COMP5212: Machine Learning Lecture 11

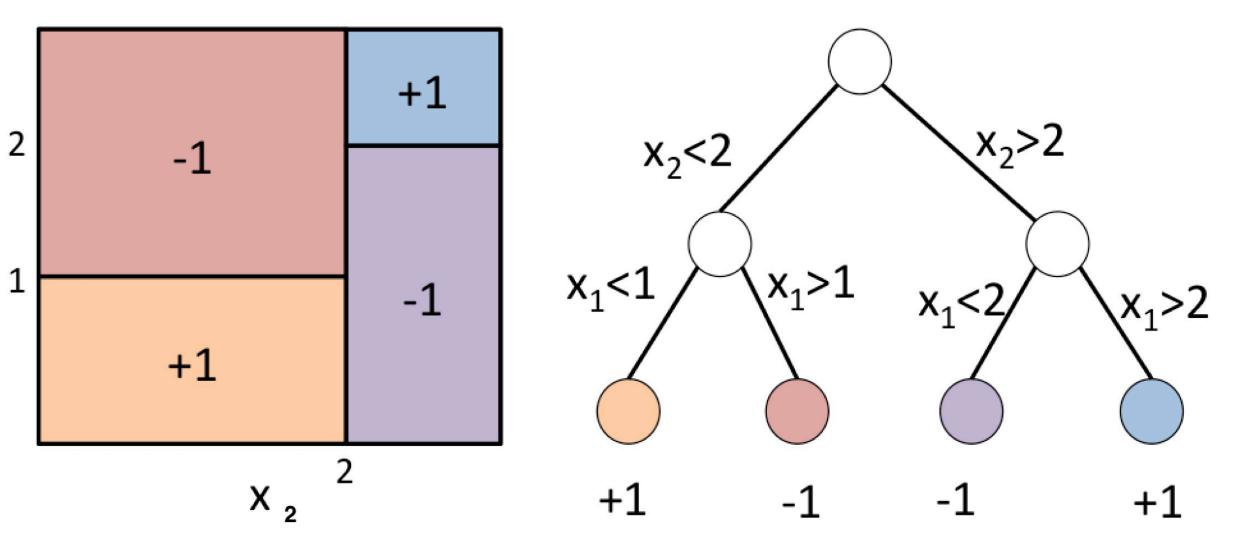
Minhao Cheng

Decision Tree Illustration

• Each node checks on feature *x_i*:

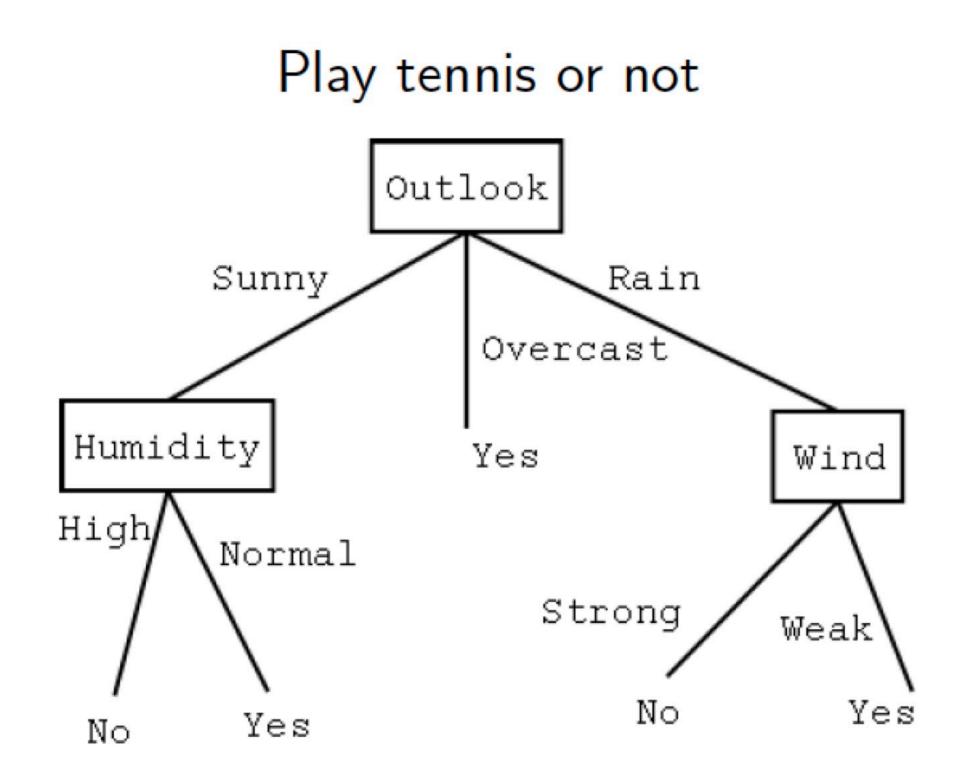
 $X_{\overline{1}}$

- Go left if $x_i < \text{threshold}$
- Go right if $x_i >$ threshold



Decision Tree A real example

- Each node checks on feature *x_i*:
 - Go left if x_i < threshold
 - Go right if $x_i >$ threshold



Decision Tree Pros

- Strength:
 - It's a nonlinear classifier
 - Better interpretability
 - Can naturally handle categorical features

Decision Tree Pros

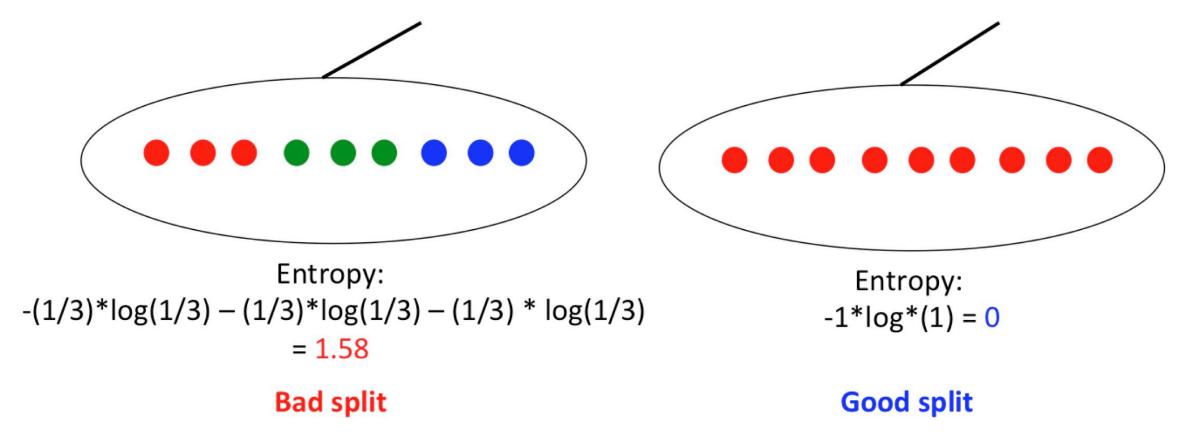
- Strength:
 - It's a nonlinear classifier
 - Better interpretability
 - Can naturally handle categorical features
- Computation: •
 - Training: slow
 - Prediction: fast
 - h operations (h: depth of the tree, usually \leq 15)

Decision TreeSplitting the node

- Classification tree: Split the node to maximize entropy
- Let *S* be set of data points in a node, *c* = 1,..., *C* are labels:

• entropy :
$$H(S) = -\sum_{c=1}^{C} p(c) \log p(c)$$

- Where *p*(*c*) is the proportion of the data belong to class *c*
 - Entropy=0 if all samples are in the same class
 - Entropy is large if $p(1) = \ldots = p(C)$



Decision Tree Information Gain

• The averaged entropy of a split $S \rightarrow S_1, S_2$

•
$$\frac{|S_1|}{|S|}H(S_1) + \frac{|S_2|}{|S|}H(S_2)$$

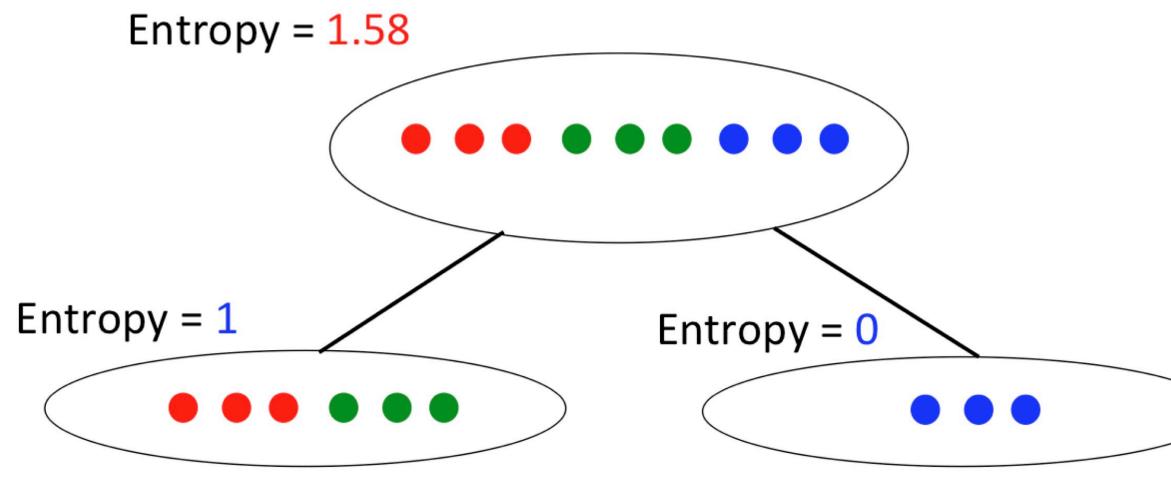
- Information gain: measure how good is the split
 - $H(S) ((|S_1|/|S|)H(S_1) + (|S_2|/|S|)H(S_2))$

Decision Tree Information Gain

• The averaged entropy of a split $S \rightarrow S_1, S_2$

•
$$\frac{|S_1|}{|S|}H(S_1) + \frac{|S_2|}{|S|}H(S_2)$$

- Information gain: measure how good is the split
 - $H(S) ((|S_1|/|S|)H(S_1) + (|S_2|/|S|)H(S_2))$



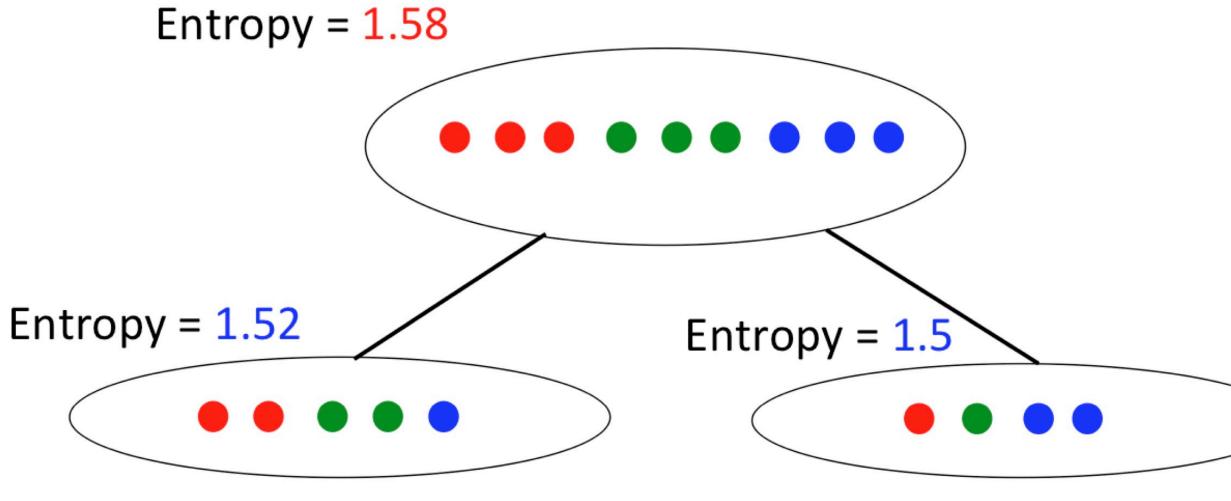
Averaged entropy: 2/3*1 + 1/3*0 = 0.67 Information gain: 1.58 – 0.67 = 0.91

Decision Tree Information Gain

• The averaged entropy of a split $S \rightarrow S_1, S_2$

•
$$\frac{|S_1|}{|S|}H(S_1) + \frac{|S_2|}{|S|}H(S_2)$$

- Information gain: measure how good is the split
 - $H(S) ((|S_1|/|S|)H(S_1) + (|S_2|/|S|)H(S_2))$



Averaged entropy: 1.51 Information gain: 1.58 – 1.51 = 0.07

Decision Tree Splitting the node

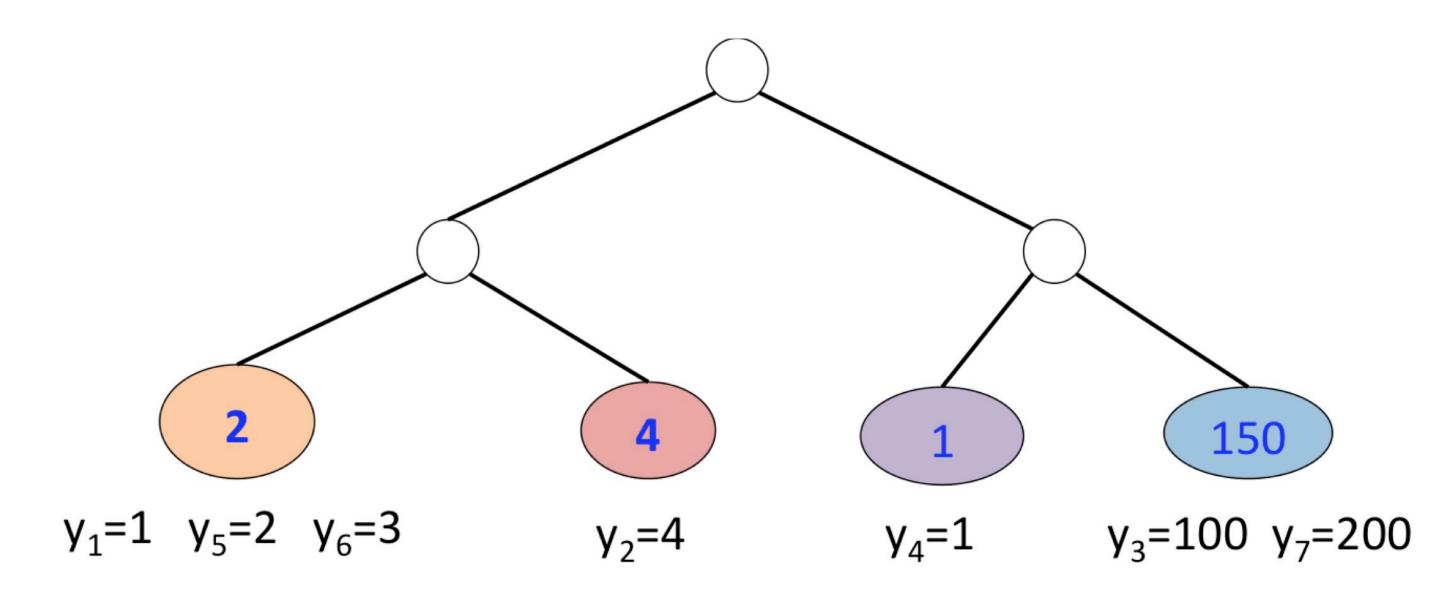
Given the current note, how to find the best split?

Decision TreeSplitting the node

- Given the current note, how to find the best split?
- For all the features and all the threshold
 - Compute the information gain after the split
 - Choose the best one (maximal information gain)

Decision Tree Regression Tree

- Assign a real number for each leaf
- Usually average y values for each leaf (minimize square error)



Decision Tree Regression Tree

Objective function: \bullet

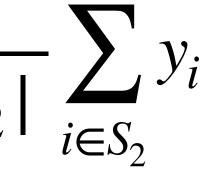
•
$$\min_{F} \frac{1}{n} \sum_{i=1}^{n} (y_i - F(x_i))^2 + (\text{Regulariza})$$

• The quality of partition $S = S_1 \cup S_2$ can be computed by the objective function:

$$\sum_{i \in S_1} (y_i - y^{(1)})^2 + \sum_{i \in S_2} (y_i - y^{(2)})^2,$$

Where $y^{(1)} = \frac{1}{|S_1|} \sum_{i \in S_1} y_i, y^{(2)} = \frac{1}{|S_2|}$

ation)



Decision Tree Regression Tree

• Objective function:

•
$$\min_{F} \frac{1}{n} \sum_{i=1}^{n} (y_i - F(x_i))^2 + (\text{Regularization})$$

• The quality of partition $S = S_1 \cup S_2$ can be computed by the objective function:

•
$$\sum_{i \in S_1} (y_i - y^{(1)})^2 + \sum_{i \in S_2} (y_i - y^{(2)})^2,$$

• Where $y^{(1)} = \frac{1}{|S_1|} \sum_{i \in S_1} y_i, y^{(2)} = \frac{1}{|S_2|} \sum_{i \in S_2} y_i$

- Find the best split
 - Try all the features & thresholds and find the one with minimal objective function

Decision Tree Parameters

- Maximum depth: (usually ≈ 10)
- Minimum number of nodes in each node: (10, 50, 100)

Decision TreeParameters

- Maximum depth: (usually ≈ 10)
- Minimum number of nodes in each node: (10, 50, 100)
- Single decision tree is not very powerful ...
- Can we build multiple decision trees and ensemble them together?

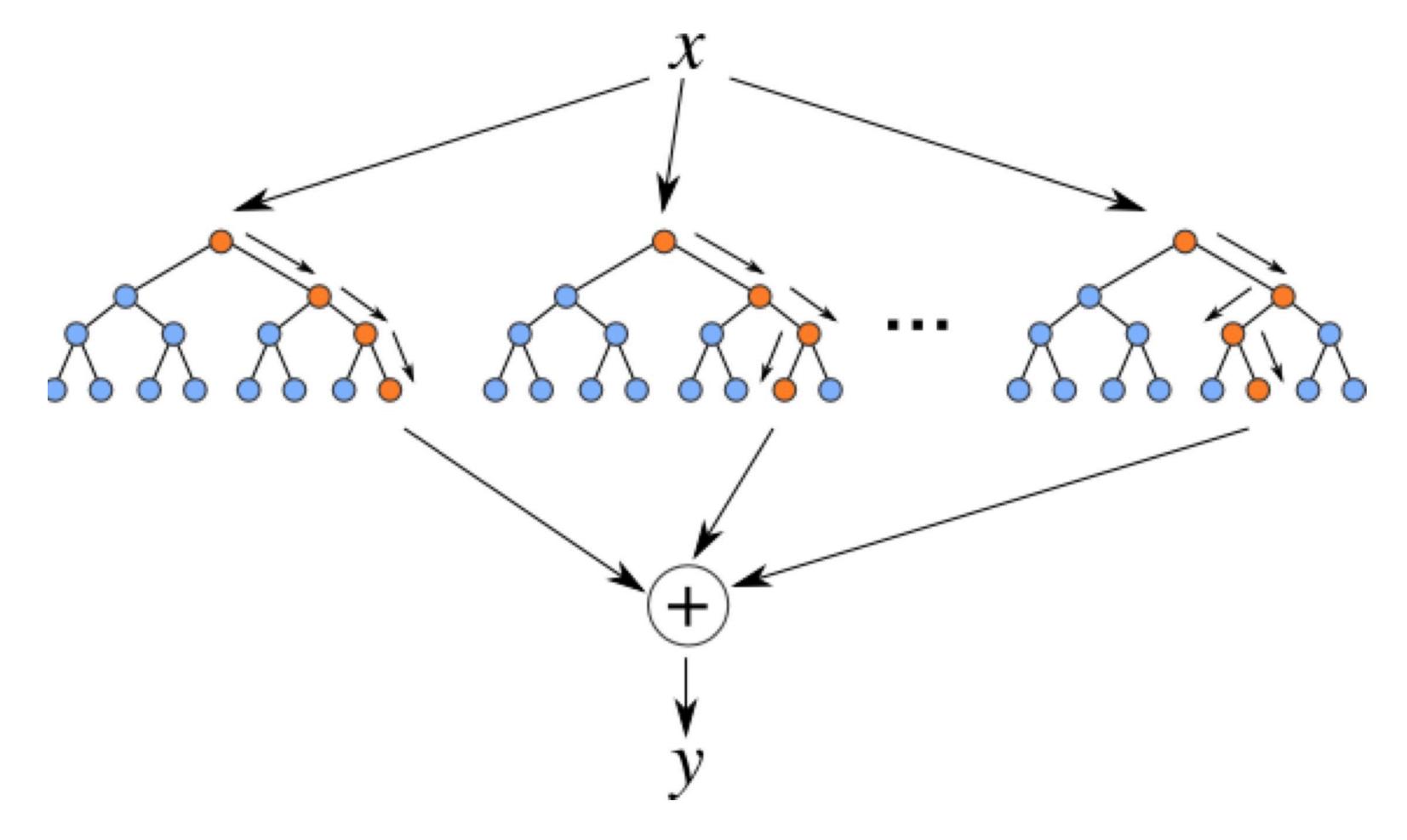
Ensemble methods

- Bagging
 - Random forest
- Boosting
 - Boosted decision tree

Random Forest Definition

- Random Forest (Bootstrap ensemble for decision trees):
 - Create *T* trees
 - Learn each tree using a subsampled dataset S_i and subsampled feature set D_i
 - Prediction: Average the results from all the T trees
- Benefit:
 - Avoid over-fitting
 - Improve stability and accuracy
- Good software available:
 - R: "randomForest" package
 - Python: sklearn

Random Forest Definition



• Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

•
$$F^* = \arg\min_{F} \sum_{i=1}^{n} \ell(y_i, F(x_i))$$
 with $F(x) = \sum_{k=1}^{T} f_k(x)$

• (Each f_k is a decision tree)

• Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

•
$$F^* = \arg\min_{F} \sum_{i=1}^{n} \ell(y_i, F(x_i))$$
 with $F(x) = \sum_{k=1}^{T} f_k(x)$

- (Each f_k is a decision tree)
- Direct loss minimization: at each stage k, find the best function to minimize loss

• Solve
$$f_k = \underset{f_k}{\operatorname{arg\,min}} \sum_{i=1}^N \mathscr{C}(y_i, F_{k-1}(x_i) + f_k(x_i))$$

• Update $F_k \leftarrow F_{k-1} + f_k$

k • $F_k(x) = \sum_{j=1}^{\infty} f_j(x)$ is the prediction of x after k iterations

• Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

•
$$F^* = \arg\min_{F} \sum_{i=1}^{n} \ell(y_i, F(x_i))$$
 with $F(x) = \sum_{k=1}^{T} f_k(x)$

- (Each f_k is a decision tree)
- Direct loss minimization: at each stage k, find the best function to minimize loss

• Solve
$$f_k = \arg\min_{f_k} \sum_{i=1}^N \ell(y_i, F_{k-1}(x_i) + f_k(x_i))$$

• Update
$$F_k \leftarrow F_{k-1} + f_k$$

•
$$F_k(x) = \sum_{j=1}^k f_j(x)$$
 is the prediction of x after k iterations

- Two problems:
 - Hard to implement for general loss
 - Tend to overfit training data

• Let
$$\hat{y}_i = \sum_{k=1}^T f_k(x_i), f_k \in F$$

• $\hat{y}_i^{(0)} = 0$
• $\hat{y}_i^{(1)} = f_1(x_i) = \hat{y}_i^{(0)} + f_1(x_i)$
• ...
• $\hat{y}_i^{(t)} = \sum_{k=1}^t f_k(x_i) = \hat{y}_i^{(t-1)} + f_t(x_i)$

Let
$$\hat{y}_i = \sum_{k=1}^T f_k(x_i), f_k \in F$$

• $\hat{y}_i^{(0)} = 0$
• $\hat{y}_i^{(1)} = f_1(x_i) = \hat{y}_i^{(0)} + f_1(x_i)$
• ...
• $\hat{y}_i^{(t)} = \sum_{k=1}^t f_k(x_i) = \hat{y}_i^{(t-1)} + f_t(x_i)$

• Consider MSE error is used:

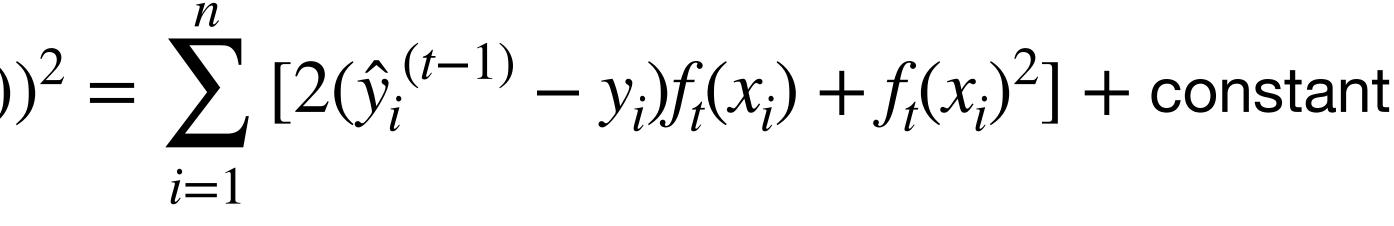
•
$$\operatorname{obj}^{(t)} = \sum_{i=1}^{n} (y_i - (\hat{y}_i^{(t-1)} + f_t(x_i)))^2 = \sum_{i=1}^{n} [2(\hat{y}_i^{(t-1)})^2]$$

¹⁾ - $y_i f_t(x_i) + f_t(x_i)^2 + \text{constant}$

• Let
$$\hat{y}_i = \sum_{k=1}^T f_k(x_i), f_k \in F$$

Consider MSE error is used:

•
$$\operatorname{obj}^{(t)} = \sum_{i=1}^{n} (y_i - (\hat{y}_i^{(t-1)} + f_t(x_i)))$$



• Let
$$\hat{y}_i = \sum_{k=1}^T f_k(x_i), f_k \in F$$

- Consider general loss
 - Use Taylor expansion

•
$$\operatorname{obj}^{(t)} = \sum_{i=1}^{n} \left[\ell(y_i, \hat{y}_i^{(t-1)}) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \operatorname{constant}$$

derivative

• Where $g_i = \partial_{\hat{y}_i^{(t-1)}} \ell(y_i, \hat{y}_i^{(t-1)})$ is gradient, $h_i = \partial_{\hat{y}_i^{(t-1)}}^2 \ell(y_i, \hat{y}_i^{(t-1)})$ is second order

Let
$$\hat{y}_i = \sum_{k=1}^T f_k(x_i), f_k \in F$$

- Consider general loss
 - Use Taylor expansion

•
$$\operatorname{obj}^{(t)} = \sum_{i=1}^{n} \left[\ell(y_i, \hat{y}_i^{(t-1)}) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \text{constant}$$

- The object only depends on g_i, h_i

• Where $g_i = \partial_{\hat{y}_i^{(t-1)}} \ell(y_i, \hat{y}_i^{(t-1)})$ is gradient, $h_i = \partial_{\hat{y}_i^{(t-1)}}^2 \ell(y_i, \hat{y}_i^{(t-1)})$ is second order derivative

• Let
$$\hat{y}_i = \sum_{k=1}^T f_k(x_i), f_k \in F$$

- Consider general loss
 - Use Taylor expansion

•
$$obj^{(t)} = \sum_{i=1}^{n} \left[\ell(y_i, \hat{y}_i^{(t-1)}) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + con$$

- Where $g_i = \partial_{\hat{y}_i^{(t-1)}} \ell(y_i, \hat{y}_i^{(t-1)})$ is gradient, $h_i = \partial_{\hat{y}_i^{(t-1)}}^2 \ell(y_i, \hat{y}_i^{(t-1)})$ is second order derivative
- The object only depends on $f_t(x_i)$
- Get rid of constant term

$$\mathbf{obj}^{(t)} = \sum_{i=1}^{n} \left[g_i f_i(x_i) + \frac{1}{2} h_i f_i^2(x_i) \right] + \text{constant} = \sum_{i=1}^{n} \frac{h_i}{2} (f_i(x_i) - g_i/h_i)^2 + \text{constant}$$

nstant

• Finding $f_k(x)$ by minimizing the loss function:

•
$$\arg\min_{f_k} \sum_{i=1}^N [f_k(x_i) - g_i/h_i]^2 + R($$

- Reduce the training of any loss function to regression tree (just need to compute g_i for different functions)
- $h_i = \alpha$ (fixed step size) for original GBDT
- XGboost shows computing second order derivate yields better performance

 f_k)

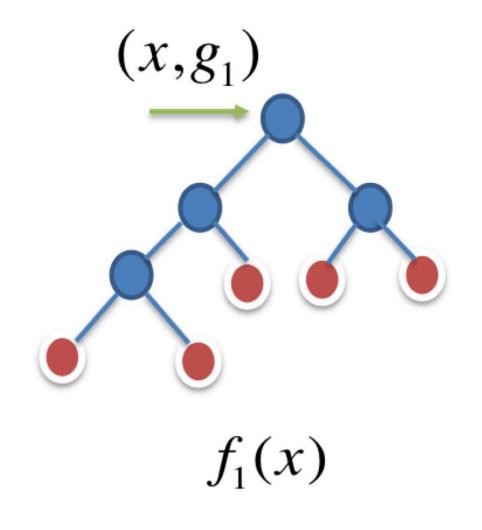
• Finding $f_k(x)$ by minimizing the loss function:

•
$$\arg\min_{f_k} \sum_{i=1}^N [f_k(x_i) - g_i/h_i]^2 + R(f_m)$$

- $h_i = \alpha$ (fixed step size) for original GBDT
- XGboost shows computing second order derivate yields better performance
- Algorithm:
 - Computing the current gradient for each \hat{y}_i
 - Building a base learner (decision tree) to fit the gradient
 - Updating current prediction $\hat{y}_i = F_k(x_i)$ for all *i*

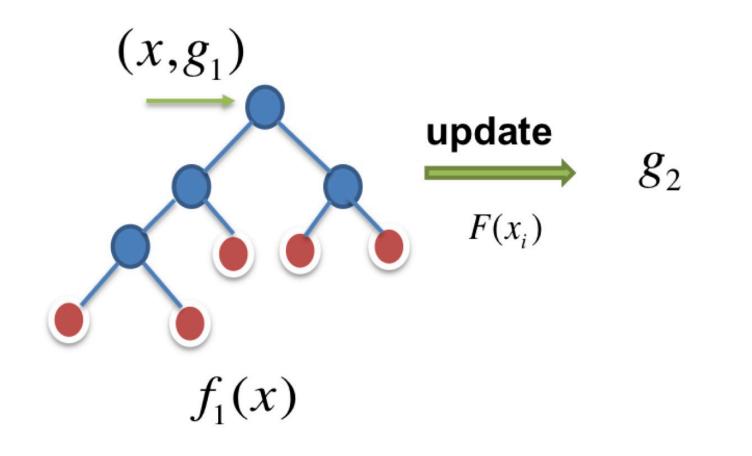
• Reduce the training of any loss function to regression tree (just need to compute g_i for different functions)

- Key idea:
 - Each base learner is a decision tree
 - Each regression tree approximates the functional gradient



dient $\frac{\partial \ell}{\partial F}$

- Key idea:
 - Each base learner is a decision tree
 - Each regression tree approximates the functional gradient

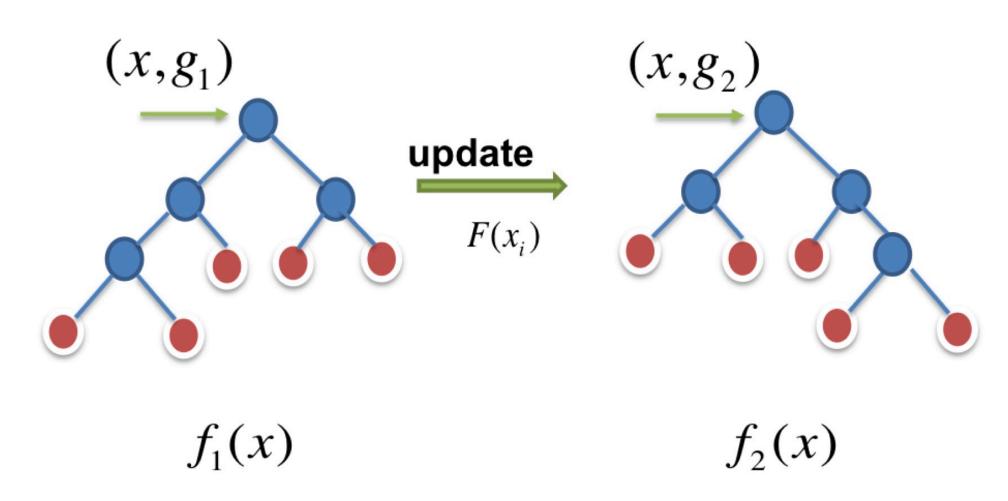


$$F_{m-1}(x_i) = \sum_{j=1}^{m-1} f_j(x_i) \qquad g_m(x_i) = \frac{\partial \ell(y_i, F(x_i))}{\partial F(x_i)}$$

dient $\frac{\partial \ell}{\partial F}$

 $F(x_i) = F_{m-1}(x_i)$

- Key idea:
 - Each base learner is a decision tree
 - Each regression tree approximates the functional gradient

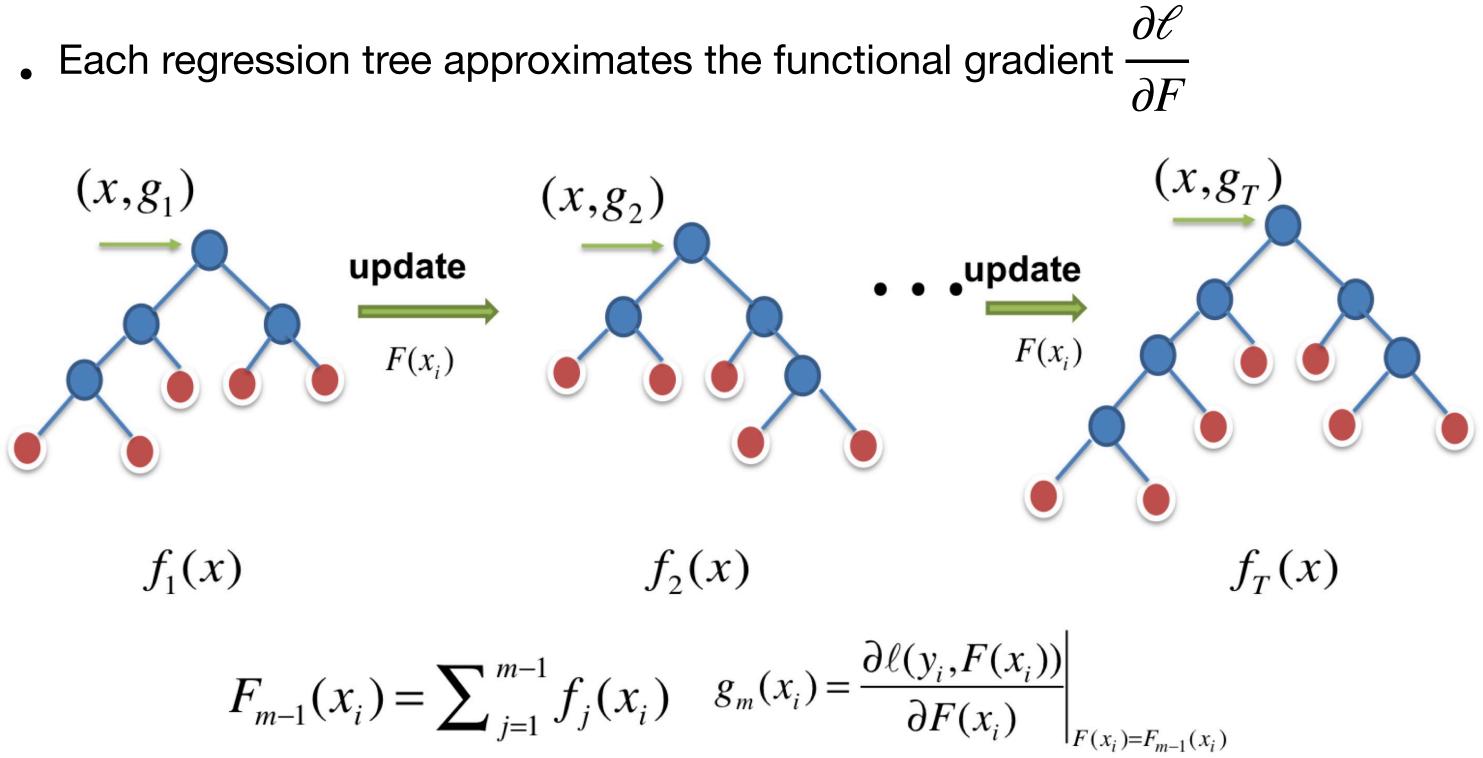


 $F_{m-1}(x_i) = \sum_{j=1}^{m-1} f_j(x_i) \qquad g_m(x_i) = \frac{\partial \ell(y_i, F(x_i))}{\partial F(x_i)} \bigg|_{F(x_i)}$

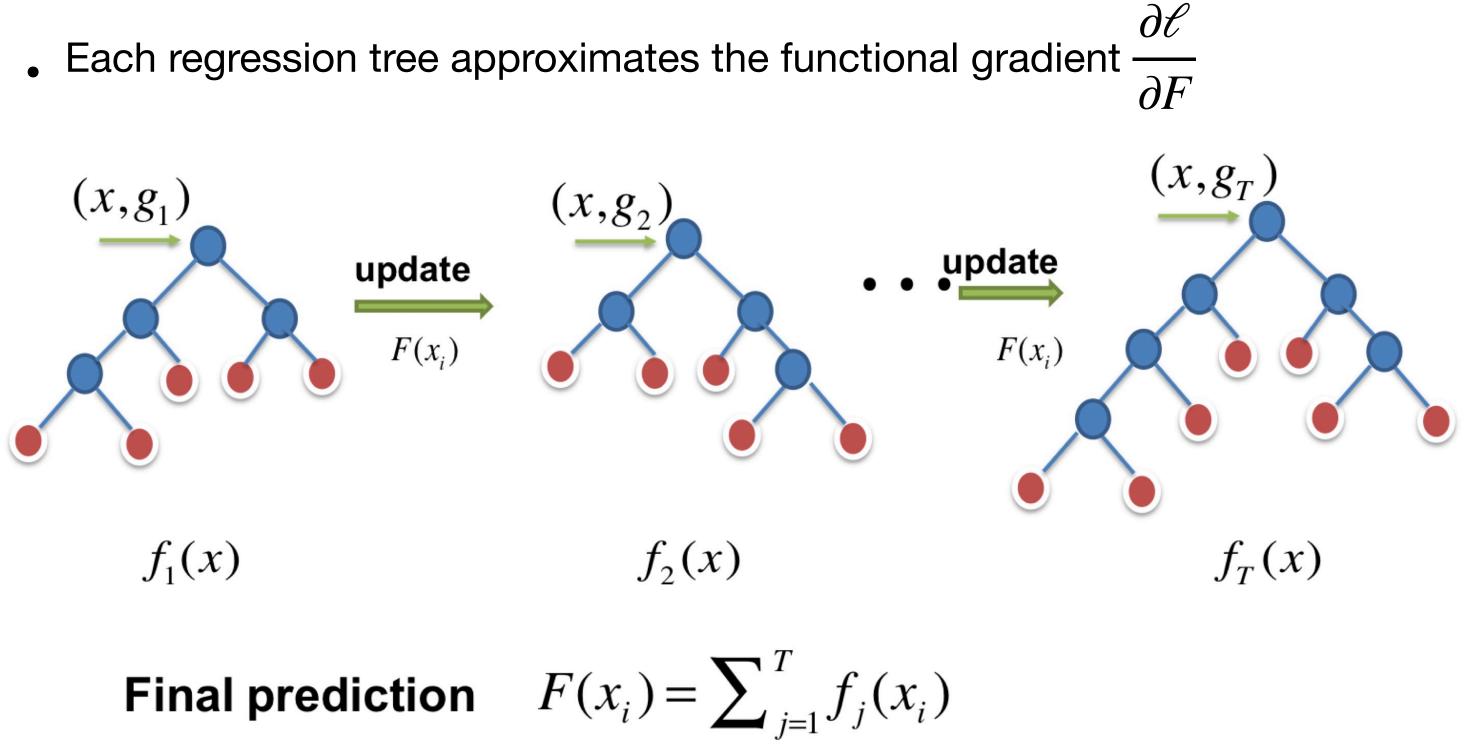
dient $\frac{\partial \ell}{\partial F}$

 $\frac{)}{F(x_i) = F_{m-1}(x_i)}$

- Key idea:
 - Each base learner is a decision tree



- Key idea:
 - Each base learner is a decision tree



Gradient Boosted Decision Tree Open source packages

- XGBoost: the first widely used tree-boosting software
- LightGBM: released by Microsoft
 - split

Histogram-based training approach — much faster than finding the best