COMP5212: Machine Learning Lecture 13

Minhao Cheng

Convolutional Neural Network Image classification without CNN

- Input an image
- Extract ``interesting points'' (e.g., corner detector)
- For each interesting point, extract 128-dimensional SIFT descriptor
- Clustering of SIFT descriptor to get "visual vocabulary"
- Then transform image to a feature vector (bag of visual words)
- Run classification (SVM)

* Mushroom image by Tifred25 (http://commons.wikimedia.org/wiki/File:Bolet_Orange_01.jpg)

Dataset **MNIST**

- Hand-written digits (0 to 9)
- Total 60,000 samples, 10-class classification

Dataset **MNIST Classification Accuracy**

- See the website by Yann LeCun: http://yann.lecun.com/exdb/mnist/
 - Classifier
 - Linear classif
 - SVM, Gaussian
 - SVM, degree 4 pol
 - Best SVM res
 - 2-layer NN
 - **3-layer NN**
 - CNN, LeNet-5 Larger CNN (2011

Test Error
12.0 %
1.4%
1.1%
0.56%
$\sim 3.0\%$
$\sim 2.5\%$
0.85%
$\sim 0.3\%$

Dataset ImageNet Data

- ILSVRC competition: 1000 classes and about 1.2 million images
- Full imagenet: >20,000 categories, each with about a thousand images.

Dataset ImageNet Results

Convolutional Neural Network Neural Networks

 $h(\mathbf{x}) = x_1^{(4)} = \theta(W_4 \mathbf{x}^{(3)}) = \theta(W_4 \theta(W_3 \mathbf{x}^{(2)}))$ $= \cdots = \theta(W_4\theta(W_3\theta(W_2\theta(W_1x))))$

• Fully connected networks \Rightarrow doesn't work well for computer vision applications

Convolutional Neural Network The structure of CNN

Structure of VGG

- Two important layers: •
 - Convolution
 - Pooling

- Fully connected layers have too many parameters
 - \Rightarrow poor performance
- Example: VGG first layer \bullet
 - Input: $224 \times 224 \times 3$
 - Output: $224 \times 224 \times 64$
 - Number of parameters if we use fully connected net:
 - $(224 \times 224 \times 3) \times (224 \times 224 \times 64) = 483$ billion
 - Convolution layer leads to:
 - Local connectivity
 - Parameter sharing

Convolutional Neural Network Local connectivity

- Each hidden unit is connected only to a sub-region of input
- It is connected to all channels (R, G, B)

Convolutional Neural Network Local connectivity

Convolutional Neural Network Parameter Sharing

- Making a reasonable assumption:
 - If one feature is useful to compute at some spatial position (x, y),
- Using the convolution operator

• then it should also be useful to compute at a different position (x_2, y_2)

• The convolution of an image x with a kernel k is computed as

•
$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{p,q}$$

1	0.5	20	
0.25	0	0	*
0	0	20	

1*1 + 0.5*0.2 + 0.25*0.2 + 0*0 = 1.15

0.5*1 + 20*0.2 + 0*0.2 + 0*0 = 4.5

0.25*1 + 0*0.2 + 0*0.2 + 0*0 = 0.25

1	0.2	1.15	4.5
0.2	0	0.25	

0*1 + 0*0.2 + 0*0.2 + 20*0 = 0

1	0.2	1.15	4.5
0.2	0	0.25	0

 $x * k_{ij}$, where $W_{ij} = \tilde{W}_{ij}$

255	0	0	0
0	255	0	0
0	128	128	0
0	128	128	0

 $x_i * k_{ij}$

- Element-wise activation function after convolution lacksquare
 - \Rightarrow detector of a feature at any position in the image

Convolutional Neural Network Learned Kernels

• Example kernels learned by AlexNet

- Number of parameters:
 - Example: 200×200 image, 100 kernels, kernel size 10×10
 - $\Rightarrow 10 \times 10 \times 100 = 10$ K parameters

Convolutional Neural Network Padding

- Use zero padding to allow going over the boundary
 - Easier to control the size of output layer

Convolutional Neural Network Strides

- Stride: The amount of movement be input image
- Stride (1,1): no stride

• Stride: The amount of movement between applications of the filter to the

Convolutional Neural Network Pooling

- It's common to insert a pooling layer in-between successive convolutional layers
- Reduce the size of presentation, down-sampling
- Example: Max pooling •

Single depth slice

	2	4
5	7	8
2	1	0
2	3	4
		у

max pool with 2x2 filters and stride 2

6	8
3	4

Convolutional Neural Network Pooling

• By pooling, we gain robustness to the exact spatial location of features

Convolutional Neural Network Example: LeNet5

- Input: 32×32 images (MNIST)
- Convolution 1: 6.5×5 filters, stride 1
 - Output: 628×28 maps
- Pooling 1: 2×2 max pooling, stride 2
 - Output: 6.14×14 maps
- Convolution 2: 16 5×5 filters, stride 1
 - Output: 16 10×10 maps
- Pooling 2: 2×2 max pooling with stride 2
 - Output: 165×5 maps (total 400 values)
- 3 fully connected layers: $120 \Rightarrow 84 \Rightarrow 10$ neurons

Convolutional Neural Network AlexNet

- 8 layers in total, about 60 million parameters and 650,000 neurons.
- Trained on ImageNet dataset
- 18.2% top-5 error
- ``ImageNet Classification with Deep Convolutional Neural Networks', by Krizhevsky, Sustskever and Hinton, NIPS 2012.

Convolutional Neural Network VGG Network

Convolutional Neural Network VGG Network

 Output provides an estimate of the conditional probability of each class

INPUT: [224x224x3]

```
weights: 0
                        memory: 224*224*3=150K
CONV3-64: [224x224x64]
                                                weights: (3*3*3)*64 = 1,728
                      memory: 224*224*64=3.2M
                                                weights: (3*3*64)*64 = 36,864
CONV3-64: [224x224x64] memory: 224*224*64=3.2M
POOL2: [112x112x64] memory: 112*112*64=800K weights: 0
CONV3-128: [112x112x128]
                        memory: 112*112*128=1.6M weights: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128]
                        memory: 112*112*128=1.6M weights: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K weights: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256]
                      memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824
                      memory: 56*56*256=800K
CONV3-256: [56x56x256]
                                               weights: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K weights: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K
                                               weights: (3*3*256)*512 = 1,179,648
                      memory: 28*28*512=400K
CONV3-512: [28x28x512]
                                               weights: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K
                                               weights: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K weights: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K
                                               weights: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]
                      memory: 14*14*512=100K
                                               weights: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K
                                               weights: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K weights: 0
FC: [1x1x4096] memory: 4096 weights: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 weights: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 weights: 4096*1000 = 4,096,000
```


Convolutional Neural Network What do the filters learn?

- The receptive field of a neuron is the input region that can affect the neuron's output
- The receptive field for a first layer neuron is its neighbors (depending on kernel size) \Rightarrow capturing very local patterns
- For higher layer neurons, the receptive field can be much larger \Rightarrow capturing global patterns

Convolutional Neural Network Training

- Training:
 - Apply SGD to minimize in-sample training error
 - Backpropagation can be extended to convolutional layer and pooling layer to compute gradient!
 - Millions of parameters \Rightarrow easy to overfit

Convolutional Neural Network Revisit Alexnet

- Dropout: 0.5 (in FC layers)
- A lot of data augmentation
- Momentum SGD with batch size 128, momentum factor 0.9
- L2 weight decay (L2 regularization)
- validation accuracy

Learning rate: 0.01, decreased by 10 every time when reaching a stable

Convolutional Neural Network Dropout

One of the most effective regularization for deep neural networks

Method	CIFAR-10
Conv Net $+ \max$ pooling (hand tuned)	15.60
Conv Net + stochastic pooling (Zeiler and Fergus, 2013)	15.13
Conv Net $+ \max$ pooling (Snoek et al., 2012)	14.98
Conv Net + max pooling + dropout fully connected layers	14.32
Conv Net $+ \max \text{ pooling} + \text{ dropout in all layers}$	12.61
Conv Net $+$ maxout (Goodfellow et al., 2013)	11.68

Table 4: Error rates on CIFAR-10 and CIFAR-100.

Srivastava et al, "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", 2014.

Convolutional Neural Network Dropout(training)

- Dropout in the **training** phase:
 - For each batch, turn off each neuron (including inputs) with a probability $1 - \alpha$
 - Zero out the removed nodes/edges and do backpropogation

Full network

1st batch

2nd batch

.....

Convolutional Neural Network Dropout(test)

- The model is different from the full model: ullet
- Each neuron computes

•
$$x_i^{(l)} = B\sigma(\sum_j W_{ij}^{(l)} x_j^{(l-1)} + b_i^{(l)})$$

- Where B is Bernoulli variable that takes 1 with probability α
- The expected output of the neuron:

•
$$E[x_i^{(l)}] = \alpha \sigma (\sum_j W_{ij}^{(l)} x_j^{(l-1)} + b_i^{(l)})$$

• Use the expected output at test time \Rightarrow multiply all the weights by α

Convolutional Neural Network Explanations of dropout

- For a network with n neurons, there are 2^n possible sub-networks
- Dropout: randomly sample over all 2^n possibilities
- Can be viewed as a way to learn Ensemble of 2ⁿ models

Convolutional Neural Network Batch Normalization

Initially proposed to reduce co-variate shift

•
$$O_{b,c,x,y} \leftarrow \gamma \frac{I_{b,c,x,y} - \mu_c}{\sqrt{\sigma_c^2 + \epsilon}} + \beta \quad \forall b, c$$

- $\mu_c = \frac{1}{|B|} \sum_{b,x,y} I_{b,c,x,y}$: the mean for channel *c*, and σ_c standard deviation.
- γ and β : two learnable parameters

Convolutional Neural Network Batch Normalization

- Couldn't reduce covariate shift (Ilyas et al 2018)
- Allow larger learning rate
 - Constraint the gradient norm

Convolutional Neural Network Other normalization

Convolutional Neural Network Residual Networks

Very deep convnets do not train well —vanishing gradient problem

Convolutional Neural Network Residual Networks

Key idea: introduce "pass through" into each layer

• Thus, only residual needs to be learned

Convolutional Neural Network Residual Networks

method	top-1 err.	top-5 err.
VGG [41] (ILSVRC'14)	-	8.43 [†]
GoogLeNet [44] (ILSVRC'14)	-	7.89
VGG [41] (v5)	24.4	7.1
PReLU-net [13]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	19.38	4.49

Table 4. Error rates (%) of single-model results on the ImageNet validation set (except [†] reported on the test set).

