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Decision Tree
Illustration

• Each node checks on feature :


• Go left if 


• Go right if 
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Decision Tree
A real example

• Each node checks on feature :


• Go left if 


• Go right if 

xi

xi < threshold

xi > threshold



Decision Tree
Pros

• Strength:


• It’s a nonlinear classifier


• Better interpretability


• Can naturally handle categorical features
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• Strength:


• It’s a nonlinear classifier


• Better interpretability


• Can naturally handle categorical features


• Computation:


• Training: slow


• Prediction: fast


•  operations ( : depth of the tree, usually  15)h h ≤



Decision Tree
Splitting the node

• Classification tree: Split the node to maximize 
entropy


• Let  be set of data points in a node,  
are labels:


• 


• Where  is the proportion of the data 
belong to class 


• Entropy=0 if all samples are in the same 
class


• Entropy is large if 

S c = 1,…, C

entropy : H(S) = −
C

∑
c=1

p(c)log p(c)

p(c)
c

p(1) = … = p(C)



Decision Tree
Information Gain

• The averaged entropy of a split 


• 


• Information gain: measure how good is the split


•

S → S1, S2

|S1 |
|S |

H(S1) +
|S2 |
|S |

H(S2)

H(S) − (( |S1 | / |S | )H(S1) + ( |S2 | / |S | )H(S2))
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Splitting the node

• Given the current note, how to find the best split?



Decision Tree
Splitting the node

• Given the current note, how to find the best split?


• For all the features and all the threshold


• Compute the information gain after the split


• Choose the best one (maximal information gain)



Decision Tree
Regression Tree

• Assign a real number for each leaf


• Usually average  values for each leaf (minimize square error)y



Decision Tree
Regression Tree

• Objective function:


• 


• The quality of partition  can be computed by the objective function:


• 


• Where , 

min
F

1
n

n

∑
i=1

(yi − F(xi))2 + (Regularization)

S = S1 ∪ S2

∑
i∈S1

(yi − y(1))2 + ∑
i∈S2

(yi − y(2))2,

y(1) =
1

|S1 | ∑
i∈S1

yi y(2) =
1

|S2 | ∑
i∈S2

yi



Decision Tree
Regression Tree

• Objective function:


• 


• The quality of partition  can be computed by the objective function:


• 


• Where , 


• Find the best split


• Try all the features & thresholds and find the one with minimal objective function

min
F

1
n

n

∑
i=1

(yi − F(xi))2 + (Regularization)

S = S1 ∪ S2

∑
i∈S1

(yi − y(1))2 + ∑
i∈S2

(yi − y(2))2,

y(1) =
1

|S1 | ∑
i∈S1

yi y(2) =
1

|S2 | ∑
i∈S2

yi



Decision Tree
Parameters

• Maximum depth: (usually )


• Minimum number of nodes in each node: (10, 50, 100)

≈ 10



Decision Tree
Parameters

• Maximum depth: (usually )


• Minimum number of nodes in each node: (10, 50, 100)


• Single decision tree is not very powerful …


• Can we build multiple decision trees and ensemble them together?

≈ 10



Ensemble methods

• Bagging


• Random forest


• Boosting


• Boosted decision tree



Random Forest
Definition

• Random Forest (Bootstrap ensemble for decision trees):


• Create  trees


• Learn each tree using a subsampled dataset  and subsampled feature set 


• Prediction: Average the results from all the  trees


• Benefit:


• Avoid over-fitting


• Improve stability and accuracy


• Good software available:


• R: “randomForest” package


• Python: sklearn

T

Si Di

T



Random Forest
Definition



Gradient Boosted Decision Tree
Boosted Decision Tree

• Minimize loss  with  being ensemble trees


• 


• (Each  is a decision tree)

ℓ(y, F(x)) F( ⋅ )

F* = arg min
F

n

∑
i=1

ℓ(yi, F(xi)) with F(x) =
T

∑
k=1

fk(x)

fk



Gradient Boosted Decision Tree
Boosted Decision Tree

• Minimize loss  with  being ensemble trees


• 


• (Each  is a decision tree)


• Direct loss minimization: at each stage , find the best function to minimize loss


• Solve 


• Update 


•  is the prediction of  after  iterations

ℓ(y, F(x)) F( ⋅ )

F* = arg min
F

n

∑
i=1

ℓ(yi, F(xi)) with F(x) =
T

∑
k=1

fk(x)

fk

k

fk = arg min
fk

N

∑
i=1

ℓ(yi, Fk−1(xi) + fk(xi))

Fk ← Fk−1 + fk

Fk(x) =
k

∑
j=1

fj(x) x k



Gradient Boosted Decision Tree
Boosted Decision Tree

• Minimize loss  with  being ensemble trees


• 


• (Each  is a decision tree)


• Direct loss minimization: at each stage , find the best function to minimize loss


• Solve 


• Update 


•  is the prediction of  after  iterations


• Two problems:


• Hard to implement for general loss


• Tend to overfit training data

ℓ(y, F(x)) F( ⋅ )

F* = arg min
F

n

∑
i=1

ℓ(yi, F(xi)) with F(x) =
T

∑
k=1

fk(x)

fk

k

fk = arg min
fk

N

∑
i=1

ℓ(yi, Fk−1(xi) + fk(xi))

Fk ← Fk−1 + fk

Fk(x) =
k

∑
j=1

fj(x) x k



Gradient Boosted Decision Tree
Boosted Decision Tree

• Let 


• 


• 


• …


•

̂yi =
T

∑
k=1

fk(xi), fk ∈ F

̂yi
(0) = 0

̂yi
(1) = f1(xi) = ̂yi

(0) + f1(xi)

̂yi
(t) =

t

∑
k=1

fk(xi) = ̂yi
(t−1) + ft(xi)



Gradient Boosted Decision Tree
Boosted Decision Tree

• Let 


• 


• 


• …


• 


• Consider MSE error is used:


•

̂yi =
T

∑
k=1

fk(xi), fk ∈ F

̂yi
(0) = 0

̂yi
(1) = f1(xi) = ̂yi

(0) + f1(xi)

̂yi
(t) =

t

∑
k=1

fk(xi) = ̂yi
(t−1) + ft(xi)

obj(t) =
n

∑
i=1

(yi − ( ̂yi
(t−1) + ft(xi)))2 =

n

∑
i=1

[2( ̂yi
(t−1) − yi)ft(xi) + ft(xi)2] + constant
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Gradient Boosted Decision Tree
Boosted Decision Tree

• Let 


• Consider general loss


• Use Taylor expansion


• 


• Where  is gradient,  is second order 
derivative 

̂yi =
T

∑
k=1

fk(xi), fk ∈ F

obj(t) =
n

∑
i=1

[ℓ(yi, ̂yi
(t−1))) + gi ft(xi) +

1
2

hi f2
t (xi)] + constant

gi = ∂ ̂yi
(t−1)ℓ(yi, ̂yi

(t−1)) hi = ∂2
̂yi
(t−1)ℓ(yi, ̂yi

(t−1))



Gradient Boosted Decision Tree
Boosted Decision Tree

• Let 


• Consider general loss


• Use Taylor expansion


• 


• Where  is gradient,  is second order derivative 


• The object only depends on 

̂yi =
T

∑
k=1

fk(xi), fk ∈ F

obj(t) =
n

∑
i=1

[ℓ(yi, ̂yi
(t−1))) + gi ft(xi) +

1
2

hi f2
t (xi)] + constant

gi = ∂ ̂yi
(t−1)ℓ(yi, ̂yi

(t−1)) hi = ∂2
̂yi
(t−1)ℓ(yi, ̂yi

(t−1))

gi, hi



Gradient Boosted Decision Tree
Boosted Decision Tree

• Let 


• Consider general loss


• Use Taylor expansion


• 


• Where  is gradient,  is second order derivative 


• The object only depends on 


• Get rid of constant term 


•

̂yi =
T

∑
k=1

fk(xi), fk ∈ F

obj(t) =
n

∑
i=1

[ℓ(yi, ̂yi
(t−1))) + gi ft(xi) +

1
2

hi f2
t (xi)] + constant

gi = ∂ ̂yi
(t−1)ℓ(yi, ̂yi

(t−1)) hi = ∂2
̂yi
(t−1)ℓ(yi, ̂yi

(t−1))

ft(xi)

obj(t) =
n

∑
i=1

[gi ft(xi) +
1
2

hi f2
t (xi)] + constant =

n

∑
i=1

hi

2
( ft(xi) − gi/hi)2 + constant



Gradient Boosted Decision Tree
Gradient Boosted Decision Tree (GBDT)

• Finding  by minimizing the loss function:


• 


• Reduce the training of any loss function to regression tree (just need to 
compute  for different functions)


•  (fixed step size) for original GBDT


• XGboost shows computing second order derivate yields better performance

fk(x)

arg min
fk

N

∑
i=1

[ fk(xi) − gi/hi]2 + R( fk)

gi

hi = α



Gradient Boosted Decision Tree
Gradient Boosted Decision Tree (GBDT)

• Finding  by minimizing the loss function:


• 


• Reduce the training of any loss function to regression tree (just need to compute  for different functions)


•  (fixed step size) for original GBDT


• XGboost shows computing second order derivate yields better performance


• Algorithm:


• Computing the current gradient for each 


• Building a base learner (decision tree) to fit the gradient


• Updating current prediction  for all 

fk(x)

arg min
fk

N

∑
i=1

[ fk(xi) − gi/hi]2 + R( fm)

gi

hi = α

̂yi

̂yi = Fk(xi) i



Gradient Boosted Decision Tree
Gradient Boosted Decision Tree (GBDT)

• Key idea:


• Each base learner is a decision tree


• Each regression tree approximates the functional gradient 
∂ℓ
∂F
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Gradient Boosted Decision Tree
Gradient Boosted Decision Tree (GBDT)

• Key idea:


• Each base learner is a decision tree


• Each regression tree approximates the functional gradient 
∂ℓ
∂F



Gradient Boosted Decision Tree
Open source packages

• XGBoost: the first widely used tree-boosting software


• LightGBM: released by Microsoft


• Histogram-based training approach — much faster than finding the best 
split


