
Minhao Cheng

COMP5212: Machine Learning
Lecture 11

Decision Tree
Illustration

• Each node checks on feature :

• Go left if

• Go right if

xi

xi < threshold

xi > threshold

Decision Tree
A real example

• Each node checks on feature :

• Go left if

• Go right if

xi

xi < threshold

xi > threshold

Decision Tree
Pros

• Strength:

• It’s a nonlinear classifier

• Better interpretability

• Can naturally handle categorical features

Decision Tree
Pros

• Strength:

• It’s a nonlinear classifier

• Better interpretability

• Can naturally handle categorical features

• Computation:

• Training: slow

• Prediction: fast

• operations (: depth of the tree, usually 15)h h ≤

Decision Tree
Splitting the node

• Classification tree: Split the node to maximize
entropy

• Let be set of data points in a node,
are labels:

•

• Where is the proportion of the data
belong to class

• Entropy=0 if all samples are in the same
class

• Entropy is large if

S c = 1,…, C

entropy : H(S) = −
C

∑
c=1

p(c)log p(c)

p(c)
c

p(1) = … = p(C)

Decision Tree
Information Gain

• The averaged entropy of a split

•

• Information gain: measure how good is the split

•

S → S1, S2

|S1 |
|S |

H(S1) +
|S2 |
|S |

H(S2)

H(S) − ((|S1 | / |S |)H(S1) + (|S2 | / |S |)H(S2))

Decision Tree
Information Gain

• The averaged entropy of a split

•

• Information gain: measure how
good is the split

•

S → S1, S2

|S1 |
|S |

H(S1) +
|S2 |
|S |

H(S2)

H(S) − ((|S1 | / |S |)H(S1) + (|S2 | / |S |)H(S2))

Decision Tree
Information Gain

• The averaged entropy of a split

•

• Information gain: measure how
good is the split

•

S → S1, S2

|S1 |
|S |

H(S1) +
|S2 |
|S |

H(S2)

H(S) − ((|S1 | / |S |)H(S1) + (|S2 | / |S |)H(S2))

Decision Tree
Splitting the node

• Given the current note, how to find the best split?

Decision Tree
Splitting the node

• Given the current note, how to find the best split?

• For all the features and all the threshold

• Compute the information gain after the split

• Choose the best one (maximal information gain)

Decision Tree
Regression Tree

• Assign a real number for each leaf

• Usually average values for each leaf (minimize square error)y

Decision Tree
Regression Tree

• Objective function:

•

• The quality of partition can be computed by the objective function:

•

• Where ,

min
F

1
n

n

∑
i=1

(yi − F(xi))2 + (Regularization)

S = S1 ∪ S2

∑
i∈S1

(yi − y(1))2 + ∑
i∈S2

(yi − y(2))2,

y(1) =
1

|S1 | ∑
i∈S1

yi y(2) =
1

|S2 | ∑
i∈S2

yi

Decision Tree
Regression Tree

• Objective function:

•

• The quality of partition can be computed by the objective function:

•

• Where ,

• Find the best split

• Try all the features & thresholds and find the one with minimal objective function

min
F

1
n

n

∑
i=1

(yi − F(xi))2 + (Regularization)

S = S1 ∪ S2

∑
i∈S1

(yi − y(1))2 + ∑
i∈S2

(yi − y(2))2,

y(1) =
1

|S1 | ∑
i∈S1

yi y(2) =
1

|S2 | ∑
i∈S2

yi

Decision Tree
Parameters

• Maximum depth: (usually)

• Minimum number of nodes in each node: (10, 50, 100)

≈ 10

Decision Tree
Parameters

• Maximum depth: (usually)

• Minimum number of nodes in each node: (10, 50, 100)

• Single decision tree is not very powerful …

• Can we build multiple decision trees and ensemble them together?

≈ 10

Ensemble methods

• Bagging

• Random forest

• Boosting

• Boosted decision tree

Random Forest
Definition

• Random Forest (Bootstrap ensemble for decision trees):

• Create trees

• Learn each tree using a subsampled dataset and subsampled feature set

• Prediction: Average the results from all the trees

• Benefit:

• Avoid over-fitting

• Improve stability and accuracy

• Good software available:

• R: “randomForest” package

• Python: sklearn

T

Si Di

T

Random Forest
Definition

Gradient Boosted Decision Tree
Boosted Decision Tree

• Minimize loss with being ensemble trees

•

• (Each is a decision tree)

ℓ(y, F(x)) F(⋅)

F* = arg min
F

n

∑
i=1

ℓ(yi, F(xi)) with F(x) =
T

∑
k=1

fk(x)

fk

Gradient Boosted Decision Tree
Boosted Decision Tree

• Minimize loss with being ensemble trees

•

• (Each is a decision tree)

• Direct loss minimization: at each stage , find the best function to minimize loss

• Solve

• Update

• is the prediction of after iterations

ℓ(y, F(x)) F(⋅)

F* = arg min
F

n

∑
i=1

ℓ(yi, F(xi)) with F(x) =
T

∑
k=1

fk(x)

fk

k

fk = arg min
fk

N

∑
i=1

ℓ(yi, Fk−1(xi) + fk(xi))

Fk ← Fk−1 + fk

Fk(x) =
k

∑
j=1

fj(x) x k

Gradient Boosted Decision Tree
Boosted Decision Tree

• Minimize loss with being ensemble trees

•

• (Each is a decision tree)

• Direct loss minimization: at each stage , find the best function to minimize loss

• Solve

• Update

• is the prediction of after iterations

• Two problems:

• Hard to implement for general loss

• Tend to overfit training data

ℓ(y, F(x)) F(⋅)

F* = arg min
F

n

∑
i=1

ℓ(yi, F(xi)) with F(x) =
T

∑
k=1

fk(x)

fk

k

fk = arg min
fk

N

∑
i=1

ℓ(yi, Fk−1(xi) + fk(xi))

Fk ← Fk−1 + fk

Fk(x) =
k

∑
j=1

fj(x) x k

Gradient Boosted Decision Tree
Boosted Decision Tree

• Let

•

•

• …

•

̂yi =
T

∑
k=1

fk(xi), fk ∈ F

̂yi
(0) = 0

̂yi
(1) = f1(xi) = ̂yi

(0) + f1(xi)

̂yi
(t) =

t

∑
k=1

fk(xi) = ̂yi
(t−1) + ft(xi)

Gradient Boosted Decision Tree
Boosted Decision Tree

• Let

•

•

• …

•

• Consider MSE error is used:

•

̂yi =
T

∑
k=1

fk(xi), fk ∈ F

̂yi
(0) = 0

̂yi
(1) = f1(xi) = ̂yi

(0) + f1(xi)

̂yi
(t) =

t

∑
k=1

fk(xi) = ̂yi
(t−1) + ft(xi)

obj(t) =
n

∑
i=1

(yi − (̂yi
(t−1) + ft(xi)))2 =

n

∑
i=1

[2(̂yi
(t−1) − yi)ft(xi) + ft(xi)2] + constant

Gradient Boosted Decision Tree
Boosted Decision Tree

• Let

• Consider MSE error is used:

•

̂yi =
T

∑
k=1

fk(xi), fk ∈ F

obj(t) =
n

∑
i=1

(yi − (̂yi
(t−1) + ft(xi)))2 =

n

∑
i=1

[2(̂yi
(t−1) − yi)ft(xi) + ft(xi)2] + constant

Gradient Boosted Decision Tree
Boosted Decision Tree

• Let

• Consider general loss

• Use Taylor expansion

•

• Where is gradient, is second order
derivative

̂yi =
T

∑
k=1

fk(xi), fk ∈ F

obj(t) =
n

∑
i=1

[ℓ(yi, ̂yi
(t−1))) + gi ft(xi) +

1
2

hi f2
t (xi)] + constant

gi = ∂ ̂yi
(t−1)ℓ(yi, ̂yi

(t−1)) hi = ∂2
̂yi
(t−1)ℓ(yi, ̂yi

(t−1))

Gradient Boosted Decision Tree
Boosted Decision Tree

• Let

• Consider general loss

• Use Taylor expansion

•

• Where is gradient, is second order derivative

• The object only depends on

̂yi =
T

∑
k=1

fk(xi), fk ∈ F

obj(t) =
n

∑
i=1

[ℓ(yi, ̂yi
(t−1))) + gi ft(xi) +

1
2

hi f2
t (xi)] + constant

gi = ∂ ̂yi
(t−1)ℓ(yi, ̂yi

(t−1)) hi = ∂2
̂yi
(t−1)ℓ(yi, ̂yi

(t−1))

gi, hi

Gradient Boosted Decision Tree
Boosted Decision Tree

• Let

• Consider general loss

• Use Taylor expansion

•

• Where is gradient, is second order derivative

• The object only depends on

• Get rid of constant term

•

̂yi =
T

∑
k=1

fk(xi), fk ∈ F

obj(t) =
n

∑
i=1

[ℓ(yi, ̂yi
(t−1))) + gi ft(xi) +

1
2

hi f2
t (xi)] + constant

gi = ∂ ̂yi
(t−1)ℓ(yi, ̂yi

(t−1)) hi = ∂2
̂yi
(t−1)ℓ(yi, ̂yi

(t−1))

ft(xi)

obj(t) =
n

∑
i=1

[gi ft(xi) +
1
2

hi f2
t (xi)] + constant =

n

∑
i=1

hi

2
(ft(xi) − gi/hi)2 + constant

Gradient Boosted Decision Tree
Gradient Boosted Decision Tree (GBDT)

• Finding by minimizing the loss function:

•

• Reduce the training of any loss function to regression tree (just need to
compute for different functions)

• (fixed step size) for original GBDT

• XGboost shows computing second order derivate yields better performance

fk(x)

arg min
fk

N

∑
i=1

[fk(xi) − gi/hi]2 + R(fk)

gi

hi = α

Gradient Boosted Decision Tree
Gradient Boosted Decision Tree (GBDT)

• Finding by minimizing the loss function:

•

• Reduce the training of any loss function to regression tree (just need to compute for different functions)

• (fixed step size) for original GBDT

• XGboost shows computing second order derivate yields better performance

• Algorithm:

• Computing the current gradient for each

• Building a base learner (decision tree) to fit the gradient

• Updating current prediction for all

fk(x)

arg min
fk

N

∑
i=1

[fk(xi) − gi/hi]2 + R(fm)

gi

hi = α

̂yi

̂yi = Fk(xi) i

Gradient Boosted Decision Tree
Gradient Boosted Decision Tree (GBDT)

• Key idea:

• Each base learner is a decision tree

• Each regression tree approximates the functional gradient
∂ℓ
∂F

Gradient Boosted Decision Tree
Gradient Boosted Decision Tree (GBDT)

• Key idea:

• Each base learner is a decision tree

• Each regression tree approximates the functional gradient
∂ℓ
∂F

Gradient Boosted Decision Tree
Gradient Boosted Decision Tree (GBDT)

• Key idea:

• Each base learner is a decision tree

• Each regression tree approximates the functional gradient
∂ℓ
∂F

Gradient Boosted Decision Tree
Gradient Boosted Decision Tree (GBDT)

• Key idea:

• Each base learner is a decision tree

• Each regression tree approximates the functional gradient
∂ℓ
∂F

Gradient Boosted Decision Tree
Gradient Boosted Decision Tree (GBDT)

• Key idea:

• Each base learner is a decision tree

• Each regression tree approximates the functional gradient
∂ℓ
∂F

Gradient Boosted Decision Tree
Open source packages

• XGBoost: the first widely used tree-boosting software

• LightGBM: released by Microsoft

• Histogram-based training approach — much faster than finding the best
split

