COMP5212: Machine Learning
 Lecture 1

Minhao Cheng

Term project

Details

- Group of at most 4 students
- Open research projects
- Project proposal + Term project report + Term project presentation (online/ offline)

Math Basics

Math Basics
 Linear Algebra

- Linear algebra basics (See notes)
- Linear dependence, span
- Orthogonal, orthonormal,
- Eigendecomposition, quadratic form
- $f(x)=x^{T} A x$, s.t $\|x\|_{2}=1$
- Positive definite: all eigenvalues are positive, positive semidefinite are all positive or zero
- $\forall x, x^{T} A x>0$
- Singular Value Decomposition (SVD)
- $A=U D V^{T}$, where A is $m \times n$ matrix, U is $m \times m$ matrix, V is $n \times n$ vector

Math Basics

Derivates

- Derivative, chain rule
- Given a composite function $f(x)=h(g(x))$
- $\frac{d f}{d x}=\frac{d h}{d g} \cdot \frac{d g}{d x}$
- Integral

Math Basics
 Matrix Derivates

- Scalar to vector: f is a scalar, $x=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{p}\end{array}\right]^{T}$ is a $p \times 1$ vector, then
- $\frac{\partial f}{\partial x}=\left[\begin{array}{llll}\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \cdots & \frac{\partial f}{\partial x_{p}}\end{array}\right]^{T}$
- Vector to scalar: $f=\left[f_{1} f_{2} \ldots f_{m}\right]^{T}$ is a $m \times 1$ vector, x is a scalar, then
- $\frac{\partial f}{\partial x}=\left[\begin{array}{llll}\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{2}}{\partial x} & \cdots & \frac{\partial f_{m}}{\partial x}\end{array}\right]$

Math Basics

Matrix Derivates

- Vector to vector: $f=\left[f_{1} f_{2} \ldots f_{m}\right]^{T}$ is a $m \times 1$ vector, $x=\left[\begin{array}{lll}x_{1} x_{2} \ldots & x_{p}\end{array}\right]^{T}$ is a $p \times 1$ vector, then

$$
\frac{\partial f}{\partial x}=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{1}} \\
\frac{\partial f_{1}}{\partial x_{2}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{1}}{\partial x_{p}} & \frac{\partial f_{2}}{\partial x_{p}} & \cdots & \frac{\partial f_{m}}{\partial x_{p}}
\end{array}\right]
$$

- Scalar to matrix: f is a scalar, X is a $p \times q$ matrix, then

$$
\frac{\partial f}{\partial X}=\left[\begin{array}{cccc}
\frac{\partial f}{\partial X_{11}} & \frac{\partial f}{\partial X_{12}} & \cdots & \frac{\partial f}{\partial X_{1 q}} \\
\frac{\partial f}{\partial X_{21}} & \frac{\partial f}{\partial X_{22}} & \cdots & \frac{\partial f}{\partial X_{2 q}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f}{\partial X_{p 1}} & \frac{\partial f}{\partial X_{p 2}} & \cdots & \frac{\partial f}{\partial X_{p q}}
\end{array}\right]
$$

Math Basics

Matrix Derivates

- Matrix to scalar: F is a $p \times q$ matrix, x is a scalar, then

Math Basics

Matrix Derivates

- In the vector view:
- Scalar to vector: $d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i}=\frac{\partial f^{T}}{\partial x} d x$ where $\frac{\partial f}{\partial x}$ and $d x$ are $n \times 1$ vector
- Similarly, scalar to matrix: $d f=\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\partial f}{\partial X_{i j}} d X_{i j}=\operatorname{tr}\left(\frac{\partial f^{T}}{\partial X} d X\right)$
- For the derivate, we also have $d(X \pm Y)=d X \pm d Y, d(X Y)=(d X) Y+X d Y, d\left(X^{T}\right)=(d X)^{T}$, $d \operatorname{tr}(X)=\operatorname{tr}(d X), d X^{-1}=-X^{-1} d X X^{-1}$
- For the trace operation, we also have $a=\operatorname{tr}(a),, \operatorname{tr}(A \pm B)=\operatorname{tr}(A) \pm \operatorname{tr}(B), \operatorname{tr}(A B)=\operatorname{tr}(B A)$, $\operatorname{tr}\left(A^{T}(B \odot C)\right)=\operatorname{tr}\left((A \odot B)^{T} C\right)$

Math Basics
 Matrix Derivates

- Chain rule: f is a function of Y , let $\mathrm{Y}=\mathrm{AXB}$, to get $\frac{\partial f}{\partial X}$
- $d f=\operatorname{tr}\left(\frac{\partial f^{T}}{\partial Y} d Y\right)=\operatorname{tr}\left(\frac{\partial f^{T}}{\partial Y} A d X B\right)=\operatorname{tr}\left(B \frac{\partial f^{T}}{\partial Y} A d X\right)=\operatorname{tr}\left(\left(A^{T} \frac{\partial f}{\partial Y} B^{T}\right)^{T} d X\right)$
- Since $d Y=(d A) X B+A(d X) B+A X(d B)=A(d X) B$ as

$$
d A=0, d B=0
$$

. So we get $\frac{\partial f}{\partial X}=A^{T} \frac{\partial f}{\partial Y} B^{T}$

Math Basics
 Matrix Derivates

- Ex 1: $f=a^{T} X b$, solve $\frac{\partial f}{\partial X}$, where a is $m \times 1$ vector, X is $m \times n$ matrix, b is $n \times 1$ vector
- Ex 2: $f=a^{T} \exp (X b)$, solve $\frac{\partial f}{\partial X}$, where a is $m \times 1$ vector, X is $m \times n$ matrix, b is $n \times 1$ vector
- Ex 3: $f=\|X w-y\|^{2}$, solve $\frac{\partial f}{\partial w}$, where y is $m \times 1$ vector, X is $m \times n$ matrix, w is $n \times 1$ vector

Math Basics
 Probability

- Random variable: a function mapping a probability space (S, P) into a real line \mathbb{R}
- Discrete variable, Probability mass function (PMF)
- PMF maps a state of a random variable to the probability of the random variable taking on that state
- $P\left(\mathrm{x}=x_{i}\right)=\frac{1}{k}$
- Continuous variable, Probability density function (PDF)

Math Basics

Probability

- Marginal Probability
- For discrete random variable x and y , and we know $P(\mathrm{x}, \mathrm{y})$, we can find

$$
\forall x \in \mathrm{x}, P(\mathrm{x}=x)=\sum P(\mathrm{x}=x, \mathrm{y}=y)
$$

- For continuous ..., $p(x)=\int p(x, y) d y$
- Conditional Probability
- $P(\mathrm{y}=y \mid \mathrm{x}=x)=\frac{P(\mathrm{y}=y, \mathrm{x}=x)}{P(\mathrm{x}=x)}$

Math Basics

Probability

- Chain rule
. $P\left(x^{(1)}, \ldots, x^{(n)}\right)=P\left(x^{(1)}\right) \prod_{i=2}^{n} P\left(x^{(i)} \mid x^{(1)}, \ldots, x^{(i-1)}\right)$
- Independence, conditional independence
- $\forall x \in \mathrm{x}, y \in \mathrm{y}, p(\mathrm{x}=x, \mathrm{y}=y)=p(\mathrm{x}=x) p(\mathrm{y}=y)$
- $\forall x \in \mathrm{x}, y \in \mathrm{y}, z \in \mathrm{z}, p(\mathrm{x}=x, \mathrm{y}=y \mid \mathrm{z}=z)=p(\mathrm{x}=x \mid \mathrm{z}=z) p(\mathrm{y}=y \mid \mathrm{z}=z)$
- Expectation, Variance, Covariance

Math Basics

Probability

- Expectation
- Discrete: $\mathbb{E}_{\mathrm{x} \sim P}[f(x)]=\sum_{x} P(x) f(x)$, Continuous: $\mathbb{E}_{\mathrm{x} \sim p}[f(x)]=\int p(x) f(x) d x$
- Variance
- $\operatorname{Var}(f(x))=\mathbb{E}\left[(f(x)-\mathbb{E}[f(x)])^{2}\right]$
- Covariance
- $\operatorname{Cov}(f(x), g(y))=\mathbb{E}[(f(x)-\mathbb{E}[f(x)])(g(y)-\mathbb{E}[g(y)])]$

Math Basics

Probability

- Common probability distribution
- Bernoulli distribution:
- $P(\mathrm{x}=1)=\phi, P(\mathrm{x}=0)=1-\phi, P(\mathrm{x}=x)=\phi^{x}(1-\phi)^{1-x}, \mathbb{E}_{\mathrm{x}}[\mathrm{x}]=\phi, \operatorname{Var}_{\mathrm{x}}[\mathrm{x}]=\phi(1-\phi)$
- Multinoulli distribution
- Gaussian distribution
- $\mathscr{N}\left(x ; \mu, \sigma^{2}\right)=\sqrt{\frac{1}{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)$
- Multivariate normal distribution: $\mathcal{N}(x ; \mu, \Sigma)=\sqrt{\frac{1}{(2 \pi)^{n} \operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)$
- Exponential distribution
- $p(x ; \lambda)=\lambda \exp (-\lambda x)$
- Dirac distribution
- Dirac delta function: It is zero valued everywhere except 0 , yet integrates to 1

Math Basics

Probability

- Mixtures of distribution
- $P(x)=\sum_{i} P(c=i) P(\mathrm{x} \mid c=i)$
- Gaussian Mixture: $p(\mathrm{x} \mid c=i)$ are Gaussians with a separately parameterized mean and covariance
- Bayes rule
. $p(\mathrm{x} \mid \mathrm{y})=\frac{P(\mathrm{x}) P(\mathrm{y} \mid \mathrm{x})}{P(\mathrm{y})}$

Math Basics

Some useful function

- Logistic sigmoid
- $\sigma(x)=\frac{1}{1+\exp (-x)}$
- Useful property:
- $\sigma(x)=\frac{\exp (x)}{\exp (x)+\exp (0)}$
- $\frac{d}{d x} \sigma(x)=\sigma(x)(1-\sigma(x))$
- $1-\sigma(x)=\sigma(-x)$
- ReLU
- $x^{+}=\max (0, x)$

