COMP5212: Machine Learning Lecture 0

Minhao Cheng

Course information Basic

- My Office: CYT 3004
- Office Hours: Tuesday 13:00-14:30 @ CYT 3004
- TA: Zeyu Qin, Sen Li
- Reference:
 - "Deep Learning" (by Goodfellow, Bengio, Courville)
 - Stanford CS 229

Website: <u>https://cse.hkust.edu.hk/~minhaocheng/teaching/comp5212f23.html</u>

Course information Syllabus (tentative)

- Part I
 - Math basics
 - Linear models(regression, classification, clustering)
 - Optimization
 - Learning theory
- Part II
 - Kernel methods
 - Tree-based methods
 - Neural network
- Part III
 - Advanced topic in machine learning
 - Large Language model (GPT, Bert)
 - AutoML
 - Trustworthy machine learning
 - ...

Course information Grading policy

- Homework (40%)
 - 3 Written
 - 2 Programming
- Term project (35%)
- Final exam (25%)

Course information Term project

- Group of at most 4 students
- Open research projects:
 - Solve an interesting problem
 - Develop a new algorithm ullet
 - Compare state-or-the-art algorithms on some problems
 - . . .
- Feel free to discuss with me either by email or in the office hour

Course information Waitlist

- I will increase the course capacity accordingly (however, space limit)
- A lot of people will drop

Machine Learning: Overview

Machine learning overview From learning to machine learning

- What is learning?
 - Observation → Learning → Skill
- Skill: how to make decision (action)
 - Classify an image
 - Translate a sentence from one language to another
 - Learn to play a game \bullet

. . .

Machine learning overview From learning to machine learning

Human learning

Decision rule

Machine learning overview From learning to machine learning

- What is learning?
- Observation → Learning → Skill
- Skill: how to make decision (action)
 - Classify an image
 - Translate a sentence from one language to another
 - Learn to play a game
 - •
- Machine learning: (Automatic the learning process) •

• Data \rightarrow Machine Learning \rightarrow Skill (decision rules)

Machine learning overview **Machine learning**

Decision rule

Machine learning overview **Machine learning**

Decision rule

X₁: vector of pixel values [0, 24, 128, ...]

Machine learning overview Machine learning

Machine Learning Formalization

- Input: $x \in \mathcal{X}$
- Output: $y \in \mathcal{Y}$
- Target function to be learned:
 - $f: \mathcal{X} \to \mathcal{Y}$ (ideal image classification function)
- Data:
 - $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \dots, (X_N, y_N)\}$
- Hypothesis (model)
 - $g: \mathcal{X} \to \mathcal{Y}$ (Learned formula to be used)

Machine Learning Basic setup of learning problem

Machine Learning Learning model

- A learning model has two components:
 - The hypothesis set \mathcal{H} :
 - Set of candidate hypothesis (functions)
 - The learning algorithm:
 - To pick a hypothesis (function) from the ${\mathscr H}$
 - Usually optimization algorithm (choose of the second second

Usually optimization algorithm (choose the best function to minimize the training

Machine learning Binary classification

- Data:
 - Feature for each training example: $\{x_n\}_{n=1}^N$, each $x_n \in \mathbb{R}^d$
 - Labels for each training example: $y_n \in \{+1, -1\}$
- Goal: learn a function
- Examples:

•

- Credit: approve/disapprove
- Email: spam/not spam
- Patient: sick/not sick

each $x_n \in \mathbb{R}^d$ -1}

Machine learning **Types of hypothesis**

• Linear hypothesis space

•
$$h(x) = \operatorname{sign}(\sum_{i=1}^{d} w_i x_i - \operatorname{threshold})$$

• Feed forward (fully connected) network:

•
$$h(x) = sign(W_L ... \sigma(W_2 \sigma(W_1 x + b_1) + b_2) + b_L)$$

- Tree-based models
- . . .

Machine learning Types of hypothesis

Tree-based classification

- Regression: $y_n \in \mathbb{R}$ (output is a real number)
- Example:

. . .

- Stock price prediction
- Movie rating prediction

- Multi-class classification
 - $y_n \in \{1, ..., C\}$ (C-way)
- Examples: object classification

0	0	0	0	0	0	D	٥	0	0	0	0	0	0	airplane
١	١	١	1	1	1	/	1	١	1	1	١	1	1	automobile
2	2	ð	J	2	2	ደ	2	2	2	2	2	2	ス	bird
3	3	3	3	3	3	3	3	3	З	3	3	3	З	cat
٤	ч	4	4	Ч	ч	4	4	4	4	4	ч	4	4	deer
5	5	5	\$	5	б	5	5	5	5	5	5	5	5	dog
6	6	6	6	6	6	Ь	6	Ģ	6	6	6	6	b	frog
7	7	7	7	ч	7	2	7	7	7	7	7	7	7	horse
8	8	8	8	8	8	8	8	8	8	8	8	8	8	ship
9	9	9	9	٦	9	٩	η	٩	9	9	9	9	9	truck

MNIST

CIFAR

- Multi-label prediction
 - Multi-class problem: Each sample only has one label
 - Multi-label problem: Each sample can have multiple labels
- Example:
 - Document categorization (news/sports/economy/...)
 - Document/image tagging
 - •
- Extreme classification (large output space problems):
 - Millions of billions of labels (but usually each sample only has few labels)
 - Recommendation systems: Predict a subset of preferred items for each user
 - Document retrieval or search: Predict a subset of related articles for a query

- Structural prediction
 - ML • love verb pronoun noun
- Multiclass classification for each word (word \rightarrow word class)
 - (not using information of the whole sentence)
- Structure prediction problem:
 - sentence \longrightarrow structure (class of each word)
- Other examples: speech recognition, image captioning, machine translation, ...

- 1. A red stop sign sitting on the side of a road.
- 2. A stop sign on the corner of a street.
- 3. A red stop sign sitting on the side of a street.

Machine learning overview Machine Learning Problems

- Supervised learning: every x_n comes with y_n (label)
- Unsupervised learning: only x_n , no y_n
- Semi-supervised learning: Some labeled data and some unlabeled data
- Transfer learning: Transfer knowledge from source datasets to a target dataset

Machine learning Unsupervised Learning (no y_n**)**

- Example: clustering
 - Given examples x_1, \ldots, x_N , classify them into K classes
- Other unsupervised learning:
 - Outlier detection: $\{x_n\} \Rightarrow$ unusual(x)
 - **Dimensional reduction**

Machine learning Unsupervised Learning

• Example: clustering

MeanShift	Spectral Clustering	Ward	Agglomerative Clustering	DBSCAN	OPTICS	BIRCH	Gaussian Mixture
. <u>11s</u>	.30s	.07s	.06s	.01s	.87s	.02s	.00s
.06s	.845	.085	.06s	.01s	.87s	.02s	.01s
.15s	.11s	.47s	.50s	.01s	.87s	.02s	.01s
.11s	.20s	.225	.18s	.01s	.856	.02s	.01s
*	*					*	*
. 07s	. <u>18s</u>	.08s	.06s	.01s	.86 s	.02s	.00s
125	15c	065	οΔε	015	860	025	015
.123	.1.72	.003	.075	.012	.003	.025	.012

Machine learning **Semi-supervised learning**

- Only some (few) x_n has y_n
 - Labeled data is much more expensive than unlabeled data

Machine learning Transfer learning

- Source dataset $D_{\rm Source}$ and target dataset $D_{\rm target}$
- How to leverage the information of $D_{\rm source}$ to improve the performance of target task?
- Useful when source data has much richer information than target data
- (Pre)train the neural network based on the source data
- Fine-tune some parts or the entire network on target data

Machine Learning Self-supervised learning

- The pretraining can be done with unlabeled data (easy to collect gigantic unlabeled data)
 - Example: We can get almost unlimited unlabeled text from Internet
- Define the training task based on unlabeled data
 - Example: predict a word in a sentence
- Transfer the model to end task

•

In Autumn the leaves fall from the trees.

In Autumn the [] fall from the trees. leaves apples Predicted words raindrops by the model branches

> Masked language modeling (pretraining for text model)

Original sentence:

Masked sentence:

Are those the same images?

Contrastive learning (pretraining for text model)

