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Term project
Details

• Group of at most 4 students 


• Open research projects


• Project proposal + Term project report + Term project presentation (online/
offline)



Math Basics



Math Basics
Linear Algebra

• Linear algebra basics (See notes)


• Linear dependence, span


• Orthogonal, orthonormal, 


• Eigendecomposition, quadratic form


• 


• Positive definite: all eigenvalues are positive, positive semidefinite are all positive or zero


• 


• Singular Value Decomposition (SVD)


• , where  is  matrix,  is  matrix,  is  vector

f(x) = xT Ax, s . t ∥x∥2 = 1

∀x, xT Ax > 0

A = UDVT A m × n U m × m V n × n



Math Basics
Derivates

• Derivative, chain rule


• Given a composite function 


• 


• Integral 

f(x) = h(g(x))
df
dx

=
dh
dg

⋅
dg
dx



Math Basics
Matrix Derivates

• Scalar to vector:    is a scalar,  is a  vector, then


• 


• Vector to scalar:  is a  vector,  is a scalar, then


•

f x = [x1 x2… xp]T p × 1

∂f
∂x

= [
∂f
∂x1

∂f
∂x2

…
∂f
∂xp

]T

f = [ f1 f2… fm]T m × 1 x

∂f
∂x

= [
∂f1
∂x

∂f2
∂x

…
∂fm
∂x

]



Math Basics
Matrix Derivates

• Vector to vector:   is a  vector,  is a  vector, then


•




• Scalar to matrix:  is a scalar,  is a  matrix, then


•

f = [ f1 f2… fm]T m × 1 x = [x1 x2… xp]T p × 1

∂f
∂x

=

∂f1
∂x1

∂f2
∂x1

⋯
∂fm
∂x1

∂f1
∂x2

∂f2
∂x2

⋯
∂fm
∂x2

⋮ ⋮ ⋱ ⋮
∂f1
∂xp

∂f2
∂xp

⋯
∂fm
∂xp

f X p × q

∂f
∂X

=

∂f
∂X11

∂f
∂X12

⋯ ∂f
∂X1q

∂f
∂X21

∂f
∂X22

⋯ ∂f
∂X2q

⋮ ⋮ ⋱ ⋮
∂f

∂Xp1

∂f
∂Xp2

⋯ ∂f
∂Xpq



Math Basics
Matrix Derivates

• Matrix to scalar:  is a  matrix,  is a scalar, then


•

F p × q x

∂F
∂x

=

∂F11

∂x
∂F12

∂x ⋯
∂F1q

∂x
∂F21

∂x
∂F22

∂x ⋯
∂F2q

∂x
⋮ ⋮ ⋱ ⋮

∂Fp1

∂x

∂Fp2

∂x ⋯
∂Fpq

∂x



Math Basics
Matrix Derivates

• In the vector view:


• Scalar to vector:  where  and  are  vector


• Similarly, scalar to matrix: 


• For the derivate, we also have , , , 
, 


• For the trace operation, we also have ,  , , , 

df =
n

∑
i=1

∂f
∂xi

dxi =
∂f
∂x

T
dx

∂f
∂x

dx n × 1

df =
m

∑
i=1

n

∑
j=1

∂f
∂Xij

dXij = tr(
∂f
∂X

T
dX)

d(X ± Y) = dX ± dY d(XY) = (dX)Y + XdY d(XT) = (dX)T

dtr(X) = tr(dX) dX−1 = − X−1dXX−1

a = tr(a) tr(A ± B) = tr(A) ± tr(B) tr(AB) = tr(BA)
tr(AT(B ⊙ C)) = tr((A ⊙ B)TC)



Math Basics
Matrix Derivates

• Chain rule: f is a function of Y, let Y=AXB, to get 


• 


• Since  as 



• So we get  

∂f
∂X

df = tr(
∂f
∂Y

T
dY) = tr(

∂f
∂Y

T
AdXB) = tr(B

∂f
∂Y

T
AdX) = tr((AT ∂f

∂Y
BT)TdX)

dY = (dA)XB + A(dX)B + AX(dB) = A(dX)B
dA = 0,dB = 0

∂f
∂X

= AT ∂f
∂Y

BT



Math Basics
Matrix Derivates

• Ex 1: , solve , where  is  vector,  is  matrix,  is 

 vector


• Ex 2: , solve , where  is  vector,  is  matrix, 

 is  vector


• Ex 3: , solve , where  is  vector,  is  matrix, 

 is  vector

f = aTXb
∂f
∂X

a m × 1 X m × n b
n × 1

f = aTexp(Xb)
∂f
∂X

a m × 1 X m × n
b n × 1

f = ∥Xw − y∥2 ∂f
∂w

y m × 1 X m × n
w n × 1



Math Basics
Probability

• Random variable: a function mapping a probability space  into a real 
line  

• Discrete variable, Probability mass function (PMF)


• PMF maps a state of a random variable to the probability of the random variable taking 
on that state


• 


• Continuous variable, Probability density function (PDF)

(S, P)
ℝ

P(x = xi) =
1
k



Math Basics
Probability

• Marginal Probability


• For discrete random variable x and y, and we know , we can find 



• For continuous …, 


• Conditional Probability


•

P(x, y)
∀x ∈ x, P(x = x) = ∑

y

P(x = x, y = y)

p(x) = ∫ p(x, y)dy

P(y = y |x = x) =
P(y = y, x = x)

P(x = x)



Math Basics
Probability

• Chain rule


• 


• Independence, conditional independence


• 


• 


• Expectation, Variance, Covariance

P(x(1), …, x(n)) = P(x(1))
n

∏
i=2

P(x(i) |x(1), …, x(i−1))

∀x ∈ x, y ∈ y, p(x = x, y = y) = p(x = x)p(y = y)

∀x ∈ x, y ∈ y, z ∈ z, p(x = x, y = y |z = z) = p(x = x |z = z)p(y = y |z = z)



Math Basics
Probability

• Expectation


• Discrete: , Continuous: 


• Variance


• 


• Covariance


•

𝔼x∼P[ f(x)] = ∑
x

P(x)f(x) 𝔼x∼p[ f(x)] = ∫ p(x)f(x)dx

Var( f(x)) = 𝔼[( f(x) − 𝔼[ f(x)])2]

Cov( f(x), g(y)) = 𝔼[( f(x) − 𝔼[ f(x)])(g(y) − 𝔼[g(y)])]



Math Basics
Probability

• Common probability distribution


• Bernoulli distribution: 


• , , , , 


• Multinoulli distribution


• Gaussian distribution


• 


• Multivariate normal distribution: 


• Exponential distribution


• 


• Dirac distribution


• Dirac delta function: It is zero valued everywhere except 0, yet integrates to 1

P(x = 1) = ϕ P(x = 0) = 1 − ϕ P(x = x) = ϕx(1 − ϕ)1−x 𝔼x[x] = ϕ Varx[x] = ϕ(1 − ϕ)

𝒩(x; μ, σ2) =
1

2πσ2
exp(−

1
2σ2

(x − μ)2)

𝒩(x; μ, Σ) =
1

(2π)ndet(Σ)
exp(−

1
2

(x − μ)TΣ−1(x − μ))

p(x; λ) = λexp(−λx)



Math Basics
Probability

• Mixtures of distribution


• 


• Gaussian Mixture:  are Gaussians with a separately parameterized 
mean and covariance


• Bayes rule


•

P(x) = ∑
i

P(c = i)P(x |c = i)

p(x |c = i)

p(x |y) =
P(x)P(y |x)

P(y)

Prior



Math Basics
Some useful function

• Logistic sigmoid


• 


• Useful property:


• 


• 


• 


• ReLU


•

σ(x) =
1

1 + exp(−x)

σ(x) =
exp(x)

exp(x) + exp(0)
d
dx

σ(x) = σ(x)(1 − σ(x))

1 − σ(x) = σ(−x)

x+ = max(0,x)


