COMP5212: Machine Learning Lecture 1

Minhao Cheng

Term project Details

- Group of at most 4 students
- Open research projects
- offline)

Project proposal + Term project report + Term project presentation (online/

Math Basics

Math Basics Linear Algebra

- Linear algebra basics (See notes)
- Linear dependence, span
- Orthogonal, orthonormal,
- Eigendecomposition, quadratic form
 - $f(x) = x^T A x$, s. t $||x||_2 = 1$
- Positive definite: all eigenvalues are positive, positive semidefinite are all positive or zero
 - $\forall x. x^T A x > 0$
- Singular Value Decomposition (SVD)
 - $A = UDV^T$, where A is $m \times n$ matrix, U is $m \times m$ matrix, V is $n \times n$ vector

Math Basics Derivates

- Derivative, chain rule
 - Given a composite function f(x) = h(g(x))

$$\frac{df}{dx} = \frac{dh}{dg} \cdot \frac{dg}{dx}$$

Integral

• Vector to scalar: $f = [f_1 f_2 \dots f_m]^T$ is a $m \times 1$ vector, x is a scalar, then

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_2}{\partial x} & \dots & \frac{\partial f_m}{\partial x} \end{bmatrix}$$

• Scalar to vector: f is a scalar, $x = [x_1 \ x_2 \dots \ x_p]^T$ is a $p \times 1$ vector, then

Matrix Derivates

• Vector to vector: $f = [f_1 f_2 \dots f_m]^T$ is a $m \times 1$ vector, $x = [x_1 x_2 \dots x_p]^T$ is a $p \times 1$ vector, then

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_p} & \frac{\partial f_2}{\partial x_p} & \cdots & \frac{\partial f_m}{\partial x_p} \end{bmatrix}$$

• Scalar to matrix: f is a scalar, X is a $p \times q$ matrix, then

$$\frac{\partial f}{\partial X} = \begin{bmatrix} \frac{\partial f}{\partial X_{11}} & \frac{\partial f}{\partial X_{12}} & \cdots & \frac{\partial f}{\partial X_{1q}} \\ \frac{\partial f}{\partial X_{21}} & \frac{\partial f}{\partial X_{22}} & \cdots & \frac{\partial f}{\partial X_{2q}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial X_{p1}} & \frac{\partial f}{\partial X_{p2}} & \cdots & \frac{\partial f}{\partial X_{pq}} \end{bmatrix}$$

• Matrix to scalar: F is a $p \times q$ matrix, x is a scalar, then

$\frac{\partial F}{\partial x} =$	∂F_{11} ∂x	∂F_{12} ∂x	• • •	$\frac{\partial F_{1q}}{\partial x}$
	$\frac{\partial F_{21}}{\partial x}$	∂F_{22} ∂x	• • •	∂F_{2q} ∂x
	•	• •	•	• •
	$\frac{\partial F_{p1}}{\partial x}$	$\frac{\partial F_{p2}}{\partial x}$	• • •	∂F_{pq} ∂x

In the vector view:

Scalar to vector:
$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i = \frac{\partial f}{\partial x} dx$$
 where $\frac{\partial f}{\partial x}$ and dx are $n \times 1$ vector

Similarly, scalar to matrix: $df = \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\partial f}{\partial X_{ij}} dx$

- $dtr(X) = tr(dX), dX^{-1} = -X^{-1}dXX^{-1}$
- $tr(A^{T}(B \odot C)) = tr((A \odot B)^{T}C)$

$$dX_{ij} = tr(\frac{\partial f}{\partial X}^T dX)$$

• For the derivate, we also have $d(X \pm Y) = dX \pm dY$, d(XY) = (dX)Y + XdY, $d(X^T) = (dX)^T$,

• For the trace operation, we also have a = tr(a), $tr(A \pm B) = tr(A) \pm tr(B)$, tr(AB) = tr(BA),

Chain rule: f is a function of Y, let Y=AXB, to get
$$\frac{\partial f}{\partial X}$$

• $df = tr(\frac{\partial f}{\partial Y}^T dY) = tr(\frac{\partial f}{\partial Y}^T A dXB) = tr(B\frac{\partial f}{\partial Y}^T A dX) = tr((A^T \frac{\partial f}{\partial Y}B^T)^T dX)$

• Since dY = (dA)XB + A(dX)B + AX(dB) = A(dX)B as dA = 0, dB = 0

• So we get
$$\frac{\partial f}{\partial X} = A^T \frac{\partial f}{\partial Y} B^T$$

• Ex 1:
$$f = a^T X b$$
, solve $\frac{\partial f}{\partial X}$, where $a n \times 1$ vector

• Ex 2:
$$f = a^T exp(Xb)$$
, solve $\frac{\partial f}{\partial X}$, where b is $n \times 1$ vector

• Ex 3: $f = ||Xw - y||^2$, solve $\frac{\partial f}{\partial w}$, where y is $m \times 1$ vector, X is $m \times n$ matrix, w is $n \times 1$ vector

a is $m \times 1$ vector, X is $m \times n$ matrix, b is

here a is $m \times 1$ vector, X is $m \times n$ matrix,

- line \mathbb{R}
 - Discrete variable, Probability mass function (PMF) \bullet
 - lacksquareon that state

•
$$P(\mathbf{x} = x_i) = \frac{1}{k}$$

Continuous variable, Probability density function (PDF)

• Random variable: a function mapping a probability space (S, P) into a real

PMF maps a state of a random variable to the probability of the random variable taking

- Marginal Probability
 - For discrete random variable x and y, and we know P(x, y), we can find $\forall x \in \mathbf{x}, P(\mathbf{x} = x) = \sum P(\mathbf{x} = x, \mathbf{y} = y)$ • For continuous ..., $p(x) = \int p(x, y) dy$
- Conditional Probability

• $P(y = y | x = x) = \frac{P(y = y, x = x)}{P(x = x)}$

• Chain rule

•
$$P(x^{(1)}, \dots, x^{(n)}) = P(x^{(1)}) \prod_{i=2}^{n} P(x^{(1)})$$

- Independence, conditional independence
 - $\forall x \in x, y \in y, p(x = x, y = y) =$
 - $\forall x \in x, y \in y, z \in z, p(x = x, y)$
- Expectation, Variance, Covariance

$$= p(x = x)p(y = y)$$

= y | z = z) = p(x = x | z = z)p(y = y | z

Expectation

• Discrete:
$$\mathbb{E}_{x \sim P}[f(x)] = \sum_{x} P(x)f(x)$$
, Co

- Variance
 - $Var(f(x)) = \mathbb{E}[(f(x) \mathbb{E}[f(x)])^2]$
- Covariance
 - $Cov(f(x), g(y)) = \mathbb{E}[(f(x) \mathbb{E}[f(x)])(g(y) \mathbb{E}[g(y)])]$

Sontinuous: $\mathbb{E}_{x \sim p}[f(x)] = \int p(x)f(x)dx$

- Common probability distribution
 - Bernoulli distribution:
 - $P(x = 1) = \phi$, $P(x = 0) = 1 \phi$, $P(x = x) = \phi^{x}(1 \phi)^{1 x}$
 - Multinoulli distribution
 - Gaussian distribution

•
$$\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}}exp(-\frac{1}{2\sigma^2}(x-\mu)^2)$$

• Multivariate normal distribution: $\mathcal{N}(x;\mu,\Sigma) = \sqrt{\frac{1}{(2\pi)^n det(\Sigma)}}e^{-i\omega t}$

- Exponential distribution
 - $p(x; \lambda) = \lambda exp(-\lambda x)$
- Dirac distribution
 - Dirac delta function: It is zero valued everywhere except 0, yet integrates to 1

^{*x*},
$$\mathbb{E}_{\mathbf{x}}[\mathbf{x}] = \phi$$
, $Var_{\mathbf{x}}[\mathbf{x}] = \phi(1 - \phi)$

$$exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$$

Mixtures of distribution

•
$$P(x) = \sum_{i} P(c = i)P(x | c = i)$$

• $P(x) = i$

- Gaussian Mixture: $p(\mathbf{x} | c = i)$ are Gaussians with a separately parameterized mean and covariance
- Bayes rule

•
$$p(\mathbf{x} | \mathbf{y}) = \frac{P(\mathbf{x})P(\mathbf{y} | \mathbf{x})}{P(\mathbf{y})}$$

Math Basics Some useful function

Logistic sigmoid

•
$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

• Useful property:

•
$$\sigma(x) = \frac{\exp(x)}{\exp(x) + \exp(0)}$$

• $\frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x))$

•
$$1 - \sigma(x) = \sigma(-x)$$

- ReLU
 - $x^+ = \max(0, x)$