⋯, #(w, cd),



Learning word embeddings
PMI/PPMI Representation

• Instead of using co-occurrent count , we can define pointwise mutual information: 


• 


• : number  of times word  occurred in 


• : number of times context  occurred 


• : number of pairs in 


• Positive PMI (PPMI) usually achieves better performance: 


• 


• : a  by  word feature matrix, each row is  a word and each column is a context

#(w, c)

PMI(w, c) = log(
̂P(w, c)

̂P(w) ̂P(c)
) = log

#(w, c) |D |
#(w)#(c)

,

#(w) = ∑
c

#(w, c) w D

#(c) = ∑
w

#(w, c) c

|D | D

PPMI(w, c) = max(PMI(w, c),0)

MPPMI n d



Learning word embeddings
PPMI Matrix



Learning word embeddings
Generalized Low-rank Embedding

• SVD basis will minimize


• 


• Glove (Pennington et al., 2014)


• Negative sampling (less weights to 0s in )


• Adding bias term: 


• 


• Use  or  as the word embedding matrix 

min
W,V

∥MPPMI − WVT∥2
F

MPPMI

MPPMI ≈ WVT + bweT + ebT
c

W V



Learning word embeddings
Word2vec (Mikolov et al., 2013)

• A neural network model for learning word embeddings


• Main idea:


• Predict the target words based on the neighbors (CBOW)


• Predict neighbors given the target words (Skip-gram)



Learning word embeddings
CBOW (Continuous Bag-of-Word model)

• Predict the target words based on the neighbors



Learning word embeddings
Skip-gram

•  Predict neighbors using target word



Learning word embeddings
More on skip-gram

• Learn the probability : the probability to see  in target word 's neighborhood


• Every word has two embeddings:


•  serves as the role of target


•  serves as the role of context


• Model probability as softmax:


•

P(wt+j |wt) wt+j wt

vi

ui

P(o |c) =
euT

o vc

∑W
w=1 euT

wvc



Learning word embeddings
Results

• The low-dimensional embeddings are (often) meaningful: 



Representation for sentence/document
Word vectors + linear model

• Example: text classification (e.g., sentiment prediction, review score 
prediction)


• Linear model:  (e.g., by linear SVM/logistic regression)


• : the ``contribution'' of each word

y ≈ sign(wTx)

wi



Representation for sentence/document
Word vectors + Fully connected network

• 


• The first layer  is a  by  matrix: 


• Each column  is a  dimensional representation of -th word （word embedding )


•  is a linear combination of these vectors


•  is also called the word embedding matrix


• Final prediction can be viewed as an  layer network on  (average of word 
embeddings)


• Not capturing the sequential information

f(x) = WLσ(WL−1⋯σ(W0x))

W0 d1 d

wi d1 i

W0x = x1w1 + x2w2 + ⋯ + xdwd

W0

L − 1 W0x



Recurrent Neural Network
Time series/Sequence data

• Input: 


• Each  is the feature at time step 


• Each  can be a -dimensional vector


• Output: 


• Each  is the output at step 


• Multi-class output or Regression output: 


•

{x1, x2, ⋯, xT}

xt t

xt d

{y1, y2, ⋯, yT}

yt t

yt ∈ {1,2,⋯, L}  or  yt ∈ ℝ



Recurrent Neural Network
Example: Time Series Prediction

• Climate Data:


• : temperature at time 


• : temperature (or temperature 
change) at time 


• Stock Price: Predicting stock price 

xt t

yt
t + 1



Recurrent Neural Network
Example: Language Modeling



Recurrent Neural Network
Example: Language Modeling

• : one-hot encoding to represent the 
word at step  


• : the next word 


•

xt
t ([0,…,0,1,0,…,0])

yt

yt ∈ {1,⋯, V} V: Vocabulary size 



Recurrent Neural Network
Example: POS Tagging

• Part of Speech Tagging: 


•  Labeling words with their Part-
Of-Speech (Noun, Verb, 
Adjective, …)


• : a vector to represent the 
word at step 


• : label of word 

xt
t

yt t



Recurrent Neural Network
Example: POS Tagging

• : -th input 


• : hidden state at time  (``memory’' of the network)


• 


• : transition matrix, : word embedding matrix,  usually set to be 0


• Predicted output at time : 


•

xt t

st t

st = f(Uxt + Wst−1)

W U s0

t

ot = arg max
i

(Vst)i



Recurrent Neural Network
Recurrent Neural Network (RNN)

• Training: Find  to minimize empirical loss: 


• Loss of a sequence: 


• 


• (  is a function of )


• Loss on the whole dataset:


• Average loss over all sequences


• Solved by SGD/Adam

U, W, V

T

∑
t=1

loss(Vst, yt)

st U, W, V



Recurrent Neural Network
RNN: Text Classification

• Not necessary to output at each step


• Text Classification: 


• 


• Output only at the final step


• Model: add a fully connected network 
to the final embedding 

sentence  →  category 



Recurrent Neural Network
Multi-layer RNN



Recurrent Neural Network
Problems of Classical RNN

• Hard to capture long-term dependencies


• Hard to solve (vanishing gradient problem)


• Solution: 


• LSTM (Long Short Term Memory networks)


• GRU (Gated Recurrent Unit)


• …



Recurrent Neural Network
LSTM

• RNN:


• LSTM:



Recurrent Neural Network
Neural Machine Translation (NMT)

• Out the translated sentence from an input 
sentence


• Training data: a set of input-output pairs 
(supervised setting)


• Encoder-decoder approach: 


• Encoder: Use (RNN/LSTM) to encode 
the input sentence input a latent vector


• Decoder: Use (RNN/LSTM) to generate 
a sentence based on the latent vector



Recurrent Neural Network
Neural Machine Translation



Recurrent Neural Network
Attention in NMT

• Usually, each output word is only related to a subset of input words (e.g., for 
machine translation)


• Let  be the current decoder latent state,   be the latent sate for 
each input word


• Compute the weight of each state by


• 


• Compute the context vector by 

u v1, …, vn

p = Softmax(uTv1, …, uTvn)

Vp = p1v1 + … + pnvn



Recurrent Neural Network
Attention in NMT


